本文目录一览:
- 1、什么是有机化学?
- 2、有机化学是什么
- 3、什么是有机化学_有机化学必备规律汇总
- 4、有机化学主要讲的是什么?
- 5、有机化学是什么
- 6、有机化学
- 7、什么是有机化学?有机化学的研究对象是什么
- 8、有机物化学式
- 9、有机化学具有哪些特征
- 10、有机化学怎么学
什么是有机化学?
“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。
有机化学又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希·维勒,在实验室中成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。
有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。
有机化学是什么
有机化学是化学学科中的一个重要分支,主要研究有机化合物的结构、性质、合成、反应机理和应用等方面的科学。
有机化合物是由碳和氢元素为主要组成的化合物,通常也包含氧、氮、硫等元素。有机化学在生物化学、医药、农药、材料科学、环保等领域都有广泛的应用。
以下是有机化学的一些主要内容和特点:
1、有机化合物的结构: 有机化合物的分子结构通常是由碳原子构成骨架,通过共价键与其他原子连接形成的。碳原子可以形成多种不同的结构,如链状、环状和支链等,从而使得有机化合物的种类非常多样。
2、碳氢键: 有机化合物中最常见的化学键是碳氢键,这是由碳原子和氢原子之间的共价键。碳氢键是有机化合物中分子结构稳定的基础,也是有机化学反应的主要参与键。
3、有机反应: 有机化学研究有机化合物之间的反应,探索它们在特定条件下如何进行结构的转换。常见的有机反应包括取代反应、加成反应、消除反应、重排反应等。通过这些反应,可以合成出各种有机化合物,拓展了有机化学的应用领域。
4、有机合成: 有机合成是有机化学的一个重要分支,它涉及到制备和合成有机化合物的方法和技术。有机合成是一门非常复杂和具有挑战性的学科,因为有机化合物的结构多样性导致了多种不同的反应和条件。
5、生物有机化学: 生物有机化学是研究生物体内有机化合物的组成和功能的学科。生物有机化学涉及到蛋白质、核酸、多糖等生物大分子的结构与功能,研究生物体内有机物的代谢过程和生物催化等。
什么是有机化学_有机化学必备规律汇总
有机化学必备规律汇总
A .有机合础成与推断基础知识网络:
1.不饱和键数目的确定:
① 一分子有机物加成H 2(或Br 2)含有一个双键;
② 加成两个分子H 2(或Br 2)含有一个参键或两个双键; ③ 加成三分子H 2含有三个双键或一个苯环。 ④ 一个双键相当于一个环。
2、符合一定碳氢比(物质的量比)的有机物: C :H=1:1的有乙炔、苯、苯乙烯、苯酚等。
C :H=1:2的有甲醛、乙酸、甲酸甲酯、葡萄糖、果 糖、单烯烃。 3、有特殊性的有机物归纳:
① 含氢量最高的有机物是:CH 4;
② 一定质量的有机物燃烧,消耗量最大的是:CH 4;
③ 完全燃烧时生成等物质的量的CO 2和H 2O 的是:环烷烃、饱和一元醛、酸、酯(通式符号C n H 2n O x 的物质,X=0,1,2,……)
④ 使FeCl 3溶液显特殊颜色的是:酚类化合物; ⑤ 能水解的是:酯、卤代烃、糖类(单糖除外)、肽类(包括蛋白质);
⑥ 含有羟基的是:醇、酚、羧酸(能发生酯化反应,有些可与Na 作用生成H 2); ⑦ 能与NaHCO 3作用成CO 2的是:羧酸类; ⑧ 能与NaOH 发生反应的是:羧酸和酚类。 4、重要的有机反应规律: ① 双键的加成和加聚:双键任意断裂其一,加上其它原子或原子团或断开键相互连成链。 ② 醇的消去反应:总是消去与羟基所在碳原子相邻的碳原子上的氢原子上,若没有相邻的碳原子(如CH 3OH )或相邻的碳原子上没有氢原子【如(CH 3)3CCH 2OH 】的醇不能发生反应。
③ 醇的催化反应:和羟基相连的碳原子上若有二个或三个氢原子,被氧化成醛;若有一个氢原子被氧化成酮;若没有氢原子,一般不会被氧化。 ④ 酯的生成和水解及肽键的生成和水解:
酯化反应规律:酸脱羟基(-COOH 上的-OH )醇(-OH 上的H )脱氢;酯水解反应与酯化反应恰好为逆反应;
肽键的脱水缩合:酸脱羟基(-COOH 上的-OH )氨基(-NH 2上的H )脱氢;肽键水解与肽键的生成恰好为逆反应
⑤ 有机物成环反应:a 二元醇脱水,b 羟基的分子内或分子间的酯化,c 氨基的脱水。d 二元羟基酸脱水
B 、有机合成的推断的难点、重点、综合点
