×

自然数的定义,自然数的定义是什么?

admin admin 发表于2024-03-30 07:50:43 浏览18 评论0

抢沙发发表评论

本文目录一览:

自然数包括什么 自然数的定义

  自然数的定义及自然数包括什么考生知道吗?不清楚的小伙伴看过来,下面由我为你精心准备了“自然数包括什么 自然数的定义”仅供参考,持续关注本站将可以持续获取更多的内容!
  自然数包括什么   自然数包括正整数和零。自然数是整数,但整数不全是自然数,例如:-1 -2 -3……是整数,而不是自然数。自然数是无限的。
  自然数一般概念
  自然数是一切等价有限集合共同特征的标记。
  注:整数包括自然数,所以自然数一定是整数,且一定是非负整数。
  自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3……是整数 而不是自然数。自然数是无限的。
  全体非负整数组成的集合称为非负整数集,即自然数集。
  在数物体的时候,数出的1.2.3.4.5.6.7.8.9……叫自然数。自然数有数量、次序两层含义,分为基数、序数。
  基本单位:计数单位:个、十、百、千、万、十万……
  总之,自然数就是指大于等于0的整数。当然,负数、小数、分数等就不算在其内了。
  什么是整数
  整数就是像-3,-2,-1,0,1,2,3,10等这样的数。
  整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
  如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
  自然数的定义   自然数概念
  用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。自然数由0开始,一个接一个,组成一个无穷集合。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类。为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论--自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
  自然数的定义是什么
  自然数是用以计量事物的件数或表示事物次序的数。
  按是否是偶数分,自然数可分为奇数和偶数。
  1、奇数:不能被2整除的数叫奇数。
  2、偶数:能被2整除的数叫偶数。也就是说,除了奇数,就是偶数
  按因数个数分,自然数可分为质数、合数、1和0。
  1、质 数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。
  2、合 数:除了1和它本身还有其它的因数的自然数叫做合数。
  3、1只有1个因数。它既不是质数也不是合数。
  4、当然0不能计算因数,和1一样,也不是质数也不是合数。

自然数的定义是什么?

自然数的概念是:“自然数指非负整数(0,1,2,3,4,……),为免歧义有时也直接以非负整数代替自然数使用。数学中,一般以N代表以自然数组成的集合。自然数集是一个可数的,无上界的无穷集合。非零自然数即指正整数(1,2,3,4,…… )。”。
自然数只是不小于0的整数(也就是0和正整数),所以自然数有无数个,通常用n表示。
扩展资料:
自然数的性质:
1、无限性、可加性、可乘性、加乘关系、有序性、可除性。
自然数由数数而起。古希腊人最早研究其抽象特性,当中毕达哥拉斯主义更视之为宇宙之基本。其它古文明也对其研究作出极大贡献,尤其以印度对0的接受,为人称道。
自然数用于计数时称之为基数,用于定序时称之为序数。基数用于判定集合的大小,序数用作排列。对于有限序列或有限集合,序数及基数皆与自然数同。
自然数就是我们常说的正整数和0。整数包括自然数,所以自然数一定是整数,且一定是非负整数。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。
自然数列在“数列”,有着最广泛的运用,因为所有的数列中,各项的序号都组成自然数列。
参考资料来源:百度百科-自然数概念

什么是自然数?

