×

电磁感应知识点总结,高中物理电磁感应知识点

admin admin 发表于2023-12-08 16:43:29 浏览26 评论0

抢沙发发表评论

本文目录一览:

电磁感应现象及应用知识点

电磁感应现象及应用知识点:
一、电磁感应的发现
1.“电生磁”的发现
奥斯特实验的启迪:丹麦物理学家奥斯特发现电流能使小磁针偏转,即电流的磁效应
2.“磁生电”的发现
(1)电磁感应现象的发现
法拉第根据他的实验,将产生感应电流的原因分成五类:
①变化的电流;
②变化的磁场;
③运动中的恒定电流;
④运动中的磁铁;
⑤运动中的导线。
(2)电磁感应的发现使人们找到了“磁生电”的条件,开辟了人类的电气化时代。
二、感应电流产生的条件
1. 探究实验
实验一:导体在磁场中做切割磁感线的运动
实验二:通过闭合回路的磁场发生变化
2. 感应电流产生的条件:穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生
三、感应电动势
1. 定义:由电磁感应产生的电动势,叫感应电动势。产生电动势的那部分导体相当于电源。
2. 产生条件:只要穿过电路的磁通量发生变化,无论电路是否闭合,电路中都会有感应电动势。
3. 方向判断:在内电路中,感应电动势的方向是由电源的负极指向电源的正极,跟内电路中的电流的方向一致。产生感应电动势的那部分导体相当于电源。
【关键一点】感应电流的产生需要电路闭合,而感应电动势的产生电路不一定需要闭合

高二物理必修三知识点总结:电磁感应

【 #高二# 导语】高二是承上启下的一年,是成绩分化的分水岭,成绩往往形成两极分化:行则扶摇直上,不行则每况愈下。在这一年里学生必须完成学习方式的转变。为了让你更好的学习 高中频道为你整理了《高二物理必修三知识点总结:电磁感应》希望你喜欢!
  1.[感应电动势的大小计算公式]
  1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
  2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
  3)Em=nBSω(交流发电机的感应电动势){Em:感应电动势峰值}
  4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
  2.磁通量Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
  3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
  *4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
  注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点〔见第二册P173〕;(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH。(4)其它相关内容:自感〔见第二册P178〕/日光灯〔见第二册P180〕。