不论是自选原料还是利用指定原料,在进行化学合成时,都要有一条合理的合成路线。所谓合理的路线就是应使我们设计合成途径符合以下要求:1、以尽量少的步骤实现原料到产品的转化;2、反应条件低,容易实现;3、用廉价原料制贵重产品;4、反应无可逆性,反应物充分利用,产物产量高且无副反应发生;5、产品容易分离。
合成路线的设计与评价,是所学知识的掌握程度及对所学反应原理 和特点的实际运用能力的一种综合考查。要设计出合理的合成路线,就要解决好以下几方面的内容: 1、要准确掌握有机物的化学性质: 全面系统的理解和掌握各类型烃、烃的衍生物的反应特点和化学性质,是合理设计合成路
线的根本。在这些性质当中,有许多常用于有机合成,如烯烃的加成反应、卤代烃和醇的消去反应、醇及醛的氧化反应等,而烷烃与卤素单质的取代反应一般不用与合成。 2、要掌握产物与条件之间的关系:
相同的反应物在不同的条件下,可能生成不同的生成物,是有机反应中一个最大特点,如C 6H 5CH 3与Cl 2的反应,在光照条件下生成C 6H 5CH 2Cl ,而加入铁粉时却取代苯环上的氢原子,产物是邻氯甲苯或对氯甲苯。发生同一类型的反应却有不同的条件,如卤代烃的消去条件是与强碱的醇溶液共热,而醇的消去条件使用浓硫酸加热脱水。我们可以根据这些特点对合成路线进行合理安排。
3、要掌握向化合物合成物分子中引入官能团的方法:
在有机合成中,常需要向分子中引入官能团,如引入:-X 、-COOH 、-OH 、-CHO 等,我们要掌握引入官能团的途径,并从中找出合理的方案来,如向分子中引入-OH 的方法有:烯烃的水化,卤代烃的水解,醛或酮的加氢还原,醛的氧化、酯的水解等。单实际合成中只有烯烃的水化和卤代烃的水解较为合理。
如果在合成过程中,有些需要保留的官能团,如果参加反应生成了其他物质,应有办法进行复原,如果原有官能团干拢合成反应,要想办法影蔽起来,合成完毕后也要进行复原。 4、要正确处理信息给予题:
如果是信息给予题,要认真阅读、理解所给材料,从中归纳、提炼出有用的信息,或信息迁移,或机械模仿。
C .解题的基本规律和基本知识
1. 掌握官能团衍变的主线(常见有两种途径) (1)
(2)通过某种化学途径使一个官能团变为两个(官能团的增加)如:
2. 官能团的引入 (1)引入羟基
a. 烯烃与水加成,b. 醛与氢气加成,c. 卤代烃碱性水解,d. 酯的水解等。
(2)引入卤原子
a. 烃与X 2取代,b. 不饱和烃与HX 或X 2加成,c. 醇与HX 取代等。 (3)引入双键:
a. 某些醇或卤代烃的消去引入3. 官能团的消除
(1)通过加成消除不饱和键。
,b. 醇的氧化引入等。
(2)通过消去、氧化或酯化等消除羟基(OH)。 (3)通过加成或氧化等消除醛基(CHO)。 4. 碳链的增减
(1)增长:有机合成题中碳链的增长,一般会以信息形式给出,常见方式为有机物与HCN 反应以及不饱和化合物间的加成、聚合等。
(2)变短:如烃的裂化裂解,某些烃(如苯的同系物、烯烃)的氧化。 5. 有机物成环规律 (1)二元醇脱水。 (2)羟基、羧基的酯化。 (3)氨基酸脱水。 (4)二元羧酸脱水。
D. 常见的合成方法
1. 顺向合成法
此法要点是采用正向思维方法,其思维程序为“原料→中间产物→产品”。 2. 逆向合成法
此法要点是采用逆向思维方法,其思维程序为“产品→中间产物→原料”。 3. 类比分析法
此法要点是采用综合思维的方法,其思维程序为“比较题目所给知识原型→找出原料与合成物质的内在联系→确定中间产物→产品”。
E. 高考常见题型
1. 限定原料合成题
本题型的主要特点:依据主要原料,辅以其他无机试剂,运用基本知识,联系生活实验,设计合理有效的合成路线。 2. 合成路线给定题
本题型的主要特点:题目已将原料、反应条件及合成路线给定,并以框架式合成路线示意图的形式直观地展现了最初原料与每一步反应主要产物的关系,要求依据原料和合成路线,在一定信息提示下确定各步主要产物的结构简式或完成某些步骤反应的化学方程式。
其他问题便可迎刃而解了。 3. 信息给予合成题
本题型的主要特点:除给出主要原料和指定合成物质外,还给予一定的已知条件和信息。该题型已成为当今高考的热点。解这一类题应注意三点:一是认真审题,获取信息;二是结合问题;三是依据信息,应变创新。
F. 有机反应常考规律
考点一:卤代烃的消去反应规律
卤代烃的化学性质较活泼,这是由于卤原子(官能团) 的作用所致。卤原子结合电子的能力比碳原子强,当它与碳原子形成碳卤键时,共用电子对偏向卤原子,故碳卤键的极性较强,在其他试剂作用下,碳卤键很容易断裂而发生化学反应。
1.消去反应
(1)消去反应的实质:从分子中相邻的两个碳原子上脱去一个卤化氢分子,从而形成不饱和化合物。
例如:
CH 3CH 2Cl :
+NaOH ――→NaCl +CH 2===CH↑+H 2O △
醇
(2)卤代烃的消去反应规律
①没有邻位碳原子的卤代烃不能发生消去反应,如CH 3Br 。
