本文目录一览:
- 1、红外光谱的原理及应用是什么?
- 2、红外光谱的原理
- 3、红外光谱仪的原理及应用
- 4、红外色谱仪的工作原理
- 5、红外光谱的原理是什么?
- 6、红外光谱的基本原理
- 7、红外光谱仪测试样品准备要求是什么_红外光谱对样品的要求
- 8、红外光谱仪中文版使用说明书,疑难问题解答。如定期维护?
红外光谱的原理及应用是什么?
红外热成像,顾名思义,就是利用红外辐射来进行成像,红外辐射指红外线的热辐射过程。红外线本质上是一种波长介于可见光和微波的电磁波,其波长在物理学上的界定是0.75~1000μm。
而根据红外辐射的生成机理、应用场景、还有在大气中的传输特性,业界又进一步将红外辐射划分成四个波段:
(1)0.75~3μm的近波红外或短波红外波段;
(2)3~6μm的中波红外;
(3)6~15μm的远波或长波红外;
(4)15~1000μm的极远波红外。
这其中有三个波段,因为在大气中优良的渗透率,被广泛应用在红外探测器或红外热像仪等产品的开发中,分别是1~3μm的短波红外区,3~5μm的中波红外区和8~14μm的远波红外区。也由此这三个红外波段有着“大气窗口”之称。
而红外热像产品就是通过捕捉自然界中不同物体辐射红外能量微小差异的能力,来达到帮助人们识别、侦察目标关键信息的目的。红外热像产品的核心就是红外探测器,其作用就是将物体辐射的红外信号收集起来,经由电路信号处理、智能图像算法等系统,转换成人眼可是识别的视觉图像。
红外光谱:原理、应用与案例分析
红外光谱是一种强大的分析工具,广泛应用于多个领域。本文将深入探讨红外光谱的原理、应用价值以及相关案例,带您领略红外光谱的魅力。
一、红外光谱的原理
红外光谱是一种基于分子振动和转动能级的分析技术。当一束红外光照射到样品上时,光子与样品分子相互作用,引起分子振动和转动能级的改变。这些能级的改变会导致透射光的光谱变化,从而形成红外光谱。
根据量子力学理论,分子具有一系列能级,这些能级与光的波长(或频率)相关。当光照射到样品上时,如果光子的能量与分子的某个能级差相等,则该能级上的分子吸收光子并跃迁到较高能级。这一过程导致透射光的强度降低,同时在光谱上出现一个吸收峰。
二、红外光谱的应用
化学分析
红外光谱在化学分析中具有广泛应用。通过分析样品的红外光谱,可以确定分子的化学结构和化学键类型。由于不同化学键对特定波长的红外光具有不同的吸收特征,因此可以通过对比光谱特征来确定样品的化学组成。
材料科学
在材料科学领域,红外光谱可用于研究材料的微观结构和化学成分。通过红外光谱分析,可以了解材料表面的吸附状态、化学基团以及分子结构等信息,为材料研发和优化提供有力支持。
生物学
在生物学领域,红外光谱可用于研究生物大分子的结构和功能。例如,通过红外光谱分析蛋白质和核酸等生物大分子的构象和动力学行为,有助于深入了解生命的奥秘。
环境科学
在环境科学领域,红外光谱可用于检测空气、水体和土壤中的有害物质。通过分析特定波长的红外光,可以确定有害物质的类型和浓度,为环境保护和治理提供数据支持。
三、案例分析
化学分析应用案例
在一项化学分析研究中,研究人员利用红外光谱技术对不同种类的宝石进行了鉴别。通过对比不同宝石的红外光谱特征峰,成功地区分了不同类型的宝石,证明了红外光谱在化学分析中的广泛应用价值。
材料科学应用案例
在材料科学领域,研究人员利用红外光谱分析了一种新型太阳能电池的材料。通过研究材料表面的化学基团和分子结构,深入了解了材料的能带结构和光电性能,为优化太阳能电池的性能提供了重要依据。
生物学应用案例
在生物学领域,研究人员利用红外光谱技术对细胞凋亡过程进行了研究。通过观察细胞在受到药物处理后的红外光谱特征变化,成功地评估了药物对细胞凋亡的影响,为药物研发提供了新的工具。
环境科学应用案例
在环境科学领域,研究人员利用红外光谱技术对大气中的气态污染物进行了监测。通过分析不同污染物的红外光谱特征,精确地测量了大气中污染物的浓度和分布,为大气污染防治提供了科学依据。
综上所述,红外光谱作为一种强大的分析工具,在多个领域都具有广泛的应用价值。了解红外光谱的原理和应用,有助于更好地理解和解决实际问题和挑战。
红外光谱的原理
红外光谱的原理:
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
拓展资料红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。
红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。
参考资料:百度百科-红外光谱
有些企业朋友在采购光谱分析仪时,想了解下其光谱分析仪原理,便于后期采购使用。这样在采购时就知道哪些地方需要注意。其实光谱仪原理非常简单。
光谱分析仪是一种利用不同的金属会拥有不同的折射光,当激发后金属反馈的折射光,经过内部核心装置光栅进行光线处理,再经过内部的传感器对光线进行处理,最后将得到的数据通过电脑软件显示给操作人员。这就是光谱原理的大致过程。
由以上检测的原理可知,无论进行分光的光栅,还是对光线感光检测处理的传感器,对于光谱分析仪来说都是非常重要的核心部件,所以企业在采购光谱分析仪时,需要格外关注这两个部件的质量如何,这样采购的光谱仪质量才会更好。