高中物理电磁感应知识点

  高中物理电磁感应知识点1   一、磁通量:
  设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度B和平面面积S的乘积叫磁通量;
  1、计算式:=BS(BS)
  2、推论:B不垂直S时,=BSsin
  3、磁通量的国际单位:韦伯,wb;
  4、磁通量与穿过闭合回路的磁感线条数成正比;
  5磁通量是标量,但有正负之分;
  二、电磁感应:
  穿过闭合回路的磁通量发生变化,闭合回路中就有感应电流产生,这种现象叫电磁感应现象,产生的电流叫感应电流;
  注:判断有无感应电流的方法:
  1、闭合回路;2、磁通量发生变化;
  三、感应电动势:
  在电磁感应现象中产生的电动势;
  四、磁通量的变化率:
  等于磁通量的变化量和所用时间的比值;△/t
  1、磁通量的变化率是表示磁通量的变化快慢的物理量;
  2、磁通量的变化率由磁通量的变化量和时间共同决定;
  3、磁通量变化率大,感应电动势就大;
  五、法拉第电磁感应定律:
  电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比;
  1、定义式:E=n△/△t(只能求平均感应电动势);
  2、推论;E=BLVsina(适用导体切割磁感线,求瞬时感应电动势,平均感应电动势)
  (1)VL,LB,为V与B间的夹角;
  (2)VB,LB,为V与L间的夹角
  (3)VB,LV,为B与L间的夹角
  3、穿过线圈的磁通量大,感应电动势不一定大;
  4、磁通量的变化量大,感应电动势不一定大;
  5、有感应电流就一定有感应电动势;有感应电动势,不一定有感应电流;
  六、右手定则(判断感应电流的方向):
  伸开右手,让大拇指和其余四指共面、且相互垂直,把右手放入磁场中,让磁感线垂直穿过手心,大拇指指向导体运动方向,四指指向感应电流的方向;
  高中物理电磁感应知识点2   1、电磁感应现象 :
  利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
  (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即Δ≠0。(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。产生感应电动势的那部分导体相当于电源。
  (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
  2、磁通量
  (1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即=BS′,国际单位:Wb
  求磁通量时应该是穿过某一面积的磁感线的净条数。任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。反之,磁通量为负。所求磁通量为正、反两面穿入的磁感线的代数和。
  3、楞次定律
  (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
  (2)对楞次定律的理解
  ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量。
  ②阻碍什么———阻碍的.是穿过回路的磁通量的变化,而不是磁通量本身。
  ③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
  ④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少。
  (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
  ①阻碍原磁通量的变化;
  ②阻碍物体间的相对运动;
  ③阻碍原电流的变化(自感)。
  4、法拉第电磁感应定律
  电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。表达式E=nΔ/Δt
  当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。当B、L、v三者两两垂直时,感应电动势E=BLv。
  (1)两个公式的选用方法E=nΔ/Δt计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。
  (2)公式的变形
  ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt。
  ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt。
  5、自感现象
  (1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。
  (2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。
  6、日光灯工作原理
  (1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间。
  (2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。
  7、电磁感应中的电路问题