1994年11月国家技术监督局发布的《中华人民共和国国家标准,物理科学和技术中使用的数学符号》中,将自然数集记为
N={0,1,2,3,…}
而将原自然数集称为非零自然数集
N+(或N*)={1,2,3,…}.
自然数集扩充后,文[1]中的自然数的基数理论以及其他一些与自然数有关的理论问题随之起变化,这给数学教学与数学应用产生一定影响.为此,我们将自然数的基数理论讨论如下.
1
对自然数的来源的认识
由于自然数的概念是建立在基数理论[1]之上的,基数是由集合对等而来.最初人类对物品的计数,是将物品与人的手指(脚趾)数形成映射关系,物品既然存在“多少”,也就存在“有”或“没有”,“没有”即可认为是空集,其计数应当是零.这就是说,零与非零自然数是人类认识同步的客观现象,而并非是6世纪才有零的概念.也许这就是将零补充到自然数集的缘由之一.事实上,国外许多文献和专家早就主张将零作为第一个自然数.
2
自然数的新概念
自然数扩充后,包含了空集的基数,要去掉原有自然数定义中“非空”的限制条件,即定义1
有限集合的基数叫做自然数.根据对等的概念,可以建立N与N+的一一映射关系f:
N↓={0,↓1,↓2,↓3,↓…}N+={1,2,3,4,…}
由此可见,N与N+有相同的基数,即|N|=|N+|.
3
自然数的四则运算
自然数加法、乘法运算义定只要去掉原有定义中的“非空”二字即可,亦即
定义2
设有有限集合A和B,且A∩B=Φ(A,B分离).若记A∪B=C,集合A,B,C的基数分别是a,b和c,那么c叫做a与b的和,记作
a+b=c.
a和b叫做加数.求两个数的和的运算叫做加法.
定义3
设有m(m>1)个相互对等,且两两分离的有限集合A1,A2,A3,…,Am,它们的基数都是n.又设A=Umi=1Ai,A的基数记作
a,即有a=n+n+…+nm个,这个a就叫做n乘以m的积,记作a=n×m,或a=n.m,或a=nm.n称为被乘数,m称为乘数.求两个数积的运算叫做乘法.
对于数0,1,补充义定:n和0的积是0,n和1的积是n,即n.0=0,n.1=1.
在上述定义里,加法、乘法的交换律、结合律,乘法对于加法的分配律仍然成立.
关于减法运算的定义,除了去掉“非空”二字外,集合B可以是A本身,即
定义4
设有有限集合A和B,B
A,若记A-B=C,且A,B,C的基数分别记作a,b,c,那么c叫做a,b的差,记作
a-b=c.
a叫做被减数,b叫做减数.求两个数差的运算叫做减法.
除法是乘法的逆运算,在原定义中要限定“除数非零”即可.
定义5
设a,b(b≠0)是两个自然数,如果存在一个自然数c,使得bc=a,那么c叫做a除以b所得的商,记作
ab=c,或a÷b=c.
a称为被除数,b称为除数.求两个数商的运算叫做除法.
4
自然数的有关性质
(1)自然数的有序性决定了自然数可以比较大小,即
定义6
如果两个有限集合A,B的基数分别为a,b,那么

当A
A′,A′~B时,a>b;

当B′
B,A~B′时,a
当A~B时,a=b.
自然数有反身律:a=a;对称律:若a=b,则b=a;传递律:若a≥b,b≥c,则a≥c.
自然数从小到大的排序为
0,1,2,3,….
(2)自然数的单调性反映了不等量关系中的运算性质,扩充后的自然数其单调性有了局部性改变,即
若a≥b,则

a+c≥b+c;

当c>0时,ac≥bc,
当c=0时,ac=bc.
对于与自然数有关的数学论证与原理,应随自然数扩充后作相应调整.如数学归纳法证明的步骤应是

验证n=0时,命题成立;

假设n=k-1时成立,则n=k时命题成立.
【拼音】:zì
rán
shù
  【英译】:natural
number
  【概念】:用以计量事物的件数或表示事物次序的数

即用数码0,1,2,3,4,……所表示的数
。表示物体个数的数叫自然数,自然数由0开始(包括0),
一个接一个,组成一个无穷集体。自然数集有加法和乘法运算,两个自然数相加或相乘的结果仍为自然数,也可以作减法或除法,但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不是总能成立的。自然数是人们认识的所有数中最基本的一类,为了使数的系统有严密的逻辑基础,19世纪的数学家建立了自然数的两种等价的理论枣自然数的序数理论和基数理论,使自然数的概念、运算和有关性质得到严格的论述。
  【定义】:(序数理论是意大利数学家G.皮亚诺提出来的。他总结了自然数的性质,用公理法给出自然数的如下定义)
  自然数集N是指满足以下条件的集合:①N中有一个元素,记作1。②N中每一个元素都能在
N
中找到一个元素作为它的后继者。③
1是0的后继者。④0不是任何元素的后继者。
⑤不同元素有不同的后继者。⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
  基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数
。这样
,所有单元素集{x},{y},{a},{b}等具有同一基数

记作1
。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等
。自然数的加法
、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
  自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
  “0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。目前关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。目前,我国中小学教材将0归为自然数!
  自然数是整数,但整数不全是自然数。自然数是无限的,目前人们发现了大约十万的自然数。
  例如:-1
-2
-3......是整数
而不是自然数
  总之一句话自然数就是大于等于0的整数
  全体非负整数组成的集合称为非负整数集(即自然数集)
  在数物体的时候,数出的1.2.3.4.5.6.7.8.9……叫自然数。自然数有数量、次序两层含义,分为基数、序数。
基本单位:1
计数单位:个、十、百、千、万……
  分类:
  按能否被2整除
按因数个数
  ↙