原理:
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
拓展资料:
光谱分析是一种根据物质的光谱来鉴别物质及确定它的化学组成,结构或者相对含量的方法。按照分析原理,光谱技术主要分为吸收光谱,发射光谱和散射光谱三种;
按照被测位置的形态来分类,光谱技术主要有原子光谱和分子光谱两种。红外光谱属于分子光谱,有红外发射和红外吸收光谱两种,常用的一般为红外吸收光谱。
分子运动有平动,转动,振动和电子运动四种,其中后三种为量子运动。分子从较低的能级E1,吸收一个能量为hv的光子,可以跃迁到较高的能级E2,整个运动过程满足能量守恒定律E2-E1=hv。能级之间相差越小,分子所吸收的光的频率越低,波长越长。
红外光谱 (Infrared Spectroscopy, IR) 的研究开始于 20 世纪初期,自 1940 年商品红外光谱仪问世以来,红外光谱在有机化学研究中得到广泛的应用。现在一些新技术 (如发射光谱、光声光谱、色——红联用等) 的出现,使红外光谱技术得到更加蓬勃的发展。
将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外吸收光谱是由分子不停地作振动和转动运动而产生的,分子振动是指分子中各原子在平衡位置附近作相对运动,多原子分子可组成多种振动图形。当分子中各原子以同一频率、同一相位在平衡位置附近作简谐振动时,这种振动方式称简正振动(例如伸缩振动和变角振动)。分子振动的能量与红外射线的光量子能量正好对应,因此当分子的振动状态改变时,就可以发射红外光谱,也可以因红外辐射激发分子而振动而产生红外吸收光谱。分子的振动和转动的能量不是连续而是量子化的。但由于在分子的振动跃迁过程中也常常伴随转动跃迁,使振动光谱呈带状。所以分子的红外光谱属带状光谱。
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
红外光谱的原理
当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。
当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。
红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。
并非所有的振动都会产生红外吸收,只有偶极矩发生变化的振动才能引起可观测的红外吸收,这种振动称为红外活性振动;偶极矩等于零的分子振动不能产生红外吸收,称为红外非活性振动。
分子的振动形式可以分为两大类:伸缩振动和弯曲振动。前者是指原子沿键轴方向的往复运动,振动过程中键长发生变化。后者是指原子垂直于化学键方向的振动。通常用不同的符号表示不同的振动形式,例如,伸缩振动可分为对称伸缩振动和反对称伸缩振动,分别用 Vs 和Vas 表示。弯曲振动可分为面内弯曲振动(δ)和面外弯曲振动(γ)。
从理论上来说,每一个基本振动都能吸收与其频率相同的红外光,在红外光谱图对应的位置上出现一个吸收峰。实际上有一些振动分子没有偶极矩变化是红外非活性的;另外有一些振动的频率相同,发生简并;还有一些振动频率超出了仪器可以检测的范围,这些都使得实际红外谱图中的吸收峰数目大大低于理论值。
组成分子的各种基团都有自己特定的红外特征吸收峰。不同化合物中,同一种官能团的吸收振动总是出现在一个窄的波数范围内,但它不是出现在一个固定波数上,具体出现在哪一波数,与基团在分子中所处的环境有关。
引起基团频率位移的因素是多方面的,其中外部因素主要是分子所处的物理状态和化学环境,如温度效应和溶剂效应等。
对于导致基团频率位移的内部因素,迄今已知的有分子中取代基的电性效应:如诱导效应、共轭效应、中介效应、偶极场效应等;机械效应:如质量效应、张力引起的键角效应、振动之间的耦合效应等。
这些问题虽然已有不少研究报道,并有较为系统的论述,但是,若想按照某种效应的结果来定量地预测有关基团频率位移的方向和大小,却往往难以做到,因为这些效应大都不是单一出现的。这样,在进行不同分子间的比较时就很困难。
另外氢键效应和配位效应也会导致基团频率位移,如果发生在分子间,则属于外部因素,若发生在分子内,则属于分子内部因素。
红外谱带的强度是一个振动跃迁概率的量度,而跃迁概率与分子振动时偶极矩的变化大小有关,偶极矩变化愈大,谱带强度愈大。偶极矩的变化与基团本身固有的偶极矩有关,故基团极性越强,振动时偶极矩变化越大,吸收谱带越强;分子的对称性越高,振动时偶极矩变化越小,吸收谱带越弱。
拓展资料
红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。
红外光谱的分区
通常将红外光谱分为三个区域:近红外区(0.75~2.5μm)、中红外区(2.5~25μm)和远红外区(25~300μm)。一般说来,近红外光谱是由分子的倍频、合频产生的;中红外光谱属于分子的基频振动光谱;远红外光谱则属于分子的转动光谱和某些基团的振动光谱。
由于绝大多数有机物和无机物的基频吸收带都出现在中红外区,因此中红外区是研究和应用最多的区域,积累的资料也最多,仪器技术最为成熟。通常所说的红外光谱即指中红外光谱。
应用
