本文目录一览:
- 1、什么是黎曼几何。
- 2、黎曼几何是欧几里得几何吗?
- 3、黎曼几何是什么样的?为什么叫黎曼几何?
- 4、黎曼几何是什么
- 5、简述一下黎曼几何。
- 6、黎曼几何中平行线相交是什么意思
- 7、黎曼几何的产生意义和发展史
- 8、黎曼几何适用于什么空间
- 9、黎曼几何什么意思
- 10、什么是欧几里德几何?什么是黎曼几何
什么是黎曼几何。
分类: 理工学科
解析:
Riemannian geometry
黎曼流形上的几何学。德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。1854年黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的就职演说,通常被认为是黎曼几何学的源头。在这篇演说中,黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 ,空间中的点可用n个实数(x1,……,xn)作为坐标来描述。这是现代n维微分流形的原始形式,为用抽象空间描述自然现象奠定了基础。这种空间上的几何学应基于无限邻近两点(x1,x2,……xn)与(x1+dx1,……xn+dxn)之间的距离,用微分弧长度平方所确定的正定二次型理解度量。
(gij)是由函数构成的正定对称矩阵。这便是黎曼度量。赋予黎曼度量的微分流形,就是黎曼流形。
黎曼认识到度量只是加到流形上的一种结构,并且在同一流形上可以有许多不同的度量。黎曼以前的数学家仅知道三维欧几里得空间E3中的曲面S上存在诱导度量ds2=Edu2+2Fdudv+Gdv2,即第一基本形式,而并未认识到S还可以有独立于三维欧几里得几何赋予的度量结构。黎曼意识到区分诱导度量和独立的黎曼度量的重要性,从而摆脱了经典微分几何曲面论中局限于诱导度量的束缚,创立了黎曼几何学,为近代数学和物理学的发展作出了杰出贡献。
黎曼几何中的一个基本问题是微分形式的等价性问题。该问题大约在1869年前后由E.B.克里斯托费尔和R.李普希茨等人解决。前者的解包含了以他的姓命名的两类克里斯托费尔记号和协变微分概念。在此基础上G.里奇发展了张量分析方法,这在广义相对论中起了基本数学工具的作用。他们进一步发展了黎曼几何学。
但在黎曼所处的时代,李群以及拓扑学还没有发展起来,因此黎曼几何只限于小范围的理论。大约在1925年H.霍普夫才开始对黎曼空间的微分结构与拓扑结构的关系进行了研究。随着微分流形精确概念的确立,特别是E.嘉当在20世纪20年代开创并发展了外微分形式与活动标架法,建立了李群与黎曼几何之间的联系,从而为黎曼几何的发展奠定重要基础,并开辟了广阔的园地,影响极其深远。并由此发展了线性联络及纤维丛的研究。
1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。使黎曼几何(严格地说洛伦茨几何)及其运算方法(里奇算法)成为广义相对论研究的有效数学工具。而相对论近年的发展则受到整体微分几何的强烈影响。例如矢量丛和联络论构成规范场(杨-米尔斯场)的数学基础。
1944年陈省身给出n维黎曼流形高斯-博内公式的内蕴证明,以及他关于埃尔米特流形的示性类的研究,引进了后来通称的陈示性类,为大范围微分几何提供了不可缺少的工具并为复流形的微分几何与拓扑研究开创了先河。半个多世纪,黎曼几何的研究从局部发展到整体,产生了许多深刻的结果。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。
黎曼几何是欧几里得几何吗?
过直线外的一点,一条平行线也得不出来。
黎曼几何是非欧几何的一种,非欧几何中平行线也可以相交。平常所学的几何都是欧式几何,都是以欧几里得提出的五条共设为前提的。而第五共设无法拿出事实去证明。所以有了非欧几何。
黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。
欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。
扩展资料
欧式几何与非欧几何的适用范围
欧氏几何主要研究平面结构的几何及立体几何,非欧几何是在一个不规则曲面上进行研究。欧式几何可以用于研究平面上的几何,即平面几何。
研究三维空间的欧几里得几何,通常叫做立体几何。非欧几何适用于抽象空间的研究,即更一般的空间形式,使几何的发展进入了一个以抽象为特征的崭新阶段。非欧几何学还应用在爱因斯坦发展的广义相对论。
黎曼几何是什么样的?为什么叫黎曼几何?