  在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。因此,电磁感应问题往往与电路问题联系在一起。解决与电路相联系的电磁感应问题的基本方法是:
  (1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。
  (2)画等效电路。
  (3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。
  8、电磁感应现象中的力学问题
  (1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:
  ①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。
  ②求回路中电流强度。
  ③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。
  ④列动力学方程或平衡方程求解。
  (2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。
  9、电磁感应中能量转化问题
  导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
  (1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。
  (2)画出等效电路,求出回路中电阻消耗电功率表达式。
  (3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。
  10、电磁感应中图像问题
  电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。
  另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

法拉第电磁感应定律知识点

电磁感应定律(Ⅱ)
在电磁感应现象中产生的电动势叫作感应电动势。
(1)条件:穿过回路的磁通量发生改变,与电路是否闭合无关。
无论是否闭合,Φ变化就产生电动势。电路闭合才有电流。
(2)方向判断:感应电动势的方向用楞次定律或右手定则来判断。
电动势及电流方向的正负是人为设定的。如果设顺时针电流为正方向,则逆时针电流为负方向。
11.3.1内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。后人称为法拉第电磁感应定律。
11.3.2发现者:纽曼、韦伯
公式可以求平均电动势。Δt→0时,可求瞬时电动势(需要求导数,或者依据Φ-t图斜率)。
11.3.4单位换算:1V=1Wb/s
推导所用公式:电场力做功W=qU,磁通量Φ=BS,安培力F=BIL,电量q=It,力做功W=FL。
1Wb/s=1Tm2/s=1Nm2/Ams=1Nm/As=1J/C=1V
11.3.5定律的重点是对ΔΦ的理解和计算。
1)电磁感应定律只计算感应电动势的大小,所以只计算ΔΦ的绝对值。
2)线圈绕垂直于磁场的轴,从中性面(B⊥S)起转转过180°前后,有从正面穿过和从反面穿过两种情况。穿过平面的磁通量是一正一负,ΔΦ=2BS,不为零。从与中性面成θ角起转,ΔΦ=2BScosθ。但从B∥S位置起转,ΔΦ=0.
3)感应电动势E的方向与感应电流I的方向一致。可以设顺时针为正(也可以设逆时针为正),充当电源的那部分线圈(或导体棒)相当于电源,其电阻为电源内阻。
电源两端电压,即路端电压U=IR(外电路是纯电阻);或U=E-Ir(适用于内阻是纯电阻,外电路可以有电动机)。
消耗功率:P外=IU,P总=EI。电热:Q外=I2Rt,Q总=I2(R+r)t。
11.3.6产生感应电动势有5种常见情况(也是设计试题的重点):
3)在匀强磁场中,导体棒以一端为轴旋转切割磁感线。(3-2教材14页题7。)
另一种推导过程:
导体棒以角速度ω旋转,Δt时间内转过的角为:θ=ωΔt
导体棒扫过的面积ΔS=,ΔΦ=B·ΔS
4)在匀强磁场中,线圈绕垂直于磁场的轴旋转。(3-2教材18页题5.)
5)BS都变化,E感可能等于零。(例3-2教材第9页题7。)
11.3.7对导线切割磁感线时的感应电动势的分析
1)BLv三个物理量彼此垂直时,E=BLv.(条件:B⊥L,L⊥v,v⊥B。)
2)BLv三个物理量中,有两个量相互平行,而第三个量与前两个量中某一个垂直;或者三个量都平行时。E=0.即:
B∥L,或者B∥Lv平面。
L∥v,或者L∥vB平面。
v∥B,或者v∥BL平面。
3)BLv三个物理量中,有两个量夹角为θ,而第三个量与前两个量都垂直,则
E=BLvsinθ.
4)BLv三个物理量彼此都不垂直(这种问题数学立体关系难度较大,不能重点考查物理知识,常从略)。
11.3.8反电动势:电动机转动时,线圈中发生电磁感应,所产生的电动势E’与电源电动势E方向相反,把E’叫作反电动势。
(水平光滑导轨上,通电导体棒受安培力作用加速。导体棒运动切割磁感线,产生电动势E’,E’与E方向相反,为反电动势。)
欧姆定律只适用于纯电阻电路,不适用电动机电路。E-E’=Ir+IR。导体电压U-E’=IR.
E=E1-E2=BL(v1-v2)=IR总.当I=0时,安培力为零,ab不再减速,cd不再加速。两棒以相同速度匀速运动。若两棒质量相等,由动量守恒定律,则mv0=2mv.