红外光谱对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,红外光谱还具有测试迅速,操作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。
红外光谱在高聚物的构型、构象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。
红外吸收峰的位置与强度反映了分子结构上的特点,可以用来鉴别未知物的结构组成或确定其化学基团;而吸收谱带的吸收强度与化学基团的含量有关,可用于进行定量分析和纯度鉴定。
另外,在化学反应的机理研究上,红外光谱也发挥了一定的作用。但其应用最广的还是未知化合物的结构鉴定。
红外光谱不但可以用来研究分子的结构和化学键,如力常数的测定和分子对称性的判据,而且还可以作为表征和鉴别化学物种的方法。
例如气态水分子是非线性的三原子分子,它的v1=3652厘米、v3=3756厘米、v2=1596厘米而在液态水分子的红外光谱中,由于水分子间的氢键作用,使v1和v3的伸缩振动谱带叠加在一起,在3402厘米处出现一条宽谱带,它的变角振动v2位于1647厘米。
在重水中,由于氘的原子质量比氢大,使重水的v1和v3重叠谱带移至2502厘米处,v2为1210厘米。以上现象说明水和重水的结构虽然很相近,但红外光谱的差别是很大的。
红外光谱具有高度的特征性,所以采用与标准化合物的红外光谱对比的方法来做分析鉴定已很普遍,并已有几种标准红外光谱汇集成册出版,如《萨特勒标准红外光栅光谱集》收集了十万多个化合物的红外光谱图。近年来又将些这图谱贮存在计算机中,用来对比和检索。
参考资料:百度百科:红外光谱
红外光谱仪的原理及应用
红外光谱仪的原理:
傅立叶变换红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。
红外光谱仪的应用:
应用于染织工业、环境科学、生物学、材料科学、高分子化学、催化、煤结构研究、石油工业、生物医学、生物化学、药学、无机和配位化学基础研究、半导体材料、日用化工等研究领域。
红外光谱可以研究分子的结构和化学键,如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。
分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。
人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
进行化合物的鉴定 进行未知化合物的结构分析。
进行化合物的定量分析 进行化学反应动力学、晶变、相变、材料拉伸与结构的瞬变关系研究。
工业流程与大气污染的连续检测。
在煤炭行业对游离二氧化硅的监测。
卫生检疫,制药,食品,环保,公安,石油, 化工,光学镀膜,光通信,材料科学等诸多领域珠宝行业的检测。
水晶石英羟基的测量、聚合物的成分分析、药物分析......
红外色谱仪的工作原理
红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
红外光谱仪被称为第三代红外光谱仪,利用麦克尔逊干涉仪将两束光程差按一定速度变化的复色红外光相互干涉,形成干涉光,再与样品作用。探测器将得到的干涉信号送入到计算机进行傅立叶变化的数学处理,把干涉图还原成光谱图。
红外光谱的原理是什么?
红外光谱原理是红外光谱是一种分子吸收光谱,利用红外光谱法对有机物进行定性和定量的检测,通过红外线光谱仪发出红外线光线,再将光线照射到待检测物体的表面,有机物因其吸收特性会吸收红外光,从而产生红外光谱图。技术人员可根据红外光谱图找到与吸收峰相对应的化学基团数据库,对待测物质的构成和所属状态进行定性分析。
红外光谱的分类
红外光谱可分为近红外光谱技术、远红外光谱技术和傅立叶变换红外光谱技术。
近红外光谱技术的分子中存在4种不同形式的能量,分别是平动能,转运能,振动能和电子能。在近红外光谱技术中,近红外区域产生的倍频和合频的吸收往往比中红外弱,背景十分复杂,谱峰重叠的现象十分严重,有时必须借助化学计量方法才能提供有效的信息。
远红外光谱技术是利用物体在远红外区的吸收光谱,这个区域的光源能量十分弱小,吸收谱带主要是气体分子中的纯转动跃迁和液体中重原子的伸缩振动,因此一般不在远红外光谱区进行定量分析。
傅立叶变换红外光谱技术是一种快速,无损食品分析的检测技术,主要通过与化学计量学的方法相结合,实现定性定量分析。
红外光谱的基本原理
红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
红外光谱的原理是当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。
所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。
红外光谱 (Infrared Spectroscopy, IR) 的研究开始于 20 世纪初期,自 1940 年商品红外光谱仪问世以来,红外光谱在有机化学研究中得到广泛的应用。现在一些新技术 (如发射光谱、光声光谱、色,红联用等) 的出现,使红外光谱技术得到更加蓬勃的发展。