  奇





1


  总之,自然数就是指大于等于0的整数。
用以计量事物的件数或表示事物次序的数

即用数码0,1,2,3,4,……所表示的数
。表示物体个数的数叫自然数,自然数由0开始(包括0),
一个接一个,组成一个无穷的集体。
表示物体个数的数0、1、2、3、4、5、6、……叫自然数。
从历史上看,国内外数学界对于0是不是自然数历来有两种观点:一种认为0是自然数,另一种认为0不是自然数。建国以来,我国的中小学教材一直规定自然数不包括0。目前,国外的数学界大部分都规定0是自然数。为了方便于国际交流,1993年颁布的《中华人民共和国国家标准》(GB 3100-3102-93)《量和单位》(11-2.9)第311页,规定自然数包括0。所以在近几年进行的中小学数学教材修订中,教材研究编写人员根据上述国家标准进行了修改。即一个物体也没有,用0表示。0也是自然数。
像0,1,2,3,4,5这样的数被称作自然说。换句话说:也就是大于等于0的整数
自然数是指表示物体个数的数,即由0开始,0,1,2,3,4,……一个接一个,组成一个无穷的集体,即指非负整数。
自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在 N 中找到一个元素作为它的后继者。
③1是0的后继者。④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥(归纳公理)N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
扩展资料:
自然数性质
1、对自然数可以定义加法和乘法。其中,加法运算“+”定义为:a + 0 = a;
a + S(x) = S(a +x), 其中,S(x)表示x的后继者。
如果我们将S(0)定义为符号“1”,那么b + 1 = b + S(0) = S( b + 0 ) = S(b),即,“+1”运算可求得任意自然数的后继者。
同理,乘法运算“×”定义为:a × 0 = 0; a × S(b) = a × b + a
自然数的减法和除法可以由类似加法和乘法的逆的方式定义。
2、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列:0,1,2,3,…这个数列叫自然数列。一个集合的元素如果能与自然数列或者自然数列的一部分建立一一对应,我们就说这个集合是可数的,否则就说它是不可数的。
3、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
对于无限集合来说“,元素个数”的概念已经不适用,用数个数的方法比较集合元素的多少只适用于有限集合。为了比较两个无限集合的元素的多少,集合论的创立者德国数学家康托尔引入了一一对应的方法。
这一方法对于有限集合显然是适用的,21世纪把它推广到无限集合,即如果两个无限集合的元素之间能建立一个一一对应,我们就认为这两个集合的元素是同样多的。对于无限集合,我们不再说它们的元素个数相同,而说这两个集合的基数相同,或者说,这两个集合等势。与有限集对比,无限集有一些特殊的性质,其一是它可以与自己的真子集建立一一对应,例如:
0 1 2 3 4 …
1 3 5 7 9 …
这就是说,这两个集合有同样多的元素,或者说,它们是等势的。大数学家希尔伯特曾用一个有趣的例子来说明自然数的无限性:如果一个旅馆只有有限个房间,当它的房间都住满了时,再来一个旅客,经理就无法让他入住了。
但如果这个旅馆有无数个房间,也都住满了,经理却仍可以安排这位旅客:他把1号房间的旅客换到2号房间,把2号房间的旅客换到3号房间,……如此继续下去,就把1号房间腾出来了。
4、传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。
5、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n16、最小数原理:自然数集合的任一非空子集中必有最小的数。具备性质3、4的数集称为线性序集。容易看出,有理数集、实数集都是线性序集。但是这两个数集都不具备性质5,例如所有形如nm(m>n,m,n 都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。
具备性质5的集合称为良序集,自然数集合就是一种良序集。容易看出,加入0之后的自然数集仍然具备上述性质3、4、5,就是说,仍然是线性序集和良序集。
参考资料:百度百科----自然数

什么叫自然数自然数包括什么?

一、自然数的定义和分类
1、自然数
在数物体的个数时,用来表示物体个数的1,2,3,4,5,?叫做自然数。一个物体也没有,用“0”表示。
2、整数包括正整数、0、负整数。其中正整数和0是自然数。
(1)正整数:大于0的整数,如1,2,3,?直到n。
没有(2)0:既不是正整数,也不是负整数,介于两者之间。
(3)负整数:小于0的整数,如?1,?2,?3,?直到?n。
二、自然数的相关例题
判断对错:整数都是自然数___
答案:×
解析:整数包括自然数和负整数,可以说自然数都是整数,但不能说整数都是自然数。
自然数是以计量事物的件数的数、以表示事物次序的数。自然数包括正整数和零。
数学中的自然数是指表示物体个体的书,就是从0开始,0、1、2、3、4.......这样一个接一个,组成一个无穷的集体,就是平时说的非负整数。
表示物体个数的数就叫做自然数,自然数有有序性,无限性,还分为奇数和偶数,合数和质数等等。
整数和自然数的区别:
自然数是整数,自然数包括正整数和零,但整数不全是自然数,例如:-1 -2 -3......是整数而不是自然数,自然数是无限的。
自然数集N是指满足以下条件的集合:
①N中有一个元素,记作1。
②N中每一个元素都能在N中找到一个元素作为它的后继者。
③1是0的后继者。
④0不是任何元素的后继者。
⑤不同元素有不同的后继者。
⑥N的任一子集M,如果1∈M,并且只要x在M中就能推出x的后继者也在M中,那么M=N。
以上内容参考:百度百科-自然数

自然数的定义是什么?