②有邻位碳原子,但邻位碳原子上不存在氢原子的卤代烃也不能发生消去反应。例如:
。 ③有两个相邻碳原子,且碳原子上均带有氢原子时,发生消去反应可能生成不同的产物。例如:
CH 3—CH===CH—CH 3+NaCl +H 2O
(3)二元卤代烃发生消去反应时要比一元卤代烃困难些。有些二元卤代烃发生消去反应后可在有机物中引入三键。例如:CH 3—CH 2—CHCl 2+2NaOH ――→CH 3—C ≡CH +2NaCl △+2H 2O
醇
链上引入碳碳双键或碳碳三键。
(2)与—X 相连碳原子的邻位碳上有氢原子的卤代烃才能发生消去反应,否则不能发生消去反应。
?→CH 3CH 2OH+H Br (一卤代烃可制一元醇) (3) 水解反应的应用 CH 3CH 2Br +H2O ??
?→HOCH 2CH 2OH+2HBr (二卤代烃可制二元醇) BrCH 2CH 2Br+2H2O ??
提示:一卤代烃经过消去再加成,最后水解可制二元醇。
试探究一下甲烷的四种氯代烃完全水解产物?(甲醇-甲醛-甲酸-碳酸-二氧化碳) 二、在烃分子中引入卤素原子的方法
卤素原子的引入是改变分子性能的第一步反应,在有机合成和有机推断中起着桥梁作用。
在烃分子中引入—X 原子有以下两种途径: (1)烃与卤素单质的取代反应
CH 3CH 3+Cl 2――→CH 3CH 2Cl +HCl
催化剂光照
NaOH
NaOH
+Br 2――→+HBr
(2)不饱和烃与卤素单质、卤化氢等的加成反应 CH 3—CH===CH2+Br 2―→CH 3—CHBr —CH 2Br
催化剂
CH 3—CH===CH2+HBr ――→
催化剂
CH ≡CH +HBr ――→CH 2===CHBr 考点二:苯环上的取代定位规则
大量实验事实表明,当一些基团处于苯环上时,苯环的取代反应会变得容易进行,同时使再进入的基团将连接在它的邻位或对位。例如,当苯环上已存在一个甲基时(即甲苯) ,它的卤化、硝化和磺化等反应,反应温度均远低于苯,且新基团的导入均进入苯环上甲基的邻或对位:
甲基的这种作用称为定位效应。在这里甲基是一个邻、对位指向基,具有活化苯环的作用,称为活化基。类似的活化基团还有许多,它们也被称为第一类取代基,并按活化能力由大到小的顺序排列如下:
-NH 2,-NHR ,-NR 2,-OH>-NHCOR,-OR ,>-R,-Ph>-X
处于这一顺序最末的卤素是个特例。它一方面是邻、对位指向基,另一方面又是使苯环致钝的基团,此称为钝化作用。
还有许多比卤素致钝力更强,而且使再进基团进入间位的取代基,它们被称为间位指示基或第二类取代基,按其致钝能力由大到小的顺序排列如下:
+
-NR 3,-NO 2,-CF 3,-CCl 3>-CN,-SO 3H ,-CH =O ,-COR ,-COOH ,-COOR 由于取代基的指向和活化或钝化作用,在合成一个指定化合物时,采取哪种路线就必须事先作全面考虑。如果以苯为原料,欲合成对-硝基苯甲酸(此物质在后面章节将学到) 时,则应该先对苯进行甲基化后再进行硝化,最后将甲基氧化:
考点三:醇的氧化规律(同一个C 原子上连有2个羟基者不稳定,2个羟基会自动接合脱去一分子水,同时生成一个碳氧双键,比如碳酸自动脱水形成二氧化碳和水) 醇分子能否氧化,取决于醇的结构(与羟基相连的碳原子上必须有至少一个氢原子,则能氧化成醛或酮).即醇分子中含有—CH 2OH 基团,则该醇可被氧化成醛:
注:不能被催化氧化的醇,遇强氧化剂如酸性高锰酸钾溶液,亦不能使之褪色,但还是能与氧气在加热时完全燃烧生成二氧化碳和水(高温时剧烈的氧化反应)其它能够被催化氧化的醇,遇强氧化剂如酸性高锰酸钾溶液,都能使之褪色,醇被氧化为对应的醛(酮),以致羧酸,甚至二氧化碳和水(甲醇)。另外,另一种强氧化剂酸性重铬酸钾(橙红色溶液)亦能氧化上述醇类,而且反应后重铬酸钾被还原为三价铬离子(绿色),颜色变化明显,常用于测试酒驾。 补充. 有关生成醇的反应
已经学过的生成醇的反应,有以下三种:
此外,还有乙醛还原法、乙酸乙酯水解法、葡萄糖发酵法等都可生成乙醇 醇在有机合成里面起到承上启下作用
烃的衍生物之间的转化关系:
考点四:羧酸和醇发生酯化反应的规律
酯化反应的类型:
(1)一元醇与一元羧酸之间的酯化反应
CH 3COOH +C 2H 5
OH 浓硫酸3COOC 2H 5+H 2O
△
(2)多元羧酸与一元醇之间的酯化反应
+2C 2H 5OH
浓硫酸△
+2H 2O
(3)多元醇与一元羧酸之间的酯化反应
+2CH 3COOH
△
+2H 2O
(4)多元羧酸与多元醇之间的酯化反应
此时反应有三种情形,可得普通酯、环酯和高聚酯。如:
(5)羟基酸自身的酯化反应
此时反应有三种情形,可得到普通酯、环状交酯和高聚酯。如:
注意:生成高分子酯(也为缩聚反应)