黎曼几何研究的是是一个弯曲的空间 直线并不是我们现在通常的直线 比如在球面几何上,两条经线是平行的,但是直观上他们却是相交的。
黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。
黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。
扩展资料:
人们终于认识到存在一种不同于欧氏几何的新几何,称其为非欧几何。不久之后,德国的黎曼采用另一条新公理取代第五公设,创建了另一种非欧几何。
黎曼的新公理认为,“过直线外的一点,一条平行线也得不出来”。数学界很快认识到这三种几何都是正确的,它们反映不同曲率空间的性质。人们把罗巴切夫斯基和鲍耶创建的几何称为罗氏几何,把黎曼创建的几何称为黎氏几何。
欧氏几何是平直空间中的几何,黎氏几何是正曲率空间中的几何,罗氏几何则是负曲率空间中的几何。
1845年,黎曼在哥廷根大学发表了题为《论作为几何基础的假设》的就职演讲,标志着黎曼几何的诞生。黎曼把这三种几何统一起来,统称为黎曼几何,并用这一工作,在哥廷根大学的数学系作报告,谋求一个讲师的位置。
参考资料:黎曼几何_百度百科
黎曼几何是什么
黎曼几何是非欧几何的一种,亦称“椭圆几何”。
创立
人们终于认识到存在一种不同于欧氏几何的新几何,称其为非欧几何。不久之后,德国的黎曼采用另一条新公理取代第五公设,创建了另一种非欧几何。黎曼的新公理认为,“过直线外的一点,一条平行线也得不出来”。
数学界很快认识到这三种几何都是正确的,它们反映不同曲率空间的性质。人们把罗巴切夫斯基和鲍耶创建的几何称为罗氏几何,把黎曼创建的几何称为黎氏几何。欧氏几何是平直空间中的几何,黎氏几何是正曲率空间中的几何,罗氏几何则是负曲率空间中的几何。
1845年,黎曼在哥廷根大学发表了题为《论作为几何基础的假设》的就职演讲,标志着黎曼几何的诞生。黎曼把这三种几何统一起来,统称为黎曼几何,并用这一工作,在哥廷根大学的数学系作报告,谋求一个讲师的位置。
后经E.B.Christoffel,L.Bianohi及C.G.Ricci等人进一步完善和拓广,成为A.Einstein创立广义相对论(1915年)的有力数学工具。此后黎曼几何得到了蓬勃发展,特别是E.Cartan,他建立的外微分形式和活动标架法,沟通了Lie群与黎曼几何的联系,为黎曼几何的深入发展开辟了广阔的前景,影响极为深远。
近半个世纪来,黎曼几何的研究从局部发展到整体,产生了许多深刻的并在其他数学分支(如代数拓扑学,偏微分方程,多复交函数论等)及现代物理学中有重要作用的结果。
内容
黎曼的研究是以高斯关于曲面的内蕴微分几何为基础的,在黎曼几何中,最重要的一种对象就是所谓的常曲率空间,对于三维空间,有三种情形:曲率恒等于零;曲率为负常数;曲率为正常数.
黎曼指出:前两种情形分别对应于欧几里得几何学和罗巴切夫斯基几何学,而第三种情形则是黎曼本人的创造,它对应于另一种非欧几何学。黎曼的这第三种几何就是用命题“过直线外一点所作任何直线都与该直线相交”代替第五公设作为前提,保留欧氏几何学的其他公理与公设,经过严密逻辑推理而建立起来的几何体系。
这种几何否认“平行线”的存在,是另一种全新的非欧几何,这就是如今狭义意义下的黎曼几何,它是曲率为正常数的几何,也就是普通球面上的几何,又叫球面几何。该文于黎曼去世两年后的1868年发表。
简述一下黎曼几何。
欧氏几何与罗氏几何中关于结合公理、顺序公理、连续公理及合同公理都是相同的,只是平行公理不一样。欧式几何讲“过直线外一点有且只有一条直线与已知直线平行”。罗氏几何讲“过直线外一点至少存在两条直线和已知直线平行”。那么是否存在这样的几何“过直线外一点,不能做直线和已知直线平行”?黎曼几何就回答了这个问题。
黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。
黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。黎曼几何的模型是一个经过适当“改进”的球面。
近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。在广义相对论里,爱因斯坦放弃了关于时空均匀性的观念,他认为时空只是在充分小的空间里以一种近似性而均匀的,但是整个时空却是不均匀的。在物理学中的这种解释,恰恰是和黎曼几何的观念是相似的。
此外,黎曼几何在数学中也是一个重要的工具。它不仅是微分几何的基础,也应用在微分方程、变分法和复变函数论等方面。
黎曼几何中平行线相交是什么意思
黎曼几何中平行线相交的意思是在同一平面内任何两条直线都有公共点(交点)。黎曼几何是非欧几何的一种,亦称椭圆几何。德国数学家黎曼,对空间与几何的概念作了深入的研究,于1854年发表《论作为几何学基础的假设》一文,创立了黎曼几何。几何是研究空间结构及性质的一门学科。它是数学中最基本的研究内容之一,与分析、代数等具有同样重要的地位,并且关系极为密切。