高二物理法拉第电磁感应定律知识点梳理

  一、基础知识
  1、电磁感应、感应电动势、感应电流
  电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流。要注意理解: 1)产生感应电动势的那部分导体相当于电源。2)产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。3)产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线运动与穿过闭合电路中的磁通量发生变化等效。
  2、电磁感应规律
  感应电动势的大小: 由法拉第电磁感应定律确定。
  当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为。
  如图所示。设产生的感应电流强度为I,MN间电动势为,则MN受向左的安培力,要保持MN以匀速向右运动,所施外力,当行进位移为S时,外力功。t为所用时间。
  而在t时间内,电流做功,据能量转化关系则。M点电势高,N点电势低。
  此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比法拉第电磁感应定律。
  如上图中分析所用电路图,在回路中面积变化,而回路跌磁通变化量,又知。
  如果回路是n匝串联,则。
  公式一: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。
  公式二: 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直于B方向上的投影)。
  公式三: 。注意: 1)该公式由法拉第电磁感应定律推出。适用于自感现象。2)与电流的变化率成正比。
  公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。
  严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。
  公式一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势?如图1所示, 一长为l的导体杆AC绕A点在纸面内以角速度匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B, 求AC产生的感应电动势, 显然, AC各部分切割磁感线的速度不相等, , 且AC上各点的线速度大小与半径成正比, 所以AC切割的速度可用其平均切割速度, 即 故。
  当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为。
  如图所示,AO导线长L,以O端为轴,以角速度匀速转动一周,所用时间,描过面积,(认为面积变化由0增到)则磁通变化。
  在AO间产生的感应电动势且用右手定则制定A端电势高,O端电势低。
  面积为S的纸圈,共n匝,在匀强磁场B中,以角速度匀速转坳,其转轴与磁场方向垂直,则当线圈平面与磁场方向平行时,线圈两端有最大有感应电动势。
  如图所示,设线框长为L,宽为d,以转到图示位置时,ab边垂直磁场方向向纸外运动,切割磁感线,速度为(圆运动半径为宽边d的一半)产生感应电动势,a端电势高于b端电势。
  cd边垂直磁场方向切割磁感线向纸里运动,同理产生感应电动热势。c端电势高于e端电势。
  bc边,ae边不切割,不产生感应电动势,bc两端等电势,则输出端M.N电动势为。
  如果线圈n匝,则,M端电势高,N端电势低。
  参照俯示图,这位置由于线圈长边是垂直切割磁感线,所以有感应电动势最大值,如从图示位置转过一个角度,则圆运动线速度,在垂直磁场方向的分量应为,则此时线圈的产生感应电动势的瞬时值即作最大值.即作最大值方向的投影,(是线圈平面与磁场方向的夹角)。
  当线圈平面垂直磁场方向时,线速度方向与磁场方向平行,不切割磁感线,感应电动势为零。
  总结:计算感应电动势公式:
  注意:公式中字母的含义,公式的适用条件及使用图景。
  区分感应电量与感应电流, 回路中发生磁通变化时, 由于感应电场的作用使电荷发生定向移动而形成感应电流, 在内迁移的电量(感应电量)为, 仅由回路电阻和磁通量的.变化量决定, 与发生磁通变化的时间无关。因此, 当用一磁棒先后两次从同一处用不同速度插至线圈中同一位置时, 线圈里聚积的感应电量相等, 但快插与慢插时产生的感应电动势、感应电流不同, 外力做功也不同。
  2、自感现象、自感电动势、自感系数L
  自感现象是指由于导体本身的电流发生变化而产生的电磁感应现象。所产生的感应电动势叫做自感电动势。自感系数简称自感或电感, 它是反映线圈特性的物理量。线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。
  自感现象分通电自感和断电自感两种, 其中断电自感中小灯泡在熄灭之前是否要闪亮一下的问题, 如图2所示, 原来电路闭合处于稳定状态, L与并联, 其电流分别为, 方向都是从左到右。在断开S的瞬间, 灯A中原来的从左向右的电流立即消失, 但是灯A与线圈L构成一闭合回路, 由于L的自感作用, 其中的电流不会立即消失, 而是在回路中逐断减弱维持暂短的时间, 在这个时间内灯A中有从右向左的电流通过, 此时通过灯A的电流是从开始减弱的, 如果原来, 则在灯A熄灭之前要闪亮一下; 如果原来, 则灯A是逐断熄灭不再闪亮一下。原来哪一个大, 要由L的直流电阻和A的电阻的大小来决定, 如果, 如果。
  分析实例:
  如图所示,此时线圈中通有右示箭头方向的电流,它建立的电流磁场B用右手安培定则判定,由下向上,穿过线圈。
  当把滑动变阻器的滑片P向右滑动时,电路中电阻增大,电源电动势不变,则线圈中的电流变小,穿过线圈的电流磁场变小,磁通量变小。根据楞次定 律,产生感应电流的磁场阻碍原磁通量变小,所以感应电流磁场方向与原电流磁场同向,也向上。根据右手安培定则,感应电流与原电流同向,阻碍原电流减弱。
  同理,如将滑片P向左滑动,线圈中原电流增强,电流磁场增强,穿过线圈的磁通量增加,产生感应电流,其磁场阻碍原磁通量增强与原磁场反向而自上向下穿过线圈,据右手安培定则判定感应电流方向与原电流反向,阻碍原电流增强。
  2、由于线圈(导体)本身电流的变化而产生的电磁感应现象叫自感现象。在自感现象中产生感应电动势叫自感电动势。
  由上例分析可知:自感电动势总量阻碍线圈(导体)中原电流的变化。
  3、自感电动势的大小跟电流变化率成正比。
  L是线圈的自感系数,是线圈自身性质,线圈越长,单位长度上的匝数越多,截面积越大,有铁芯则线圈的自感系数L越大。单位是亨利(H)。
  如是线圈的电流每秒钟变化1A,在线圈可以产生1V 的自感电动势,则线圈的自感系数为1H。还有毫亨(mH),微亨(H)。

电磁学知识总结重要知识点

  电磁学是研究电和磁的相互作用现象,及其规律和应用的物理学分支学科。那么你对电磁学知识了解多少呢?以下是由我整理关于电磁学知识 总结 的内容,希望大家喜欢!