缩聚反应:具有两个或两个以上官能团的单体,相互反应生成高分子化合物,同时产生有简单分子(如 H 2O 、HX 、醇等) 的化学反应。
缩聚反应类型:二醇和二酸、羟基酸。
COOH
n
n OH
2
2OH
O O
OCH 2CH 2O
+2n
+
n
H 2O
特别提醒 ①所有的酯化反应,条件均为浓H 2SO 4、加热。
②利用自身酯化或相互酯化生成环酯的结构特点以确定有机物中羟基位置。
③在形成环酯时,酯基中,只有一个O 参与成环。
与Na 反应的物质:醇、酚、羧酸; 与NaOH 反应的物质:酚、羧酸 与Na 2CO 3反应的物质:酚、羧酸; 与NaHCO 3反应的物质:羧酸
G. 有机物官能团的性质及相关反应
3. 同分异构体与同位素、同素异形体、同系物的比较
有机化学主要讲的是什么?
主要是有机物的一些性质……所谓有机物,就是主要由碳,氢组成的化合物
有机化学,又称碳化合物化学,是研究有机化合物的组成、结构、性质、制备方法和应用的科学。它是化学的一个非常重要的分支。含碳化合物被称为有机化合物,因为以前的化学家认为这些物质必须由生物体产生;然而,1828年,德国化学家弗里德里希·韦勒首次在实验室成功合成了尿素(一种生物分子)。从那时起,有机化学已经偏离了传统的定义,并扩展到碳氢化合物及其衍生物的化学。
有机化学主要介绍化学物质的科学(一些有机化学课程也将涉及高中化学学习)。有机化学物质的分类主要基于它们的决定性作用和能够代表化学物质的不同基团,即官能团。可分为烷烃、烯烃、炔烃和芳烃(以上均为烃类);卤代烃、醇、酚、醚、醛、酮、羧酸、羧酸衍生物、胺、硝基化合物、腈、含硫有机化合物(如硫醇、硫化物、硫酚、磺酸、砜和亚砜等),元素有机化合物,如含磷有机化合物、杂环化合物等(以上为碳氢化合物衍生物)。重点介绍了这些化合物的系统命名、化学反应、反应机理和制备方法。化学反应基本上是基团的取代。反应能否进行取决于热力学和动力学因素。制备方法主要是通过无机物、石油提取物、易制备或低成本的物质制备难以获得的物质。反应机制也是群体之间攻击和离开倾向的竞争。有机化合物和无机化合物之间没有绝对的界限。
有机化学已经成为化学中一门独立的学科,因为有机化合物确实有其内在的联系和特性。周期表中的碳元素通常通过与其他元素的原子共享外部电子来实现稳定的电子构型(即形成共价键)。这种共价键决定了有机化合物的特性。简单来说,有机化学的研究对象是“如何形成碳链”。
有机化学是什么
一分钟读懂基础有机化学
有机化学
百科名片
有机化学 又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希·维勒,在实验室中成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。
目录
有机化学的发展简史
现代有机化学时期
有机化学的研究内容
天然有机化学主要研究
物理有机化学
有机化学的研究方法
有机化学课程
1.图书信息
有机化学 内容简介
有机化学 目录
有机化学 习题
2. 有机化学 图书信息
有机化学 内容简介
有机化学 目录
有机化学 内容简介
3. 《有机化学》期刊介绍
最新版图书信息
内容简介
图书目录有机化学的发展简史
现代有机化学时期
有机化学的研究内容
天然有机化学主要研究
物理有机化学
有机化学的研究方法
有机化学课程
1.图书信息
有机化学 内容简介有机化学 目录有机化学 习题2. 有机化学 图书信息有机化学 内容简介有机化学 目录有机化学 内容简介3. 《有机化学》期刊介绍最新版图书信息内容简介图书目录展开
基础有机化学(第三版,邢其毅主编)
编辑本段有机化学的发展简史
“有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。 从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是 经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。 1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。 他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。 1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。而不稳定自由基的存在也于1929年得到了证实。 在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。
编辑本段现代有机化学时期