量子力学:
量子力学研究表明,分子振动和转动的能量不是连续的,而是量子化的,即限定在一些分立的、特定的能量状态或能级上。以最简单的双原子为例,如果认为原子间振动符合简谐振动规律,则其振动能量Ev可近似地表示为:式中h为普朗克常数;v为振动量子数(取正整数);v0为简谐振动频率。当v=0时,分子的能量最低,称为基态。
处于基态的分子受到频率为v0的红外射线照射时,分子吸收了能量为hv0的光量子,跃迁到第一激发态,得到了频率为v0的红外吸收带。反之,处于该激发态的分子也可发射频率为v0的红外射线而恢复到基态。v0的数值决定于分子的约化质量μ和力常数k。k决定于原子的核间距离、原子在周期表中的位置和化学键的键级等。
分子越大,红外谱带也越多,例如含12个原子的分子,它的简正振动应有30种,它的基频也应有30条谱带,还可能有强度较弱的倍频、合频、差频谱带以及振动能级间的微扰作用,使相应的红外光谱更为复杂。
红外光谱仪测试样品准备要求是什么_红外光谱对样品的要求
红外光谱(Infrared)和拉曼光谱(Raman)是研究分子结构和化学组成的有力工具,由于其快速、高灵敏度、检测用量少等优点,在材料、化工、环保、地质等领域广泛应用。从分析测试角度来看,两者配合使用往往能够更好提供分子结构方面的信息。红外光谱与拉曼光谱同属于分子振动光谱,但两者实际上存在较大区别:红外光谱是吸收光谱,拉曼光谱是散射光谱,而且,同一分子的两种光谱往往不同,这与分子对称性紧密相关,也受分子振动规律严格限制。刚接触的话,如果不能从机理到应用层面对二者有较为清晰的了解和认知,单从那条曲折的谱线或许并不能甄别其关联与区别。接下来,通过理论结合实例的方式为大家掀开两种光谱的“面纱”,以期为读者提供参考。
二、基本介绍
(一)检测原理
(1)红外光谱:当电磁辐射与物质分子相互作用时,其能量与分子的振动或转动能量差相当时,引起分子由低能级向高能级发生跃迁,结果使某些特定波长的电磁辐射被物质分子所吸收,测量在不同波长处的辐射强度就得到了红外吸收光谱分子吸收红外辐射后发生振动能级和转动能级的跃迁,因而红外光谱又称为分子振动转动光谱。(简言之,红外光谱产生是由于吸收光的能量,引起分子中偶极矩改变的振动)。
(2)拉曼光谱:光照射到物质,使光子与分子内的电子碰撞,若发生的是非弹性碰撞时,光子就有一部分能量传递给电子,此时散射光的频率就不等于入射光的频率,这种散射被称为拉曼散射,所产生的光谱被称为拉曼光谱。(简言之,拉曼光谱的产生是由于单色光照射后产生光的综合散射效应,引起分子中极化率改变的振动)。
(二)活性判别
(1)互斥规则
凡具有对称中心的分子,若其分子振动是拉曼活性的,则其红外吸收是非活性的。反之,若为红外活性的,则拉曼为非活性的。
(2)互允规则
没有对称中心的分子,其拉曼和红外光谱都是活性的(个别除外)。
(3)互禁规则
对于少数分子的振动,其拉曼和红外都是非活性的(如乙烯分子)。
(三)检测仪器
1)红外光谱
(1)色散型红外光谱仪:与紫外-可见光分光光度计类似,是由光源、单色器、吸收池、检测器和记录系统等部分组成。以棱镜或光栅作为色散元件,由于采用狭缝,使这类色散型仪器能量受严格限制,扫描时间长,灵敏度、分辨率和准确度较低。
(2)傅里叶变换红外光谱仪:没有色散元件,主要由光源、迈克尔逊干涉仪、探测器、计算机等组成。相比色散型红外光谱仪,具有分辨率高,波数精度高,扫描速率快,光谱范围宽,灵敏度高等优点。
2)拉曼光谱
(1)色散型激光拉曼光谱仪:主要由试样室、激光器、单色器、检测器等组成。
(2)傅里叶变换近红外激光拉曼光谱仪:主要由试样室、激光光源、迈克尔逊干涉仪、滤光片组、检测器等组成。
(3)激光显微拉曼光谱仪:使入射激光通过显微镜聚焦到试样的微小部位,采用摄像管、监视器等装置直接观察放大图像,以便把激光点对准不受周围物质干扰情况下的微区,可精确获取所照射部位的拉曼光谱图。
(四)异同点
1)相同点:对于一个给定的化学键,其红外吸收频率与拉曼位移相等,均代表第一振动能级的能量。因此,对某一给定的化合物,某些峰的红外吸收波数和拉曼位移完全相同,红外吸收波数与拉曼位移均在红外光区,两者都反映分子的结构信息。拉曼光谱和红外光谱一样,也是用来检测物质分子的振动和转动能级。
2)不同点
(1)本质区别:红外光谱是吸收光谱,拉曼光谱是散射光谱。
(2)红外更易测定,且信号较强,但拉曼信号较弱。不过,拉曼光谱一般更清晰,重叠带很少见到,谱图解析更方便。
(3)红外光谱使用红外光(尤其中红外光),而拉曼可选择可见光到近红外光。
(4)红外光谱常用于研究极性基团的非对称振动,拉曼光谱常用于研究非极性基团与骨架的对称振动。
(5)拉曼光谱可测水溶液(水的拉曼散射很弱),而红外光谱不适用于水溶液测定。
(6)拉曼光谱测定无需特殊制样处理,而红外光谱测定需要制样。
(7)拉曼光谱可以在玻璃容器或毛细管中测量,但红外光谱不可在玻璃容器中测量。
(8)拉曼光谱和红外光谱多数时候相互补充,即:红外强,拉曼弱。红外弱,拉曼强。
(9)红外光谱鉴定有机物更优,而拉曼光谱在提高无机化合物信息时更全面。
(10)红外光谱解析:三要素(吸收频率、强度、峰形)。拉曼光谱解析除了有三要素外,还有去偏振度。
红外光谱仪中文版使用说明书,疑难问题解答。如定期维护?