  (一)电磁学知识总结——直流电路   1、电流的定义:I =(微观表示: I=nesv,n为单位体积内的电荷数)
  2、电阻定律: R=ρ(电阻率ρ只与导体材料性质和温度有关,与导体横截面积和长度无关)
  3、电阻串联、并联:
  串联:R=R1+R2+R3 +……+Rn
  并联:两个电阻并联:R=
  4、欧姆定律:(1)部分电路欧姆定律:U=IR
  (2)闭合电路欧姆定律:I =
  路端电压:U = -I r= IR
  电源热功率:
  电源效率:
  (3)电功和电功率:
  电功:W=IUt 电热:Q= 电功率 :P=IU
  对于纯电阻电路:W=IUt= P=IU =
  对于非纯电阻电路:W=Iut P=IU
  (4)电池组的串联:每节电池电动势为`内阻为,n节电池串联时:
  (二)电磁学知识总结——电场   1、电场的力的性质:
  电场强度:(定义式)E = (q 为试探电荷,场强的大小与q无关)
  点电荷电场的场强:E= (注意场强的矢量性)
  2、电场的能的性质:
  电势差:U = (或 W = U q )
  UAB = φA - φB
  电场力做功与电势能变化的关系:U = - W
  3、匀强电场中场强跟电势差的关系: E =(d 为沿场强方向的距离)
  4、带电粒子在电场中的运动:
  加速:Uq =mv2
  ②偏转:运动分解:x= vot;vx = vo;y =a t2 ; vy= a t
  (三)电磁学知识总结——磁场   几种典型的磁场:通电直导线、通电螺线管、环形电流、地磁场的磁场分布。
  磁场对通电导线的作用(安培力):F = BIL (要求 B⊥I, 力的方向由左手定则判定;若B∥I,则力的大小为零)
  磁场对运动电荷的作用(洛仑兹力): F = qvB (要求v⊥B, 力的方向也是由左手定则判定,但四指必须指向正电荷的运动方向;若B∥v,则力的大小为零)带电粒子在磁场中运动:当带电粒子垂直射入匀强磁场时,洛仑兹力提供向心力,带电粒子做匀速圆周运动。即: qvB = 可得: r = , T = (确定圆心和半径是关键)
  (四)电磁学知识总结——电磁感应   1、感应电流的方向判定:①导体切割磁感应线:右手定则;②磁通量发生变化:楞次定律。
  2、感应电动势的大小:① E = BLV (要求L垂直于B、V,否则要分解到垂直的方向上 )② E =(①式常用于计算瞬时值,②式常用于计算平均值)
  (五)电磁学知识总结——交变电流   1、交变电流的产生:线圈在磁场中匀速转动,若线圈从中性面(线圈平面与磁场方向垂直)开始转动,其感应电动势瞬时值为:e = Em sinωt ,其中 感应电动势最大值:Em = nBSω .
  2 、正弦式交流的有效值:E = ;U = ; I =
  (有效值用于计算电流做功,导体产生的热量等;而计算通过导体的电荷量要用交流的平均值)
  3 、电感和电容对交流的影响:
  电感:通直流,阻交流;通低频,阻高频
  电容:通交流,隔直流;通高频,阻低频
  电阻:交、直流都能通过,且都有阻碍
  4、变压器原理(理想变压器):
  ①电压: ② 功率:P1 = P2③ 电流:如果只有一个副线圈 : 若有多个副线圈:n1I1= n2I2 + n3I3电磁振荡(LC回路)的周期:T = 2π

高中物理有关电磁感应的知识点都有哪些?

