×

熵增定律为什么令人绝望,熵增定律:为什么会被称为令人绝望的物理定律?

admin admin 发表于2024-03-11 08:35:59 浏览14 评论0

抢沙发发表评论

本文目录一览:

熵增定律为什么令人绝望?

熵增定律之所以让人感到绝望,是因为熵增定律揭示了宇宙演化的本质,注定了时空的命运无法避免灭亡,宇宙万物量终逃不过熵增的“腐蚀”。世界万物都会随着时间衰变的,就算是宇宙中的太阳,也会在未来的一天消耗完全部能量,走向毁灭。
曾经有很多科学家尝试创造永动机,来打破宇宙的能源格局,但是这都失败了,因为能量守恒,每一种力都会在运动中消耗。孤立系统总是趋向于熵增,最终达到熵的最大状态,也就是系统的最混乱无序状态。熵的不断增大,会让宇宙空间从有序变得无序,最终毁灭。
定律内容
克劳修斯引入了熵的概念来描述这种不可逆过程。
在热力学中,熵是系统的状态函数,它的物理表达式为:
S =∫dQ/T或ds = dQ/T
其中,S表示熵,Q表示热量,T表示温度。
该表达式的物理含义是:一个系统的熵等于该系统在一定过程中所吸收(或耗散)的热量除以它的绝对温度。可以证明,只要有热量从系统内的高温物体流向低温物体,系统的熵就会增加:
S =∫dQ1/T1+∫dQ2/T2
假设dQ1是高温物体的热增量,T1是其绝对温度;dQ2是低温物体的热增量,T2是其绝对温度。
则:dQ1 = -dQ2,T1>T2
于是上式推演为:S = |Q2/T2|-|Q1/T1| > 0
这种熵增是一个自发的不可逆过程,而总熵变总是大于零。

为什么熵增是最绝望的定律

熵增是最绝望的定律是因为依据熵增原理,地球生物都会从有序走向无序,也就是走向死亡。
熵增原理的出现表示经典力学的可逆性并不适用于所有情况,它只在有普遍的力学原理做保证的情况下才准确,热运动就是一个不可逆的过程,同时也彻底宣告了永动力的灭亡。因为从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响是无法实现的。
而薛定谔就则指出,熵增过程也必然体现在生命体系当中。也就是说,生命体系中的熵也应该是不断增大的,也只能是从有序向无序发展。
但是从某种角度上而言,生命的意义就在于具有抵抗自身熵增的能力,即具有熵减的能力,最典型的表现就是进食行为,我们从食物中汲取了“负熵”来维持生命的有序,即“新陈代谢的实质就是及时全部消除有机体无时无刻不产生的全部负熵”。这里的有序和无序是描述宏观态的。
因此,机体是在新陈代谢过程中成功地从周围环境中不断地吸收负熵,向周围环境释放其生命活动不得不产生的全部正的熵维持生存和进化的。总之,生命体是开放的、不可逆的非热力学平衡体系。平衡态是无序的,而非平衡态则是有序的根源,这是与热力学第二定律一致的,也是符合熵增原理的。薛定谔生动地用“生命赖负熵为生”这一句名言概括。
虽然如此,生命的减熵行为却起不到任何效果,毕竟在浩瀚无垠的宇宙当中,人类等生命简直是渺小到可以忽略不计。熵增的必然性和不可逆性,注定了生命只能从有序发展为无序,并最终走向老化、死亡。所以熵增原理也被很多人称为最令人绝望的物理定律。
熵的性质
1、状态函数
熵S是状态函数,具有加和(容量)性质(即对于系统M可分为M1与M2,则有SM=SM1+SM2),是广度量非守恒量,因为其定义式中的热量与物质的量成正比,但确定的状态有确定量。其变化量ΔS只决定于体系的始终态而与过程可逆与否无关。
由于体系熵的变化值等于可逆过程热温商δQ/T之和,所以只能通过可逆过程求的体系的熵变。孤立体系的可逆变化或绝热可逆变化过程ΔS=0。
2、宏观量
熵是宏观量,是构成体系的大量微观离子集体表现出来的性质。它包括分子的平动、振动、转动、电子运动及核自旋运动所贡献的熵,谈论个别微观粒子的熵无意义。
3、绝对值
熵的绝对值不能由热力学第二定律确定。可根据量热数据由第三定律确定熵的绝对值,叫规定熵或量热法。还可由分子的微观结构数据用统计热力学的方法计算出熵的绝对值,叫统计熵或光谱熵。