在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。 他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原子转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子的一对共用电子对。 1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论来处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。
编辑本段有机化学的研究内容
有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。 位于周期表当中的碳元素,一般是通过与别的元素的原子共用外层电子而达到稳定的电子构型的(即形成共价键)。这种共价键的结合方式决定了有机化合物的特性。大多数有机化合物由碳、氢、氮、氧几种元素构成,少数还含有卤素和硫、磷、氮等元素。因而大多数有机化合物具有熔点较低、可以燃烧、易溶于有机溶剂等性质,这与无机化合物的性质有很大不同。 在含多个碳原子的有机化合物分子中,碳原子互相结合形成分子的骨架,别的元素的原子就连接在该骨架上。在元素周期表中,没有一种别的元素能像碳那样以多种方式彼此牢固地结合。由碳原子形成的分子骨架有多种形式,有直链、支链、环状等。 在有机化学发展的初期,有机化学工业的主要原料是动、植物体,有机化学主要研究从动、植物体中分离有机化合物。 19世纪中到20世纪初,有机化学工业逐渐变为以煤焦油为主要原料。合成染料的发现,使染料、制药工业蓬勃发展,推动了对芳香族化合物和杂环化合物的研究。30年代以后,以乙炔为原料的有机合成兴起。40年代前后,有机化学工业的原料又逐渐转变为以石油和天然气为主,发展了合成橡胶、合成塑料和合成纤维工业。由于石油资源将日趋枯竭,以煤为原料的有机化学工业必将重新发展。当然,天然的动、植物和微生物体仍是重要的研究对象。
编辑本段天然有机化学主要研究
天然有机化学主要研究天然有机化合物的组成、合成、结构和性能。20世纪初至30年代,先后确定了单糖、氨基酸、核苷酸牛胆酸、胆固醇和某些萜类的结构,肽和蛋白质的组成;30~40年代,确定了一些维生素、甾族激素、多聚糖的结构,完成了一些甾族激素和维生素的结构和合成的研究;40~50年代前后,发现青霉素等一些抗生素,完成了结构测定和合成;50年代完成了某些甾族化合物和吗啡等生物碱的全合成,催产素等生物活性小肽的合成,确定了胰岛素的化学结构,发现了蛋白质的螺旋结构,DNA的双螺旋结构;60年代完成了胰岛素的全合成和低聚核苷酸的合成;70年代至80年代初,进行了前列腺素、维生素B12、昆虫信息素激素的全合成,确定了核酸和美登木素的结构并完成了它们的全合成等等。 有机合成方面主要研究从较简单的化合物或元素经化学反应合成有机化合物。19世纪30年代合成了尿素;40年代合成了乙酸。随后陆续合成了葡萄糖酸、柠檬酸、琥珀酸、苹果酸等一系列有机酸;19世纪后半叶合成了多种染料;20世纪40年代合成了DDT和有机磷杀虫剂、有机硫杀菌剂、除草剂等农药;20世纪初,合成了606药剂,30~40年代,合成了一千多种磺胺类化合物,其中有些可用作药物。
编辑本段物理有机化学
物理有机化学是定量地研究有机化合物结构、反应性和反应机理的学科。它是在价键的电子学说的基础上,引用了现代物理学、物理化学的新进展和量子力学理论而发展起来的。20世纪20~30年代,通过反应机理的研究,建立了有机化学的新体系;50年代的构象分析和哈米特方程开始半定量估算反应性与结构的关系;60年代出现了分子轨道对称守恒原理和前线轨道理论。 有机分析即有机化合物的定性和定量分析。19世纪30年代建立了碳、氢定量分析法;90年代建立了氮的定量分析法;有机化合物中各种元素的常量分析法在19世纪末基本上已经齐全;20世纪20年代建立了有机微量定量分析法;70年代出现了自动化分析仪器。 由于科学和技术的发展,有机化学与各个学科互相渗透,形成了许多分支边缘学科。比如生物有机化学、物理有机化学、量子有机化学、海洋有机化学等。
编辑本段有机化学的研究方法