1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s)}
2.磁通量
Φ=BS{Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定
{电源内部的电流方向:由负极流向正极}
*4.自感电动势E
自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),
ΔI:变化电流,?t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}
注:
(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;
(2)自感电流总是阻碍引起自感电动势的电流的变化;(3)单位换算:1H=103mH=106μH.
(4)其它相关内容:自感/日光灯。更多知识点可关注下北京新东方中学全科教育的高中物理课程,相信可以帮助到你。

高中物理电磁学知识点整理

高中物理电磁学知识点整理
1.磁感应强度:用来表示磁场的强弱和方向的物理量(是矢量,单位:T )
安培定则:用于判定磁场方向或电流方向
磁场线:用来描述磁场而虚拟的空间模型
磁感线总是由N极出发指向S级
某点磁场的方向与放在该点小磁针静止时N极所指方向一致
若在某区域内通电导线不受磁场力的作用,则该区域的磁感应强度一定为零
安培力F=BIL(LB)
洛仑兹力f=qVB(VB)
安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负;
感应电流有条件,闭合回路磁通变,
电磁感应选择口诀表
  楞次定律方向判,你走她留不情愿,
  磁通变化有快慢,电流大小由它断,
  图像问题很典型,方向大小来判断,
  安培力做功生电能,动能定理行的通。
高中物理电磁学公式
  磁场
  1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
  2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
  3.洛仑兹力f=qVB(注V⊥B); {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
  4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
  (1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
  (2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB;r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
  注: (1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的正负。
  电磁感应
  1.1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}
  2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
  3)Em=nBSω(交流发电机最大的感应电动势) {Em:感应电动势峰值}
  4)E=BL2ω/2(导体一端固定以ω旋转切割) {ω:角速度(rad/s),V:速度(m/s)}
  2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
  3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
  高中物理电磁学知识点
  一、磁现象
  最早的指南针叫司南。
  磁性:磁体能够吸收钢铁一类的物质。
  磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间最弱。水平面自由转动的磁体,静止时指南的磁极叫南极(S极),指北的磁极叫北极(N极)。
  磁极间的作用规律:同名磁极相互排斥,异名磁极相互吸引。一个永磁体分成多部分后,每一部分仍存在两个磁极。
  磁化:使原来没有磁性的物体获得磁性的过程。