熵增定律为什么令人绝望

因为熵增定律所表达的意思是:时间将所有的人,社会、生物、地球、太阳系以及宇宙引入不可逆的寂灭之路。所以令人绝望。
在1854年,一位叫克劳修斯的德国人,首次提出了“熵”的概念,认为“在孤立的系统内,分子的热运动总是会从原来集中、有序的的排列状态逐渐趋向分散、混乱的无序状态,系统从有序向无序的自发过程中,熵总是增加。
当熵在一个封闭的系统内达到最大值时,系统就会处于一种能量守恒状态而呈现一种热寂状态。“熵”是热力学第二定律的核心概念,而热力学第二定律的另一层含义是,随着平衡的呈现,熵的递增是不可逆转的。
也就是说,熵是“时间之矢”(英国天文学家爱丁顿爵士原话),时间是有力量的,时间亦是万物永恒的腐蚀剂,时间将所有的人,社会、生物、地球、太阳系以及宇宙引入不可逆的寂灭之路。
正如马克思所言:人从诞生之日起,就已经大踏步地在向着坟墓迈进。这是恒定的铁律,在科学上被冠以“不可逆的熵增的必然性”。
这是一条有史以来令人类越看越绝望的物理定律!有的科学人员甚至沮丧地声称:宁愿没发现它!
更多关于熵增定律为什么令人绝望,进入:https://www.abcgonglue.com/ask/e420c31615826701.html?zd查看更多内容

熵增定律:为什么会被称为令人绝望的物理定律?

熵增定律为何让人绝望?连爱因斯坦也不敢怠慢,称它为第一定律!
熵增定律是指能量的转化和传递是有方向性的,低温热源的热量不会自发地传递给高温热源,热量不能自发并且全部转化为功。熵的值只会变得越来越大,并且是不可逆转的。这条定律预示着宇宙必然会走向不可逆转的毁灭,也就是说人类早晚都会消失。
生命的减熵行为却起不到任何效果,毕竟在浩瀚无垠的宇宙当中,人类等生命简直是渺小到可以忽略不计。熵增的必然性和不可逆性,注定了生命只能从有序发展为无序,并最终走向老化、死亡。所以熵增原理也被很多人称为:最令人绝望的物理定律。(依据熵增原理,地球生物都会从从有序走向无序,也就是走向死亡!)
熵增定律必须体现在生命体系中,我们人类在宇宙中可谓是非常渺小的存在,是完全可以忽略的。当人觉得自己的一切都是命中注定,又不能改变的时候,就会觉得“绝望”。
因为这个定律必须体现在生命的体系当中,但是在宇宙当中,人类几乎可以忽略不计,所以非常的让人绝望,让人感觉到人类很渺小。
通过结合实验和数学,伽利略开创了科学研究的先河,从此物理学走上了快速发展的道路。此后,牛顿发扬光大,建立了牛顿力学,成为经典物理学的开创者,他也被冠以人类史上最伟大的物理学家。
在牛顿之后,又有麦克斯韦、普朗克、爱因斯坦、玻尔、狄拉克、费曼、薛定谔等一众物理学家,发现了一系列新的物理学定律,极大改变了人类对于世界的认识。不仅如此,人类利用物理学定律发展出了现代科技文明,彻底革新了人类的生活。
然而,物理学定律在造福人类的同时,有一条物理定律却给人类带了绝望,以致于有的物理学家发出感叹,宁愿不要发现它。这条定律预示着宇宙必然会走向不可逆转的毁灭,它就是熵增定律。那么,熵增定律是怎么来的呢?
这还要从热力学的发展说起。大量的实验表明,能量是守恒的,它们不会凭空出现和消失,只会在不同形式之间转换,这就是能量守恒定律,也称热力学第一定律。这一定律的诞生,让不消耗能量却能做功的永动机化为泡影。
此后,又有人设想建造另一种永动机,这种机器可以从自然界中吸收热量,然后以此来驱动机器做功,这并不违背能量守恒定律。然而,无论怎么尝试,这类永动机也是没有造出来,原因在于还有未知的热力学定律在起作用。
1824年,物理学家卡诺在研究热机时发现,热量并不能被百分百转换为能量,其热效率正相关于高温和低温热源的温差。为了定量描述热机的能量耗散,克劳修斯在1865年引入了一个常数——熵。
熵可以表征无用能量的多少,无用能量越多,熵越大;有用能量越多,熵越小。热机在运行过程中,会产生无用的热量,例如,机械结构之间相互摩擦所产生的热量,这些热量不能用于做功,系统的熵会变得越来越大。
由此可见,能量的转化和传递是有方向性的,低温热源的热量不会自发地传递给高温热源,热量不能自发并且全部转化为功。因此,熵的值只会变得越来越大,并且是不可逆转的,这就是熵增定律,亦称热力学第二定律,它表明第二类永动机也是不可能实现的。
1877年,物理学家玻尔兹曼进一步扩展了熵的概念。他发现,系统的熵与其微观状态数量有关。倘若系统的微观状态数量越多,意味着系统越混乱,表明熵值越大。一个系统的有序度只会自发地变得越来越低,熵会逐渐增加。
那么,为什么熵增定律十分特殊?为什么它可以预示宇宙的最终结局呢?
对于其他物理定律,它们都是关于时间对称的,无论是时间正向还是逆向流逝,都没有任何区别,例如,一颗小球从空中自由落体到达地面,如果从地面以小球的落地末速度,把小球竖直向上扔出,该小球又会到达原有的高度。
然而,熵增定律却非常特殊,熵只能增大,水和乙醇混合后不会自发分离,玻璃打碎后也无法自动复原。熵增定律表明,时间的流逝方向是单一的,只能向前流逝,这是牛顿和爱因斯坦的物理学所无法解释的。不仅如此,这条定律还设定好了宇宙的结局。
宇宙诞生于138亿年前的低熵状态,随着宇宙的演化,无序度越来越高,有用能量被逐渐消耗掉,宇宙的熵在不断增大。虽然宇宙中形成了很多有序结构和低熵体,例如,恒星、星系和包括人类在内的地球生命,但这些都需要消耗宇宙的有用能来维持低熵状态,所以总体上还是会导致整个宇宙的熵变大。
因此,宇宙之形成以来,就注定朝着熵最大的方向在演化。最终,行星会脱离原有的轨道并解体,原子四分五裂,质子发生衰变,黑洞蒸发殆尽,只留下光子以及轻子。
宇宙迟早会迎来无序度最高、有用能耗尽的最大熵状态,这就是热寂的结局,预计时间是在10^1000年以后。当然,这个时间对于渺小的人类而言非常漫长,我们还有足够的时间来保持低熵的状态。