有机化学研究手段的发展经历了从手工操作到自动化、计算机化,从常量到超微量的过程。 20世纪40年代前,用传统的蒸馏、结晶、升华等方法来纯化产品,用化学降解和衍生物制备的方法测定结构。后来,各种色谱法、电泳技术的应用,特别是高压液相色谱的应用改变了分离技术的面貌。各种光谱、能谱技术的使用,使有机化学家能够研究分子内部的运动,使结构测定手段发生了革命性的变化。 电子计算机的引入,使有机化合物的分离、分析方法向自动化、超微量化方向又前进了一大步。带傅里叶变换技术的核磁共振谱和红外光谱又为反应动力学、反应机理的研究提供了新的手段。这些仪器和x射线结构分析、电子衍射光谱分析,已能测定微克级样品的化学结构。用电子计算机设计合成路线的研究也已取得某些进展。 未来有机化学的发展首先是研究能源和资源的开发利用问题。迄今我们使用的大部分能源和资源,如煤、天然气、石油、动植物和微生物,都是太阳能的化学贮存形式。今后一些学科的重要课题是更直接、更有效地利用太阳能。 对光合作用做更深入的研究和有效的利用,是植物生理学、生物化学和有机化学的共同课题。有机化学可以用光化学反应生成高能有机化合物,加以贮存;必要时则利用其逆反应,释放出能量。另一个开发资源的目标是在有机金属化合物的作用下固定二氧化碳,以产生无穷尽的有。机化合物。这几方面的研究均已取得一些初步结果。 其次是研究和开发新型有机催化剂,使它们能够模拟酶的高速高效和温和的反应方式。这方面的研究已经开始,今后会有更大的发展。 20世纪60年代末,开始了有机合成的计算机辅助设计研究。今后有机合成路线的设计、有机化合物结构的测定等必将更趋系统化、逻辑化。
编辑本段有机化学课程
有机化学主要是介绍化学物质的科学(高中化学学习当中也会涉及部分有机化学的课程)。目前有机化学物质的分类主要是按照其决定性作用,能代表化学物质的基团也就是官能团的不同来进行分类的 。可分为:烷烃,烯烃,炔烃,芳香烃(以上为烃类);卤代烃,醇,酚,醚,醛,酮,羧酸,羧酸衍生物,胺类,硝基化合物,腈类,含硫有机化合物(如硫醇,硫醚,硫酚,磺酸,砜与亚砜等),含磷有机化合物等元素有机化合物,杂环化合物等(以上为烃衍生物)。 具体主要是介绍这些化学物质的系统命名,化学反应,反应机理,制备方法。其中化学反应基本上为基团的取代,能否进行一个反应,取决于热力学和动力学两个方面的因素。而制备方法主要是通过无机物,石油提取物,以及容易制备或成本低的物质制得难以得到的物质。反应机理也为基团之间的进攻和离去倾向之间的竞争
有机化学
有机化学是研究有机化合物的来源、制备、结构、性质、应用以及有关理论的科学,又称碳化合物的化学。
有机化学的发展简史
“有机化学”这一名词于1806年首次由贝采利乌斯提出。当时是作为“无机化学”的对立物而命名的。19世纪初,许多化学家相信,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。
1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。
由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下台成出来的。“生命力”学说渐渐被抛弃了, “有机化学”这一名词却沿用至今。
从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述。
法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。
当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。
类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。
有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。
从1858年价键学说的建立,到1916年价键的电子理论的引入,是经典有机化学时期。
1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。
1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念,圆满地解释了这种异构现象。
他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。
1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。不稳定自由基的存在也于1929年得到了证实。
在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。
现代有机化学时期 在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。
他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原了转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子共用的一对电子。
1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。
有机化学的研究内容