  钢和软铁的磁化:软铁被磁化后,磁性容易消失,称为软磁材料。钢被磁化后,磁性能长期保持,称为硬磁性材料。所以制造永磁体使用钢,制造电磁铁的铁芯使用软铁。磁铁之所以吸引铁钉是因为铁钉被磁化后,铁钉与磁铁的接触部分间形成异名磁极,异名磁极相互吸引的结果。
  物体是否具有磁性的判断方法:
  ①根据磁体的吸铁性判断。
  ②根据磁体的指向性判断。
  ③根据磁体相互作用规律判断。
  ④根据磁极的磁性最强判断。磁性材料在现代生活中已经得到广泛应用,音像磁带、计算机软盘上的磁性材料就具有硬磁性。
  二、磁场
  磁场:磁体周围存在着的物质,它是一种看不见、摸不着的特殊物质。磁场看不见、摸不着我们可以根据它对其他物体的作用来认识它。这里使用的是转换法。(认识电流也运用了这种方法。)
  磁场对放入其中的磁体产生力的作用。磁极间的相互作用是通过磁场而发生的。
  磁场的方向规定:在磁场中的某一点,小磁针静止时北极所指的方向,就是该点磁场的方向。
  磁感线:在磁场中画一些有方向的曲线。任何一点的曲线方向都跟放在该点的磁针北极所指的方向一致。磁感线的方向:在用磁感线描述磁场时,磁感线都是从磁体的N极出发,回到磁体的S极。
  说明:
  ①磁感线是为了直观、形象地描述磁场而引入的带方向的曲线,不是客观存在的。但磁场客观存在.
  ②磁感线是封闭的曲线。
  ③磁感线的疏密程度表示磁场的强弱。
  ④磁感线立体的分布在磁体周围,而不是平面的。
  ⑤磁感线不相交。
  地磁场:在地球周围的空间里存在的磁场,磁针指南北是因为受到地磁场的作用。地磁极:地磁场的北极在地理的南极附近,地磁场的南极在地理的北极附近。磁偏角:地理的两极和地磁的两极并不不重合,这个现象最先由我国宋代的沈括发现。
  三、电生磁
  电流的磁效应通电导线的周围存在磁场,磁场的方向跟电流的方向有关,这种现象称为电流的磁效应。该现象在1820年被丹麦的物理学家奥斯特发现。奥斯特是世界上第一个发现电与磁之间有联系的人。
  通电螺线管的磁场通电螺线管的磁场和条形磁铁的磁场一样。其两端的极性跟电流方向有关,电流方向与磁极间的关系可由安培定则来判断。
  安培定则:用右手握螺线管,让四指指向螺线管中电流的方向,则大拇指所指的那端就是螺线管的N极。
  四、电磁铁
  电磁铁在螺线管内插入软铁芯,当有电流通过时有磁性,没有电流时就失去磁性。这种磁体叫做电磁铁。
  工作原理:电流的磁效应。
  影响电磁铁磁性强弱的因素:电流越大,电磁铁的磁性越强;线圈匝数越多,电磁铁的磁性越强;插入铁芯,电磁铁的磁性会更强。
  特点:其磁性的有无可由通断电流来控制;其磁极方向可以通过改变电流方向来改变;其磁性强弱与电流大小、线圈匝数、有无铁芯有关。
  电磁铁的应用:电磁起重机、电磁继电器。
  五、电磁继电器、扬声器
  电磁继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。
  电磁继电器:实质是由电磁铁控制的开关。应用:用低电压弱电流控制高电压强电流,进行远距离操作和自动控制。
  扬声器是把电信号转换成声信号的一种装置。它主要由永久磁体、线圈和锥形纸盆组成。
  六、电动机
  磁场对通电导线的作用通电导线在磁场中要受到力的作用,力的方向跟电流的方向、磁感线的方向都有关系。当电流的方向或者磁感线的方向变得相反时,通电导线受力的方向也变得相反。
  电动机主要由转子和定子组成。电动机是利用通电线圈在磁场里受力而转动的原理制成的。电动机在工作时,线圈转到平衡位置的瞬间,线圈中的电流断开,但由于线圈的惯性,线圈还可以继续转动,转过此位置后,线圈中的电流方向靠换向器的作用而发生改变。
  电动机工作时,把电能转化为机械能。电动机构造简单控制方便、体积小、效率高、功率可大可小。
  七、磁生电
  电磁感应由于导体在磁场中运动而产生电流的现象,叫做电磁感应现象,产生的电流叫做感应电流。英国物理学家法拉第于1831年发现了利用磁场产生电流的条件和规律。产生感应电流的条件:闭合电路的部分导体在磁场中做切割磁感线的运动。
  导体中感应电流的方向:跟导体运动的方向和磁感线的方向有关。
  发电机主要由转子和定子组成。发电机的工作原理:电磁感应现象。发电机在发电的过程中,把机械能转化为电能。方向不断变化的电流叫交变电流,简称交流(AC)。我国电网以交流供电,频率是50Hz,周期0.02s,电流方向1s改变100次。