一. 红外光谱基本原理
红外光谱(Infrared Spectrometry,IR)又称为振动转动光谱,是一种分子吸收光谱。
当分子受到红外光的辐射,产生振动能级(同时伴随转动能级)的跃迁,在振动(转动)时伴
有偶极矩改变者就吸收红外光子,形成红外吸收光谱。用红外光谱法可进行物质的定性和定
量分析(以定性分析为主),从分子的特征吸收可以鉴定化合物的分子结构。
傅里叶变换红外光谱仪(简称 FTIR)和其它类型红外光谱仪一样,都是用来获得物质的
红外吸收光谱,但测定原理有所不同。在色散型红外光谱仪中,光源发出的光先照射试样,
而后再经分光器(光栅或棱镜)分成单色光,由检测器检测后获得吸收光谱。但在傅里叶变
换红外光谱仪中,首先是把光源发出的光经迈克尔逊干涉仪变成干涉光,再让干涉光照射样
品,经检测器获得干涉图,由计算机把干涉图进行傅里叶变换而得到吸收光谱。
红外光谱根据不同的波数范围分为近红外区(13330—4000 cm
-1
)、中红外区(4000-650
cm
-1
)和远红外区(650-10 cm
-1
)。VECTOR22 VECTOR22 FTIR光谱仪提供中红外区的分测
试。
二. 试样的制备
1. 对试样的要求
(1)试样应是单一组分的纯物质
(2)试样中不应含有游离水
(3)试样的浓度或测试厚度应合适
2.制样方法
(1)气态试样
使用气体池,先将池内空气抽走,然后吸入待测气体试样。
(2)液体试样
常用的方法有液膜法和液体池法。
液膜法:
沸点较高的试样,可直接滴在两片 KBr 盐片之间形成液膜进行测试。取两片 KBr 盐
片,用丙酮棉花清洗其表面并晾干。在一盐片上滴 1 滴试样,另一盐片压于其上,装入
到可拆式液体样品测试架中进行测定。扫描完毕,取出盐片,用丙酮棉花清洁干净后,
放回保干器内保存。粘度大的试样可直接涂在一片盐片上测定。也可以用 KBr 粉末压制
成锭片来替代盐片。
z 注意
盐片易吸水,取盐片时需戴上指套。
盐片装入液体样品测试架后,螺丝不宜拧得过紧,以免压碎盐片。
液体池法:
沸点较低、挥发性较大的试样或粘度小且流动性较大的高沸点样品,可以注入封闭
液体池中进行测试,液层厚度一般为 0.01-1mm。一些吸收很强的纯液体样品,如果在
减小液体池测试厚度后仍得不到好的图谱,可配成溶液测试。液体池要及时清洗干
净,不使其被污染。
(3)固体试样
常用的方法有压片法、石蜡糊法和薄膜法。
1北京大学化学学院中级仪器实验室 FTIR操作手册
压片法:
一般红外测定用的锭片为直径 13mm、厚度约 1mm左右的小片。取样品(约 1mg)与干燥
的KBr(约 200mg)在玛瑙研钵中混和均匀,充分研磨后(使颗粒达到约 2μm),将混
合物均匀地放入固体压片模具的顶模和底模之间,然后把模具放入压力机中,在 8T/cm
2
左右的压力下保持 1-2分钟即可得到透明或均匀半透明的锭片。取出锭片,装入固体
样品测试架中。
z 注意
溴化钾对钢制模具表面的腐蚀性很大,模具用后须及时清洗干净,然后放入保干器
中。
易吸水、潮解的样品不宜用压片法制样。
模具放入压力机内后,应先拧动顶阀,使压杆接近模具,然后关闭放气阀。小幅度
扳动扳手,使压力达到 8T/ cm
2
,保持 1-2 分钟。打开放气阀时,旋转幅度不要超过
30
0
!!
