本文目录一览:
- 1、共轭复数的运算公式
- 2、共轭复数怎么解
- 3、共轭复数怎么求?
- 4、复数的共轭复数
- 5、共轭复数怎么算?z=2-i,共轭复数z上面一横是多少?
- 6、复数的共轭复数怎么求
- 7、共轭复数怎么求
- 8、共轭复数怎么求
- 9、共轭怎么求
共轭复数的运算公式
共轭复数的运算公式是Z=a+bi(a,b∈R),共轭复数,两个实部相等,虚部三为相反数的复
数互为共瓶复数(conjugate cornplex nurmben)。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。复数z的共轭复数记作z(上加一横),有时也可表示为Z·同时,复数Z(上加一横)称为复数z
的复共轭(complex conjugate)。
1、基本概念:共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。
2、运算方法:
(1)加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即
(a+bi)±(c+di)=(a±c)+(b±d)i.
(2)减法法则:两个复数的差为实数之差加上虚数之差(乘以i),即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
(3)乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(4)除法法则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
(5)开放法则:若z^n=r(cosθ+isinθ),则z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1)
运算特征:
(1)(z1+z2)′=z1′+z2′
(2)(z1-z2)′=z1′-z2′
(3)(z1·z2)′=z1′·z2′
(4)(z1/z2)′=z1′/z2′
(z2≠0)
总结:和(差、积、商)的共轭等于共轭的和(差、积、商)。
共轭复数怎么解
共轭复数怎么求?
解答过程如下:
y2-2y+10=0
根据一元二次方程根的公式,有:
y=[-(-2)±√(-2)2-4×1×10]/2=(2±√-36)/2=(2±√36i2)/2=1±6i
扩展资料:
共轭复数
两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作
(z上加一横,英文中可读作Conjugate z,z conjugate or z bar),有时也可表示为
。
根据定义,若z=a+ib(a,b∈R),则
=a-ib(a,b∈R)。在复平面上,共轭复数所对应的点关于实轴对称。(如右图)
共轭根式
当
都是有理根式,而
、
中至少有一个是无理根式时,称
和
互为“共轭根式”。由平方差公式,这两式的积为有理式
共轭双曲线
以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,如双曲线H:
与 双曲线H':
叫做一对共轭双曲线(a>0,b>0)。
主要性质有:它们有共同的渐近线,它们的四个焦点共圆,它们的离心率的倒数的平方和等于1。
参考资料来源:百度百科-- 共轭
参考资料来源:百度百科--共轭复根定理
复数的共轭复数
共轭复数的定义是若z=a+bi(a,b∈R),则 z的共轭=a-bi(a,b∈R)。
1、两个实部相等,虚部互为相反数的复数互为共轭复数。
2、两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。在复平面上.表示两个共轭复数的点关于X轴对称。而这一点正是“共轭”一词的来源。
3、两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做“轭”。如果用Z表示X+Yi,那么在Z字上面加个“一”就表示X-Yi,或相反。特别的,当b=0时,z∈R?z上面加“一”=z。
求法:
(一)、加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i。
(二)、减法法则:两个复数的差为实数之差加上虚数之差(乘以i)即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
(三)、乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
即:z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(bc+ad)i。
(四)、除法法则:复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
共轭复数怎么算?z=2-i,共轭复数z上面一横是多少?
两个实部相等,虚部互为相反数的复数互为共轭复数.