“熵增定律”为何被称为最让人沮丧的定律?

因为这个定律揭示了万物终将会灭亡,生命终将会消失,比较消极。
因为这个定律指的是人从出生到死亡,之后不再重生的过程,这就是所谓的熵增定律,所以会让很多人沮丧。
因为这个定律描述的含义就是,时间会让所有的东西全部消逝,所以这会让人非常的绝望。
这个定律说的就是我们的地球或者是宇宙必然会走向不可逆转的毁灭。所以听到了之后就会让人感觉到特别沮丧。
熵增定律又称为热力学第二定律,他的意思指的是,用于揭示事物总是从有序到无序的方向的一种发展,可能很多人都不明白这到底是什么意思,他指的就是在孤立系统下,熵值是不断增加的,当他达到最大数值的时候,系统就会出现严重混乱最后走向死亡,用一个很好的例子解释,就是一杯100度的开水为什么放到最后,放着放着就凉了?为什么水只能从高处流向低处,为什么落叶的树叶最后会成为土地的肥料,而不是重新长出一棵树。说白了就是从生到死、死亡之后不再重生的一个过程,所以这就是为什么熵值定律会被称为最让人沮丧的定律。?
1、宇宙不是永恒的,灭亡是最终归宿
我们可以拿喜马拉雅山的冰山来做一个例子,近年来,随着地球平均温度的上升,喜马拉雅山的冰山在不断地溶解融化,甚至到最后所有的冰川可能会消失,这也使得人心惶惶,众所周知导致喜马拉雅山冰川加速融化的最重要原因就是因为气温的升高,但是我们人类却仍旧没有办法在不产生其他影响的情况下,来维持喜马拉雅山的冰山不再溶解,锁住其水源,而熵增定律断绝了人类对宇宙永恒的幻想,也让地球上的人类了解到这么一个现实,那就是人类永远都无法避免从生走向死亡的命运,所以当下我们能够做到的事情,只能呼吁全人类低碳环保,尽量不要让地球的平均气温再度升高,以此来抵抗熵增定律。
2、抵抗熵增,只能让灭亡来得晚一点
如何去生动的解释这一点呢,比如说你每天锻炼身体去跑步,这就是耗散结构,为什么这么说呢,你每天跑步多了,身体的能量就会变多,把它耗散了,就会变成肌肉了,就能变成坚强的血液循环,而能量的消耗导致你身体的其他病根都会消除,身体也变苗条了,病状也消失了,这就是耗散结构,而我们平时通过锻炼来反抗熵值的增加,以此来抵抗熵值,就是让事物从无序到有序走的更缓慢,当然了,结果都避免不了灭亡,我们只是减慢了灭亡的速度而已。