有机化合物和无机化合物之间没有绝对的分界。有机化学之所以成为化学中的一个独立学科,是因为有机化合物确有其内在的联系和特性。
位于周期表当中的碳元素,一般是通过与别的元素的原子共用外层电子而达到稳定的电子构型的。这种共价键的结合方式决定了有机化合物的特性。大多数有机化合物由碳、氢、氮、氧几种元素构成,少数还含有卤素和硫、磷等元素。因而大多数有机化合物具有熔点较低、可以燃烧、易溶于有机溶剂等性质,这与无机化合物的性质有很大不同。
在含多个碳原子的有机化合物分子中,碳原子互相结合形成分子的骨架,别的元素的原子就连接在该骨架上。在元素周期表中,没有一种别的元素能像碳那样以多种方式彼此牢固地结合。由碳原子形成的分子骨架有多种形式,有直链、支链、环状等。
在有机化学发展的初期,有机化学工业的主要原料是动、植物体,有机化学主要研究从动、植物体中分离有机化合物。
19世纪中到20世纪初,有机化学工业逐渐变为以煤焦油为主要原料。合成染料的发现,使染料、制药工业蓬勃发展,推动了对芳香族化合物和杂环化合物的研究。30年代以后,以乙炔为原料的有机合成兴起。40年代前后,有机化学工业的原料又逐渐转变为以石油和天然气为主,发展了合成橡胶、合成塑料和合成纤维工业。由于石油资源将日趋枯竭,以煤为原料的有机化学工业必将重新发展。当然,天然的动、植物和微生物体仍是重要的研究对象。
天然有机化学主要研究天然有机化合物的组成、合成、结构和性能。20世纪初至30年代,先后确定了单糖、氨基酸、核苷酸牛胆酸、胆固醇和某些萜类的结构,肽和蛋白质的组成;30~40年代,确定了一些维生素、甾族激素、多聚糖的结构,完成了一些甾族激素和维生素的结构和合成的研究;40~50年代前后,发现青霉素等一些抗生素,完成了结构测定和合成;50年代完成了某些甾族化合物和吗啡等生物碱的全合成,催产素等生物活性小肽的合成,确定了胰岛素的化学结构,发现了蛋白质的螺旋结构,DNA的双螺旋结构;60年代完成了胰岛素的全合成和低聚核苷酸的合成;70年代至80年代初,进行了前列腺素、维生素B12、昆虫信息素激素的全合成,确定了核酸和美登木素的结构并完成了它们的全合成等等。
有机合成方面主要研究从较简单的化合物或元素经化学反应合成有机化合物。19世纪30年代合成了尿素;40年代合成了乙酸。随后陆续合成了葡萄糖酸、柠檬酸、琥珀酸、苹果酸等一系列有机酸;19世纪后半叶合成了多种染料;20世纪40年代合成了滴滴涕和有机磷杀虫剂、有机硫杀菌剂、除草剂等农药;20世纪初,合成了606药剂,30~40年代,合成了一千多种磺胺类化合物,其中有些可用作药物。
物理有机化学是定量地研究有机化合物结构、反应性和反应机理的学科。它是在价键的电子学说的基础上,引用了现代物理学、物理化学的新进展和量子力学理论而发展起来的。20世纪20~30年代,通过反应机理的研究,建立了有机化学的新体系;50年代的构象分析和哈米特方程开始半定量估算反应性与结构的关系;60年代出现了分子轨道对称守恒原理和前线轨道理论。
有机分析即有机化合物的定性和定量分析。19世纪30年代建立了碳、氢定量分析法;90年代建立了氮的定量分析法;有机化合物中各种元素的常量分析法在19世纪末基本上已经齐全;20世纪20年代建立了有机微量定量分析法;70年代出现了自动化分析仪器。
由于科学和技术的发展,有机化学与各个学科互相渗透,形成了许多分支边缘学科。比如生物有机化学、物理有机化学、量子有机化学、海洋有机化学等。
有机化学的研究方法
有机化学研究手段的发展经历了从手工操作到自动化、计算机化,从常量到超微量的过程。
20世纪40年代前,用传统的蒸馏、结晶、升华等方法来纯化产品,用化学降解和衍生物制备的方法测定结构。后来,各种色谱法、电泳技术的应用,特别是高压液相色谱的应用改变了分离技术的面貌。各种光谱、能谱技术的使用,使有机化学家能够研究分子内部的运动,使结构测定手段发生了革命性的变化。
电子计算机的引入,使有机化合物的分离、分析方法向自动化、超微量化方向又前进了一大步。带傅里叶变换技术的核磁共振谱和红外光谱又为反应动力学、反应机理的研究提供了新的手段。这些仪器和x射线结构分析、电子衍射光谱分析,已能测定微克级样品的化学结构。用电子计算机设计合成路线的研究也已取得某些进展。
未来有机化学的发展首先是研究能源和资源的开发利用问题。迄今我们使用的大部分能源和资源,如煤、天然气、石油、动植物和微生物,都是太阳能的化学贮存形式。今后一些学科的重要课题是更直接、更有效地利用太阳能。
对光合作用做更深入的研究和有效的利用,是植物生理学、生物化学和有机化学的共同课题。有机化学可以用光化学反应生成高能有机化合物,加以贮存;必要时则利用其逆反应,释放出能量。另一个开发资源的目标是在有机金属化合物的作用下固定二氧化碳,以产生无穷尽的有。机化合物。这几方面的研究均已取得一些初步结果。