z = 2 - i
z* = 2 + i
复数的共轭复数怎么求
复数的共轭复数很简单,只要把虚部取反即可,例如:复数5/3+4i的共轭复数是5/3-4i。
两个实部相等、虚部互为相反数的复数互为共轭复数。
当虚部不为零时,共轭复数就是实部相等,虚部相反;如果虚部为零,其共轭复数就是自身(当虚部不等于0时也叫共轭虚数)。
根据定义,若z=a+bi(a,b∈R),则=a-bi(a,b∈R)。
共轭复数怎么求
复数的共轭复数很简单,只要把虚部取反即可,例如:复数5/3+4i的共轭复数是5/3-4i。
当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数,其几何特征是复平面上关于实轴对称的点,即复数z=a+bi(a,b∈R)的共轭复数为 (a,b∈R)。
共轭复数的性质
(1)︱x+yi︱=︱x-yi︱;
(2)(x+yi)*(x-yi)=x2+y2=︱x+yi︱2=︱x-yi︱2。
如果两个复数相等a+bi=c+di, 移项后得到a+bi-(c+di)=0, 根据复数的减法有(a-c)+(b-d)i=0. 复数等于零, 只有实部和虚部都为零, 于是得到a=c, b=d. 因此两个复数相等意味着实部与实部相等, 虚部与虚部相等。
共轭复数怎么求
共轭复数怎么求:用“共轭”概念直接求复数的共轭复数,用“虚部”来求复数的共轭复数,用“共轭角”来求复数的共轭复数。
拓展资料:
数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646年~1716年)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。
然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。法国数学家达朗贝尔(1717年~1783年)在1747年指出,如果按照多项式的四则运算规则对虚数进行运算,那么它的结果总是a+bi的形式(a、b都是实数)。
法国数学家棣莫弗(1667年~1754年)在1722年发现了著名的棣莫佛定理。欧拉在1748年发现了有名的关系式,并且是他在《微分公式》(1777年)一文中第一次用i来表示-1的平方根,首创了用符号i作为虚数的单位。“虚数”实际上不是想象出来的,而它是确实存在的。
挪威的测量学家韦塞尔(1745年~1818年)在1797年试图给于这种虚数以直观的几何解释,并首先发表其作法,然而没有得到学术界的重视。
18世纪末,复数渐渐被大多数人接受,当时卡斯帕尔·韦塞尔提出复数可看作平面上的一点。数年后,高斯再提出此观点并大力推广,复数的研究开始高速发展。诧异的是,早于1685年约翰·沃利斯已经在DeAlgebratractatus提出此一观点。
卡斯帕尔·韦塞尔的文章发表在1799年的《ProceedingsoftheCopenhagenAcademy》上,以当今标准来看,也是相当清楚和完备。他又考虑球体,得出四元数并以此提出完备的球面三角学理论。
1804年,AbbéBuée亦独立地提出与沃利斯相似的观点,即以来表示平面上与实轴垂直的单位线段。
1806年,Buée的文章正式刊出,同年让-罗贝尔·阿尔冈亦发表同类文章,而阿尔冈的复平面成了标准。1831年高斯认为复数不够普及,次年他发表了一篇备忘录,奠定复数在数学的地位。柯西及阿贝尔的努力,扫除了复数使用的最后顾忌,后者更是首位以复数研究著名的。
共轭怎么求
共轭求法:只要把虚部取反即可,例如:复数5/3+4i的共轭复数是5/3-4i。
拓展资料:
共轭在数学、物理、化学、地理等学科中都有出现。 本意:两头牛背上的架子称为轭,轭使两头牛同步行走。共轭即为按一定的规律相配的一对。通俗点说就是孪生。在数学中有共轭复数、共轭根式、共轭双曲线、共轭矩阵等。
数学[英语:mathematics,源自古希腊语μ?θημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。
数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:mathematics或maths),其英语源自于古希腊语的μθημα(máthēma),有学习、学问、科学之意。
古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——数学研究。即使在其语源内,其形容词意义凡与学习有关的,亦被用来指数学。
其在英语的复数形式,及在法语中的复数形式加-es,成mathématiques,可溯至拉丁文的中性复数(mathematica),由西塞罗译自希腊文复数τα μαθηματικ?(ta mathēmatiká)。
在中国古代,数学叫作算术,又称算学,最后才改为数学。中国古代的算术是六艺之一(六艺中称为数)。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展。但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的“数学”。可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一。几何学则是最早开始被人们研究的数学分支。