熵增定律通俗易懂解释,为什么熵增是最绝望的定律



熵增是最绝望的定律主要源自于宇宙论,因为在现今的世界上,有很多物质都是由能量而转化。然而能量拥有着特质,这种特质又会决定宇宙上的质量态。熵增定律是核心中的重点,甚至可以说是精粹。爱因斯坦曾经称其为最高的定律,是不能够被证伪的一个定律。
熵增定律和墨菲定律一样,都是常见的定律。熵增定律所表达的是热量会从温度较高的物体,渐渐的流向温度较低的物体,这种情况不可逆。经过科学家的一点点研究,最后表达式定为:S =∫dQ/T或ds = dQ/T。适用的范围是孤立系统,熵属于状态函数,是一个物理学中的表达式。
在表达式中,用S表示熵,使用Q来表示热量,T则表示的具体温度。其含义为:在一个系统里面所含有的熵,应该等于这个系统处于一定过程,自身所吸收以及耗散的量。最终能够证明热量在系统之内处于高温情况,但是这种高温会像低温走动。
根据表达式进行推算,例如dQ1为物体的热增量,而T1表示绝对温度;热增量用dQ2表示,又用T2表示绝对温度,最后能够推算总熵变”会比0大。从而充分的证明了,熵增定律是不可逆行的。
比如说现代家庭生活中的洗衣机,为了在生活中更加方便,所以发明了这个机器。从事物的表面上去观察,主要是为了提高在洗衣服时的工作效率,并且还能够节省时间。但是很多人都忽略,洗衣机在清洗的过程中会产生消耗。
最主要消耗的就是电能,由于电能不会再生,并且还会对环境造成伤害。同时洗衣服时还会排除一些废水,产生垃圾,所以这些都会出现不可逆的环境破坏。人类的生活中有很多事情都是无序的,并且一直都做着无序的发展,这就是在生活中出现的,所谓的熵增定律。

熵增定律,为什么会被称为令人绝望的物理定律?

熵增定律为何让人绝望?连爱因斯坦也不敢怠慢,称它为第一定律!
因为熵增定律所表达的意思是:时间将所有的人,社会、生物、地球、太阳系以及宇宙引入不可逆的寂灭之路。所以令人绝望。
熵增定律被称为令人绝望的物理定律,是因为我们的宇宙也是一个封闭的系统,而封闭系统总是会趋向于熵增。
因为熵增定律必须体现在生命体系当中,我们人类在宇宙中可谓是非常渺小的存在,是完全可以忽略的。所以熵增定律是令人绝望的物理定律。
熵增定律,意味着宇宙一切都是有“宿命”的。当人觉得自己的一切都是命中注定,而自己又不能改变的时候,自然就会觉得“绝望”。
自然界中的现象遵循着某一规律,物理学家通过不断观测,并进行大量实验,最终总结出了科学结论,这就是物理定律。事实证明,物理定律行之有效。如果没有物理学家前赴后继地发现新定律,人类的科技就不可能发展起来。
物理定律给人类带了无限的可能,基于物理定律,我们可以实现前人难以想象的事情,例如,人类登陆月球,无人探测器飞出太阳系。但同时,有些物理定律也给人类带了绝望,以致于一些物理学家宁愿不想发现它,这就是熵增定律,或称热力学第二定律。
那么,熵是什么?熵增又是怎么回事?为什么这条物理定律会让人类看不到未来?
一个冷的物体和一个热的物体相互接触,在正常情况下,冷的物体不可能把热量自发地传递给热的物体,让冷的物体更冷,热的物体更热,这就是热力学第二定律,物理学家克劳修斯是这个表述的提出者。只有热的物体才能自发地把热量传递给冷的物体,这个过程是不可逆的。
之所以空调和冰箱能够制冷,这并非是自发的过程,而是因为它们消耗了电能,同时还会产生一些废热。从能量角度来看,熵用于表征能够用于做功的能量(有用能)总和。有用能越多,熵越低。有能用消耗掉之后,熵会变得越来越大。
制冷器的制冷过程需要消耗电能,并向外界释放出热量,能量出现退化,这会导致宇宙的熵变大。人类以及地球上的所有生命活动也要消耗能量,用于对抗熵增,否则生命就无法存活,因为生命可以说是一种负熵体,最终的结果会导致整个宇宙的熵变大。
从微观角度来看,任何事物都是由各种粒子组成的。一个系统中粒子的有序度也可以用熵来度量,混乱的程度越低,有序的程度越高,熵也越低。
镜子中的原子有序排列,当镜子打碎之后,原子排列的有序度会降低,这意味着熵会增加。打碎的镜子无法自发复原,所以熵增是不可逆的。从某种意义上来说,熵增的方向就是时间流逝的方向,不可逆的熵使得时间不可逆转,时间只能朝着一个方向流逝。
目前的理论认为,整个宇宙是一个孤立系统。随着宇宙中的有用能量不断被消耗掉,混乱程度变得越来越大,熵将会不可逆转地增加。直到最终,有用能量耗尽,混乱程度达到最大,熵增加到最大,宇宙处于热力学平衡的状态。
到了那时,熵不再增加,时间将会到达尽头,宇宙也将失去生机,这就是理论预言中的宇宙“热寂”。如果不出意外,10^1000年之后,宇宙中的所有天体和物质都会衰变成轻子(比如电子、中微子)和光子,宇宙将会不可避免地达到最低能量的状态。
除非宇宙中存在能够任意操控单个粒子运动的“麦克斯韦妖”,或者宇宙之外还有其他宇宙提供能量,或者量子效应在满是轻子和光子的宇宙中发挥主导作用,我们的宇宙才有可能避免热寂的结局。