z 小技巧
对于难研磨样品,可先将其溶于几滴挥发性溶剂中再与溴化钾粉末混合成糊状,然
后研磨至溶剂挥发完全,也可在红外灯下赶走残留溶剂。
对于弹性样品如橡胶,可用低温(-40℃)使其变脆,再与溴化钾粉末混合研磨。
石蜡糊法:
将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测
试。
薄膜法:
固体样品制成薄膜进行测定可以避免基质或溶剂对样品光谱的干扰,薄膜的厚度为
10-30μm,且厚薄均匀。薄膜法主要用于高分子化合物的测定,对于一些低熔点的低分
子化合物也可应用。可将它们直接加热熔融后涂制或压制成膜,也可将试样溶解在低沸
点的易挥发溶剂中,涂到盐片上,待溶剂挥发后成膜来测定。
三. 中红外区透光材料
材料名称 化学组成 透光范围(cm
-1
) 水中溶解度(g/100mL) 折射率
氯化钠 NaCl 5000-625 35.7 1.54
溴化钾 KBr 5000-400 53.5 1.56
碘化铯 CsI 5000-165 44.0 1.79
KRS-5 TlBr,TlI 5000-250 0.02 2.37
氯化银 AgCl 5000-435 不溶 2.0
溴化银 AgBr 5000-285 不溶 2.2
氟化钡 BaF2 5000-830 0.17 1.46
氟化钙 CaF2 5000-1100 0.0016 1.43
硫化锌 ZnS 5000-710 不溶 2.2
硒化锌 ZnSe 5000-500 不溶 2.4
金刚石
(Ⅱ)
C 3400-2700;1650-600 不溶 2.42
锗 Ge 5000-430 不溶 4.0
硅 Si 5000-600 不溶 3.4
2北京大学化学学院中级仪器实验室 FTIR操作手册
四. VECTOR 22 FTIR光谱仪简介
VECTOR 22 FTIR 光谱仪由瑞士 Bruker公司制造。由光学台、计算机、打印机组成。
光谱范围:7500-370 cm
-1
分辨率:1cm
-1
信噪比:5500:1
波数精度:0.01cm
-1
红外光源:Globar(高强度空气冷却光源)
干涉仪:迈尔逊干涉仪(30
o
入射Rocksolid专利技术)
分束器:KBr上镀锗
检测器:DTGS(氘代硫酸三肽)
VECTOR 22 FTIR 光学台光路示意图
A-红外光源 B-孔径/薄膜轮 C-出口 D-光束分裂器
E.E
‘
-窗口 F-样品支架 G-检测器
使用红外光谱仪时应注意保持室内清洁、干燥,不要震动光学台,取、放样品时,样品盖
应轻开轻闭。若改变测试参数,请做记录,测试完毕应复原。另外,眼睛不要注视氦-氖激
光,以免受到伤害。
3北京大学化学学院中级仪器实验室 FTIR操作手册
五. VECTOR 22 FTIR 光谱仪操作及软件应用
(一) 开机、关机
开机: .光学台ON
.计算机 ON (本计算机未设置密码)
.左双击 OPUS快捷键
.输入密码: OPUS(大写字母)
.User ID :选择 Administrator
.Assigned Workspaces: 不要修改
.单击 Login
.左击 OK,进入 OPUS 用户界面窗口(如下图)
关机: .关闭计算机各窗口后,关闭计算机
光学台 OFF.
(二)OPUS 用户界面介绍
(a) OPUS 软件所有功能的下拉菜单。
(b) 常用功能的快捷图标。
(c) OPUS 文件管理窗口,与Windows 浏览窗口相似。
(d) 谱图显示窗口。
(e) 概貌窗口,总是显示所选数据文件的整个频率范围的谱图。
(f) 在线帮助。
(g) 状态条显示后台运行的任务。
(h) 仪器状态指示。
4北京大学化学学院中级仪器实验室 FTIR操作手册
1. OPUS 浏览窗口
测量完成后产生的文件或打开的OPUS 文件时,其文件名、数据块和文件状态信息显示在
浏览窗口(屏幕左侧)。光标放在文件名上,将显示数据的完整路径;光标放在数据块上,
显示操作者姓名、样品名与样品形态。
(a) 单击可以缩小相应的谱图窗口。
(b) 蓝色表示此文件未经处理。文件名后面的数字,为该文件的拷贝数。
(c) 随文件所保存的所有数据块。图中图标表示有一个透过率光谱、一个单通道光谱、一个
干涉图和一个单通道背景光谱。如果数据块有颜色,表明相应谱图正显示在图谱窗口。
在文件名上单击鼠标右键,弹出文件操作菜单:
Save File: 对文件的任何处理不会自动保存到文件里。需点击Save File加以保存。
Unload File: 关闭文件。
Undo all Manipulations: 撤销对文件的所有处理。
Show Parameters: 显示该文件相应的参数和信息。
Copy Entry: 拷贝整个文件,包括所作的处理。
Clone Original: 仅拷贝原始文件。
5北京大学化学学院中级仪器实验室 FTIR操作手册
2.OPUS 谱图窗口
谱图窗口是在OPUS 用户界面的右边。当测量完成或文件调入后将会显示谱图。
默认的谱图显示区为4000~400cm
-1
和0~1.5 吸光度单位。通过Display—Scale All或单
击图标 可以显示全谱。
在谱图窗口的谱线上右击鼠标,出现下图所示菜单,可放大缩小谱图、改变谱图的显示
范围、添加标注、改变谱线颜色等。在谱图窗口的空白区右击鼠标,出现相似菜单,功能略
少。
Zoom In:放大谱图。按住鼠标左键拖动十字光标,框定需要放大的部分后,点击即放大。
从右键菜单中选择:Scale all Spectra / Show Everything(XY),即可恢复为全尺
寸谱图。
Zoom out:缩小谱图。操作方法同上。
Scale all Spectra ---- Show Everything(XY), 全范围显示所有谱图。