其次是研究和开发新型有机催化剂,使它们能够模拟酶的高速高效和温和的反应方式。这方面的研究已经开始,今后会有更大的发展。
20世纪60年代末,开始了有机合成的计算机辅助设计研究。今后有机合成路线的设计、有机化合物结构的测定等必将更趋系统化、逻辑化。
有机化学课程
有机化学主要是介绍化学物质的科学。目前有机化学物质的分类主要是按照其决定性作用,能代表化学物质的基团也就是官能团的不同来进行分类的 。可分为:烷烃,烯烃,炔烃,醇,卤代烃,芳烃,酚,醛,酮,羧酸,羧酸衍生物,胺类,硝基化合物,杂环化合物。
具体主要是介绍这些化学物质的系统命名,化学反应,反应机理,制备方法。其中化学反应基本上为基团的取代,能否进行一个反应,取决于热力学和动力学两个方面的因素。而制备方法主要是通过无机物,石油提取物,以及容易制备或成本低的物质制得难以得到的物质。反应机理也为基团之间的进攻和离去倾向之间的竞争。
有机化学是研究有机化合物的来源、制备、结构、性质、应用以及有关理论的科学,又称碳化合物的化学。
什么是有机化学?有机化学的研究对象是什么
有机化学的定义:研究有机化和物的组成、结构、性质及其变化规律的科学叫有机化学。
研究的对象:
1.有机化合物的分离和提纯;
2.有机化合物元素组成的定性和定量分析;
3.有机化合物的结构的确定;
4.有机反应的研究;
5.有机化合物的物理和生理性质的研究。
有机物化学式
有机物及化学式有甲烷,CH4、乙烷,C2H6、丙烷,C3H8、n烷,5261CnH2n+2、苯,C6H6、乙烯,C2H4、乙炔,C2H2、丙烯,C3H6、甲醇,CH3OH乙醇,C2H5OH、丙醇,C3H7OH、丙三醇(1653甘油),C3H8O3、苯酚,C6H5OH、甲酸,HCOOH、乙酸,CH3COOH、乙酸乙酯,CH3COOC2H5、苯甲酸,C6H5COOH、甲醛,HCHO、乙醛,CH3CHO等。
有机化学具有哪些特征
有机化学是研究有机化合物的组成、结构、性质及其规律的学科。
有机化合物的特征是可用五个字概括:即杂、低、燃、难、慢
杂:分子组成复杂;低:熔沸点低;燃:易燃烧;难:难溶于水;慢:反应速度慢,副反应多
有机化学分为天然有机化学和有机合成化学方面,以下是天然有机化学和有机合成化学方面的特征:
1、天然有机化学主要研究天然有机化合物的组成、合成、结构和性能。先后确定了单糖、氨基酸、核苷酸、牛胆酸、胆固醇和某些萜类的结构,肽和蛋白质的组成。成了某些甾族化合物和吗啡等生物碱的全合成,催产素等生物活性小肽的合成,确定了胰岛素的化学结构,发现了蛋白质的螺旋结构,DNA的双螺旋结构。
2、有机合成化学方面主要研究从较简单的化合物或元素经化学反应合成有机化合物。合成了葡萄糖酸、柠檬酸、琥珀酸、苹果酸等一系列有机酸,合成了一千多种磺胺类化合物,其中有些可用作药物。DDT和有机磷杀虫剂、有机硫杀菌剂、除草剂等农药。
扩展资料有机化学的研究方法:
有机化学研究手段的发展经历了从手工操作到自动化、计算机化,从常量到超微量的过程。 20世纪40年代前,用传统的蒸馏、结晶、升华等方法来纯化产品,用化学降解和衍生物制备的方法测定结构。后来,各种色谱法、电泳技术的应用,特别是高压液相色谱的应用改变了分离技术的面貌。
各种光谱、能谱技术的使用,使有机化学家能够研究分子内部的运动,使结构测定手段发生了革命性的变化。电子计算机的引入,使有机化合物的分离、分析方法向自动化、超微量化方向又前进了一大步。带傅里叶变换技术的核磁共振谱和红外光谱又为反应动力学、反应机理的研究提供了新的手段。
参考资料:百度百科—有机化学
有机化学怎么学
有机化学学法如下:
一、分类归纳推导物质的通式和通性:
有机物种类繁多,在学习的过程中依据每类有机物的结构,性质以及结构与性质间的关系,分类归纳每类有机物的通式和通性。
如在《烃的衍生物》一章中,知识是以官能团为主线展开的,所以在学习衍生物时,要首先抓住官能团的结构特点去推断衍生物的特性,再由性质进一步验证其结构,充分认识结构决定性质的辨证关系。
二、运用分子结构模型,提高空间想象能力:
为了更加形象地理解有机物分子中各原子在空间的排列情况。利用第二课堂时间到实验室自己动手组合CH4、CH2=CH2、CH3CH=CH2、CH3CH2OH 等分子模型,以提高自己的空间想象能力,动手操作能力、创造能力等。
三、掌握性质 注重应用:
如:乙醇的结构式为:
(虚线a、b、c、d代表易断裂的键)
它的性质与相应易断裂的键的关系为:
(1)跟活泼金属,跟羧酸酯化断裂a处的键。
(2)跟氢酸(HX)反应,断裂b处的键。
(3)氧化为醛,断裂a、c处的键。
(4)分子内脱水(消去反应)生成烯烃,断裂b、d处的键。
(5)分子间脱水(取代反应)生成醚,一分子断裂a处的键。另一分子断裂b处的键。