通过学习我们能知道,自然数是指除负整数外的所有整数。(0也是自然数)
比如1、2 、3……
所以小于100的所有自然数组成的集合就是以下
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
由此可见小于100的所有自然数组成的集合便是由1~99的所有正整数和0这个整数组成

什么是自然数啊?

数量为1~10的物体,可以用自然数表示。
因为自然数表示物体的个数。
自然数的定义:
用一位数表示出来的非负数非小数叫自然数。如0,1,2,3,4到9都是自然数。它是数学中任何大小数目都离不开的数。自然数只能限定为一位数的数,不能用一位数表示出来的数是数目,而不是自然数。如100,10,0.1等这些数不能用一位数表示出来,而它们当中的任何一个数字都是自然数。得出结论:任意一个数目(一位或多位或小于一位)中的任何数字(指1,2等数字,不是指十,千等文字数字)都是自然数。例如:0.1,5,156,—36等它们中的任何一个数字都是自然数。为什么最小的自然数是0,最大的自然数是9呢?因为小于0的数要用符号表示,大于9的数要用小数或多位数表示出来,不能单用一位数字表示出来。用一句话来说,自然数就是:只含有一位数的绝对值叫自然数。

自然数的定义是什么?

自然数,是数学当中对于一类数字定下的性质概念,自然数是包含数字0在内的正整数的集合,我们也可以单独地将一个正整数称为自然数,自然数可以用来计量生活当中示事物的次序,亦或是件数,自然数有着无数个。
根据数字的奇偶性,我们又可以将自然数分为奇数和偶数这两个大类,数字0属于特殊的偶数。另外我们还可以将自然数称为是0、1、合数和质数的集合。所谓的合数指的就是能够被数字1余数值本身之外的数字(数字0除外)整除的正整数。质数指的就是只能够被数字1和本身数值(除了1和0)所整除的正整数.
任意的自然数一定属于是整数的,并且还一定是大于或者等于0的数。对于自然数的运算,在加法和乘法的运算当中,最后得出的结果一定是自然数,在减法和除法运算当中,最后得出的结果则不一定是自然数。
扩展资料:
自然数性质:
1、对自然数可以定义加法和乘法。
2、有序性。自然数的有序性是指,自然数可以从0开始,不重复也不遗漏地排成一个数列。
3、无限性。自然数集是一个无穷集合,自然数列可以无止境地写下去。
4、传递性:设 n1,n2,n3 都是自然数,若 n1>n2,n2>n3,那么 n1>n3。
5、三岐性:对于任意两个自然数n1,n2,有且只有下列三种关系之一:n1>n2,n1=n2或n1。
参考资料:百度百科——自然数
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。
扩展资料:
自然数概念:
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。
这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数 , 记作1 。类似,凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法 、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
参考资料来源:百度百科-自然数概念
参考资料来源:百度百科-自然数
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体,自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
但相减和相除的结果未必都是自然数,所以减法和除法运算在自然数集中并不总是成立的。用以计量事物的件数或表示事物次序的数,即用数码0,1,2,3,4,……所表示的数。
扩展资料:
自然数集合的任一非空子集中必有最小的数。具备性质3、4的数集称为线性序集。容易看出,有理数集、实数集都是线性序集。
例如所有形如nm(m>n,m,n 都是自然数)的数组成的集合是有理数集的非空子集,这个集合就没有最小数;开区间(0,1)是实数集合的非空子集,它也没有最小数。

自然数的定义是什么?

自然数有无数个。
自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
常见概念
自然数是整数(自然数包括正整数和零),但整数不全是自然数,例如:-1 -2 -3......是整数 而不是自然数。自然数是无限的。
全体非负整数组成的集合称为非负整数集,即自然数集。
在数物体的时候,数出的1.2.3.4.5.6.7.8.9叫自然数。自然数有数量、次序两层含义,分为基数、序数。
基本单位:计数单位:个、十、百、千、万、十万。
总之,自然数就是指大于等于0的整数。当然,负数、小数、分数等就不算在其内了。

自然数的定义是什么?

表示物体个数的1、2、3、4......等叫作自然数。0也是自然数。
自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。
表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。自然数集是全体非负整数组成的集合,常用 N 来表示。自然数有无穷无尽的个数。
数列
数列0,1,2,3,4,5,6,7,8,9,10,11,12,……n,称为自然数列。
自然数列的通项公式an=n。
自然数列的前n项和Sn=n(n+1)/2。 Sn=na1+n(n-1)/2。
自然数列本质上是一个等差数列,首项a1=1,公差d=1。