Maximize each spectrum(Y):将每个谱图的Y坐标均最大化显示。
Shift Curve:沿Y轴移动整个谱图或单向放大或缩小谱图。按住鼠标左键拖动谱图即可移动
或缩放。单击右键取消此功能。Reset 可还原。
Crosshair: Cursor,十字光标可在图谱区任意移动,显示相应点的X,Y 坐标。
Follow Data,光标仅沿谱线移动,很容易读出光谱上任意点的X,Y 坐标。
右击鼠标取消此功能。
Change Color:改变谱图颜色 。
Remove from Display: 从谱图窗口中去掉该谱图。
Add Annotation: 添加标注。单击谱图会在光标位置填加一个箭头,缺省显示该点的波数。
移动标注:按住鼠标左键拖动标注。
删除标注:在标注上单击鼠标右键,菜单中选择Remove。
编辑标注:在标注上单击鼠标右键,选择Properties。输入或编辑标注。
Properties: 设置谱图的横坐标和纵坐标。
6北京大学化学学院中级仪器实验室 FTIR操作手册
(三)光谱图的测试
测试光谱 Measure→Advanced Measurement
1 在 Basic 页,输入:
操作者姓名、样品名称、样品形态;。
2 在 Advanced 页,输入:
文件名
文件保存路径(此路径统一规定为:D:/DATA/导师姓名/学生姓名/),可输入或调出
分辨率(分辨率设为 4 cm
-1
,不要修改)
样品扫描次数(Scans)或样品扫描时间(Mimutes)
背景扫描次数(Scans)或样品扫描时间(Mimutes)
光谱测试范围(对中红外仪器,设置范围通常为:4000~400cm
-1
(
其它选项为常规设置,可以不改
3 另外的六个页面( 从 optic 至check signal)不要修改
4 在样品室中放入参比(或以空气作背景)
在 Basic 页,点 Background Single Channel ,测试背景
5 在样品室中放入样品
在 Basic 页,点 Sample Single Channel,测试样品
(注:以上设置的内容可以保存为一个方法文件:点 Save,选择保存路径,输入文件名。
文件名的后缀应是.XPM。以后测试时,只要在 Advanced 页点 Load,即可调出。)
(四) 显示谱图
测量完成后产生的文件或打开OPUS 文件后,其文件名、数据块和文件状态信息均显
示在浏览窗口(屏幕左侧小窗口)。光标放在文件名上,将显示文件的完整路径;光标放
在数据块上,显示操作者姓名、样品名与样品形态。
相应图谱显示在谱图窗口(在OPUS 用户界面的右侧窗口)。默认的谱图显示区为
4000~400cm
-1
和0~1.5 吸光度单位。通过Display—Scale All或单击图标 可以显
示全谱。
在谱图窗口的谱线上右击鼠标出现菜单,可放大缩小谱图、改变谱图的显示范围、添
加标注、改变谱线颜色等。在谱图窗口的空白区右击鼠标,出现相似菜单,功能略少。 具
体操作参见本手册第6页的相关介绍。
(五) 谱图处理
在实施各项谱图处理功能时,均有“Select Files”这一页,默认显示目前选中的谱图
文件名(在浏览窗口中打上红框的谱图文件)。若要添加文件,可将浏览窗口中所需谱图
的数据块(通常为吸收谱数据块或透射谱数据块)选中拖入即可。若要删除文件,选中文
件名后,按键盘上的“Delete”键。
1 基线校正 Manipulate → Baseline Correction
选择谱图(可对若干张谱图同时进行基线校正),再选择校正方法和校正点,点
Correct。经校正处理后的谱图自动覆盖原谱图。
Scattering Correction:校正后基线基本上落在0或100%处
Rubberband Correction:校正后部分基线不一定落在0或100%处
7北京大学化学学院中级仪器实验室 FTIR操作手册
Exclude CO2 Bands:扣除CO2谱段。选择此项,基线校正时对包含CO2的波段
(2400~2275cm
-1
、680~660cm
-1
)不予计算。
2 标峰位 Evaluate → Peak picking
选择谱图及需要标峰的谱区,设置灵敏度(峰的阈值),点Peak picking,谱图上将
显示峰位。
也可以选择互动模式来标峰:单击interactive mode,拖动阈值滑动条,标峰数量随
着阈值的变化而增减,由此可以比较方便地确定合适的阈值。点Store完成标峰。
3 谱图差减 Manipulate → Spectrum Subtraction
选择被减谱及减谱(减谱可是一个或若干个),选择谱区,点Subtract。得到的差谱
将覆盖被减谱。
若选择 Start Interactive Mode,可通过Times和 Changing digit设置不同的系数,
差谱 = 被减谱 – 系数 x 减谱
点Store完成差谱。可分别对几个谱图进行差减。
4 AB <-> TR 转换 Manipulate → AB <-> TR Conversion
透射谱和吸收谱之间互相转换。选择谱图,选择转换方向,点Conversion。新的谱
图将覆盖原谱图。
5 产生一段直线 Manipulate → Straight Conversion
产生一段直线命令用于消除谱图中的某些特殊干扰。选择谱图,设置频率范围,点
Generate。 谱图中这一段频率范围的谱线成为直线。
6 平滑 Manipulate → Smooth
选择谱图,定义平滑点数,单击Smooth。平滑点的可选值为5至25。还可以使用交互模
式平滑谱图。
8北京大学化学学院中级仪器实验室 FTIR操作手册
7 求导数 Manipulate → Derivative
选择光谱文件,选取平滑点和求导阶数,单击Process产生导数文件。导数谱显示在原
谱图的下方。