谁有初三电磁感应现象的复习知识点?

一、重点与难点分析
1、电磁感应闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生感应电流,这种现象叫做电磁感应,产生的电流叫做感应电流。



①产生感应电流的必要条件是:a、电路要闭合;b、闭合电路中一部分导体做切割磁感线运动,缺一不可;若是闭合电路的一部分导体,但不做切割磁感线运动则无感应电流,若导体做切割磁感线运动但电路不闭合,导体上仍无感应电流则导体两端有感应电压。
②感应电流的方向跟磁场方向和导体切割磁感线运动方向有关(三者互相垂直),改变磁场方向或改变导体切割磁感线方向都会改变感应电流的方向。
③在电磁感应现象中机械能转化为电能。
2、发电机发电机是根据电磁感应原理制成的,它使人们大规模获得电能成为现实。
①交流发电机主要由转子和定子两部分组成,另外还有滑环、电刷等。
②交流电的周期与频率周期和频率是用来表示交流电特点的两个物理量,周期是指交流发电机中线圈转动一周所用的时间,所以单位是“秒”;频率是指每秒钟内线圈转动的周数。它的单位是“赫”,我国使用的交流电周期为0.02秒,频率是50赫,其意义是发电机线圈转一周用时0.02秒,即1秒内线圈转50周,因为线圈每转一周电流方向改变两次,所以,频率为50赫的交流电在1秒钟内方向改变100次。
例1、如图12-1所示,在磁场中悬挂一根导体ab,把它的两端跟电流表连接起来,合上开关,让导体ab在磁场中左右运动,你会观察到的指针发生偏转,说明电流产生。这种现象叫,在这种现象中能转化为能。[分析]本题主要考查电磁感应现象的内容及能的转化。
[答案]电流表;有;电磁感应;机械;电。
例2、如图12-2所示,图中a表示闭合电路的一部分导体做切割磁感线运动,试判定感应电流的方向。
[分析]电磁感应现象中涉及三个方向:即导体切割磁感线方向、磁感线方向和感应电流方向三者两两垂直。甲图中已知三者关系,将乙、丙图与之相比较:图乙:磁感应线方向相对甲图改变、导体运动方向改变,所以感应电流方向相对甲图不变,应为。图丙:磁感应线没变、运动方向改变了,所以感应电流改变应为。
答案:乙:;丙:。
二、综合应用创新思维点拨
例3、如图12-3所示,导体ab如箭头所指的方向运动,试判断在这四种情况下ab有感应电流产生的是()。
[分析]根据产生感应电流的条件,在图A和图C的情况下,导体ab虽然运动,但由于没有切割磁感应线,闭合电路中没有感应电流产生。在图B中,导线ab虽然做切割磁线运动,但由于没有构成闭合电路,所以ab中没有感应电流产生。在图D所示的情况下,导线ab成为闭合电路的一部分导体,而且做切割磁感线的运动,所以ab上有感应电流产生。
[答案]D
例4、如图12-4所示,当手摇交流发电机线圈以每秒钟5转的速度转动时()
A、电流表指针向右偏转,小灯泡正常发光
B、电流表指针向左偏转,小灯泡闪烁发光
C、电流表指针左右大幅摆动,小灯泡不亮
D、电流表指针左右小幅摆动,小灯泡闪烁发光
[分析]本题考查学生对交流电的周期、频率,以及缓慢变化的电流对电流表和灯泡工作影响的综合分析能力。
我们知道,线圈以每秒5转的速度旋转,发出的交流电的频率为5Hz,即每秒线圈中的电流方向改变10次。电流表的指针由于受惯性的作用,不可能做大幅度的左右摆动,只能小幅度左右摆动。而小灯泡是根据电流的热效应工作的,交流发电机的线圈在与磁场方向垂直时,不切割磁感线,线圈中无电流,因此灯泡中的电流是有周期性变化的。灯丝的亮度也有周期性变化,由于频率较低,这样的变化人眼能分辨出来,发生了闪烁现象。
[答案]D
三、知识扩展
英国物理学家法拉第证明磁生电的第一个实验:
1822年,31岁的法拉第开始把磁转变成电的实验,经过整整10年的不懈努力,终于在1831年发现磁引起电的现象,这种现象被称为电磁感应现象。
法拉第最初的实验是这样做的,把两个线圈绕在一个铁环上,线圈A接电池,线圈B接电流表。他发现,每当合上开关给线圈A通电时,或断开开关使线圈A断电时,电流表的指针就偏转,表明线圈B中产生了电流。但是,线圈B中的电流是瞬间的,当线圈A中的电流稳定以后,电流表的指针却不动了。法拉第还发现,铁环并不是必需的,拿走铁环再做这个实验,电磁感应现象仍然发生,只是线圈中的电流弱一些。
法拉第认为:线圈B只是处在线圈A的电流磁效应范围内,此外同A没有别的联系,所以B的电流只能由A的电流磁效应发生变化产生。这正是他探索10年发现的磁转变成电的现象。
法拉第确立了电磁感应的基本定律。揭示了磁和电的联系,成为现代电工学的基础。
法拉第还利用电磁感应原理,设计了历史上第一台感应发电机。