黎曼几何的产生意义和发展史
黎曼几何是非欧几何的一种,亦称椭圆几何。德国数学家黎曼,对空间与几何的概念作了深入的研究,于1854年发表《论作为几何学基础的假设》一文,创立了黎曼几何。
黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。
黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。
欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。
近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。
黎曼几何适用于什么空间
黎曼几何适用于曲线、曲面以及更一般的流形空间。下面是对黎曼几何适用空间的详细描述。
1.曲线空间:
在黎曼几何中,我们可以研究曲线的性质。曲线可以看作是一维流形,可以在该流形上定义长度、曲率等概念。通过引入度量张量,可以确定曲线上两点之间的距离和路径长度。黎曼几何可以用来描述曲线的几何特征,如曲率、切向量以及曲线在不同参数化下的表示等。
2.曲面空间:
曲面是二维的流形,黎曼几何也适用于研究曲面的性质。曲面可以用来描述各种平滑的表面,比如球面、柱面、锥面等。通过引入度量张量,在曲面上定义了内积和长度的概念,使得我们可以计算曲面上点的切向量、法向量以及曲率等几何量。
3.流形空间:
黎曼几何最大的应用领域是研究更一般的流形空间。流形是一个局部与欧几里德空间同胚的拓扑空间,可以用局部坐标系来描述。
黎曼几何通过引入度量张量和联络的概念,使得我们能够在流形上定义内积、长度、曲率等几何量。流形空间包括各种各样的对象,比如高维空间、非线性空间以及广义相对论中描述时空的四维时空流形等。
4.应用领域:
黎曼几何在物理学、数学和工程学等许多领域中都有重要应用。在物理学中,黎曼几何被广泛应用于相对论理论的建立与研究,描述了弯曲时空中物体的运动与引力的作用。在数学中,黎曼几何为拓扑学、微分几何以及流形上的分析提供了基础理论。
在工程学中,黎曼几何可用于计算机图形学中对曲面的建模、医学图像处理中对器官形状的分析等。此外,黎曼几何还在统计学、计算机视觉、人工智能等领域也有广泛应用。
黎曼几何什么意思
黎曼几何是非欧几何的一种,亦称“椭圆几何”。
黎曼几何是非欧几何的一种,亦称“椭圆几何”。它是由德国数学家伯纳德·黎曼在19世纪末提出的。与欧几里得几何相比,黎曼几何具有更为复杂的性质和更多的对称性。
欧几里得几何是一种基于平行公设和距离定义的几何体系。在欧几里得几何中,直线是无限延伸的,且两点之间最短的距离是一条直线段。然而,黎曼几何中的直线是弯曲的,而且没有固定长度的概念。
黎曼几何的一个重要特点是其曲率概念。曲率是一个衡量曲线弯曲程度的指标,通常用希腊字母κ表示。黎曼几何中的曲率不仅与曲线本身有关,还与坐标系的选择有关。换句话说,不同的坐标系可能会导致相同的曲率值。这种现象被称为“测地线理论”。
黎曼几何的应用体现在广义相对论、黑洞研究、量子物理、弦理论
1、广义相对论:黎曼几何是广义相对论的基础,它描述了物体在重力场中的行为。在广义相对论中,空间和时间不再是绝对的,而是与物体的运动状态有关。例如,光速在任何地方都是恒定的,这就是黎曼几何的一个重要预言。
2、黑洞研究:黎曼几何为理解黑洞提供了新的工具。在黎曼几何中,黑洞不再是一个完全“空”的区域,而是一个有事件视界的区域。事件视界是黑洞周围的一个区域,任何物体一旦进入这个区域就无法逃脱黑洞的引力。
3、量子物理:黎曼几何也在量子物理中有应用。例如,量子纠缠是一种特殊的物理现象,它违反了局域性原理(即物理定律在局部区域内应该是成立的)。黎曼几何提供了一种解释这种现象的方式,即通过引入时空的弯曲来考虑量子效应。
4、弦理论:弦理论是一种试图统一所有基本粒子和力的物理学理论。在这个理论中,空间和时间被视为弦的振动模式。黎曼几何为弦理论提供了一个合适的数学框架。
什么是欧几里德几何?什么是黎曼几何
欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。 高维的情形请参看欧几里得空间。
黎曼流形上的几何学,简称黎曼几何。是由德国数学家G.F.B.黎曼19世纪中期提出的几何学理论。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。他首先发展了空间的概念,提出了几何学研究的对象应是一种多重广义量 。黎曼几何中的一个基本问题是微分形式的等价性问题。黎曼几何与偏微分方程、多复变函数论、代数拓扑学等学科互相渗透,相互影响,在现代数学和理论物理学中有重大作用。