可对谱图计算一至五阶导数。求导的同时还可平滑光谱,以降低求导产生的噪声。其
最少平滑点数取决于求导的阶数。导数的阶越高,设置的点数应越多。最多允许25点。
8 1/cm <-> μm, nm Manipulate → 1/cm <-> μm, nm
改变横坐标单位。
9 积分 Integration
计算峰的面积和峰的高度。提供十八种积分方法。
10 归一化 Manipulate → Normalization
此功能是对谱图进行归一化处理和 Offset Correction。
选择要归一化的文件及频率范围,选择方法,点 Normalize。
有三种归一化方法:
(1) Min/Max Normalization --(最小/最大归一化):谱图的最小值变为 0,Y
轴的最大值扩展到 2 个吸收单位。对透射光谱归一化到 0到 1 的范围。
(2) Vector Normalization--(矢量归一化):首先计算光谱的平均值,然后
从谱图中减去平均值,因此谱图的中间下拉到 0;计算此时所有 Y 值的平方
和的平方根。原谱图除以此平方根值。经过这样处理的谱图,其矢量模方
为 1。
(3) Offset Correction—平移谱图,使最小 Y 值移至吸光值为 0。
11.气氛补偿Manipulate → Atomspheric Compensation
测量背景或样品谱时,光路中H2O/CO2的浓度的不同会造成H2O/CO2谱带的强度变
化。气氛补偿功能可以消除比率光谱图中H2O/CO2的干扰。
要进行气氛补偿的图谱文件,除了吸收(或透射)数据块外,还应包含 Single
Channel Sample Block和 Single Channel Background Block(测试前应在
Measure→Advanced Measurement 中,加选 single Channel 和Background 这二项数
据块加以保存)。
选择Manipulate → Atomspheric Compensation,将要处理谱图的Single
Channel Sample Block 和single Channel Reference Block 分别拖入相应的区域,
选中H2O Compensation 和CO2 Compensation,点Calculate 。
9北京大学化学学院中级仪器实验室 FTIR操作手册
(六)打印和拷盘
1.打印谱图 Print → Print Spectra
选择要打印的光谱图和有关数据块(如峰位数据块)
点Change Layout,选择图谱打印模板。常用的模板是:
Landscape-1, A4纸,一个光谱框,横打;
Portrait-2, A4纸,二个光谱框,竖打
Portrait-3, A4纸,三个光谱框,竖打
在Frequency Range中设置谱图打印区间;
在Options中,可选择Auto scale to all spectra ,将所有要打印的谱图均放大显
示。另外,光谱的X轴默认的是线性坐标,若要使用压缩坐标,可选择Use Compressed
Wavenumbers,2000 cm-1 以上的横坐标将压缩二倍。
需要注意的是:如果图谱打印模板包括一个以上光谱框,如Portrait-3, 一张A4纸上
打印三张独立的光谱图。这时,每个光谱框内要打印的谱图都要分别进行选择。选择方法
为:在Frame下拉框中选择光谱框名称,在文件选择中选择要打印在此光谱框内的文件。依
次操作,给每个光谱框中都选择好要打印的光谱图。
设置过程中可随时点击 Preview 进行预览。 待预览无误后,再点Print进行打印。
2.数据拷盘 File → Save File As
将图谱文件转化为数据文件后直接拷盘。须使用新软盘。
在 Select File 页中,选择要保存的文件,输入另存路径 A\(或在 Change Path 选
择)和文件名。
在 Mode 页选择 Date Point Table。
点 Save 完成。
10北京大学化学学院中级仪器实验室 FTIR操作手册
八.衰减全反射附件介绍
(一) 原理和特点
衰减全反射光谱(Attenuated Total Reflection Spectra 简称 ATR)又叫内反射
光谱(Internal Reflection Spectra)。发生全反射须具备两个条件:光从光密介质进
入光疏介质时才可能发生全反射;入射角要大于临界角。全反射现象不完全是在两种
介质的界面上进行的,部分光束要进入到光疏介质一段距离后才反射回来。透入到光
疏介质的光束,其强度随透入深度的增加按指数规律衰减。
ATR 谱具有以下特点:
(1) 红外辐射通过穿透样品与样品发生相互作用而产生吸收,因此 ATR 谱具有透射吸
收谱的特性和形状,但由于不同波数区间 ATR技术灵敏度不同,因此,ATR 谱吸
收峰相对强度与透射谱相比较并不完全一致。
(2) 非破坏性分析方法,能够保持原进行测定。
(二) 测试
1.ATR 附件的安装和调节
(1) 通过调节干涉仪选择光谱仪的能量。
(2) 用两个固定旋钮将 ATR 附件安装到光谱仪上。
(3) 仔细调节附件与光谱仪激光输出的相对位置,以获得最大输出。
(4) 用固定旋钮将 ATR 附件固定。
2.样品的准备
红外吸收谱是将样品与无样品在晶体上的背景光扣除得到。注意要保证样品完
全覆盖晶体表面。由于 ATR 晶体是由ZnSe 构成,易碎,易划伤。即使是轻微的划痕
也会导致信号输出的减小。因此清洗时需使用温和的清洗剂,如乙醇、丙酮或水。
固体样品和粉末样品直接置于 ATR晶体上,用附带的固定夹压紧。压紧时用金
属销向下拧紧,以保证样品与晶体的紧密接触。
液体样品适用于低粘度的液体。粘性液体要保证完全铺展在晶体表面。
2.谱图扫描及数据处理与一般红外谱相同