为什么熵增定律被称为最令人绝望的物理原理?

因为假如这个定律是完全正确的,那么宇宙中的所有空间最终都会拥有相同的能量,由于目前可观测宇宙的体积实现太大,所以平均下来所有空间的能量都会趋于零,没有任何办法阻止这个结局到来,所以令人绝望。
熵增定律意味着宇宙是有“定向”的。或者说宇宙中的运动和变化是有“定向”的。这某种程度上意味着宇宙是有“宿命”的。当你觉得你的一切都已经是命中注定而你不可改变的时候,自然就有一种无力感,这就是何以觉得“绝望”的原因吧。
两大因素,决定了熵增定律不适合在宇宙中推演。一是宇宙是无边际的,而不是密闭容器,所以熵增的前提条件不符;二是万有引力不会导致物质在宇宙内出现均匀分布,而是形成星球,黑洞,大爆炸这种循环转化。
熵增过程是必须体现在生命体系当中的,但是在浩瀚无垠的宇宙中,人类这些微小的生命可以忽略不计,所以熵增定律也被称为最令人绝望的物理原理。
熵增定律之所以被称为最令人绝望的物理原理,因为它解释了力学原理不是绝对成立的,它反映了热运动的不可逆,能量总有被消耗殆尽的一天,到时候人类就将走向衰亡。
13世纪,一位叫亨内考的人提出了这样的一个疑问:轮子中央有一个转动轴,轮子边缘安装着12个可活动的短杆,每个短杆的一端装有一个铁球。右边的球比左边的球离轴远些,因此,右边的球产生的转动力矩要比左边的球产生的转动力矩大。这样轮子就会永无休止地沿着箭头所指的方向转动下去,并且带动机器转动。
这个轮子名叫“亨内考魔轮”,它让科学家做起了“永动机”的梦,科学家们幻想,一旦永动机诞生,人类将产生源源不断的能源,所以,有很多的科学家一直试图复刻“亨内考魔轮”,却都惨遭失败,然而无数的失败却没有打消科学家们的热情,反而对永动机的探索愈加狂热。
后来,文艺复兴时期意大利的达·芬奇也造了一个类似的装置,他设计时认为,右边的重球比左边的重球离轮心更远些,在两边不均衡的作用下会使轮子沿箭头方向转动不息,但实验结果却是否定的。
达·芬奇敏锐地由此得出结论:永动机是不可能实现的。事实上,由杠杆平衡原理可知,上面两个设计中,右边每个重物施加于轮子的旋转作用虽然较大,但是重物的个数却较少。精确的计算可以证明,总会有一个适当的位置,使左右两侧重物施加于轮子的相反方向的旋转作用(力矩)恰好相等,互相抵消,使轮子达到平衡而静止下来。
尽管如此,科学家们一直没有放弃这个梦想,人们还提出过利用轮子的惯性,细管子的毛细作用,电磁力等获得有效动力的种种永动机设计方案,但都无一例外地失败了。
1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。
1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。把热看成是一种状态量。
由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW
从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。总能量为系统的机械能、热能及除热能以外的任何内能形式的总和。
热力学第一定律宣告了永动机的破产,因为永动机违反了能量和质量的守恒定律,在任何的永动机设计中,我们总可以找出一个平衡位置来,在这个位置上,各个力恰好相互抵消掉,不再有任何推动力使它运动。所有永动机必然会在这个平衡位置上静止下来,变成不动机。热力学第一定律也促成了蒸汽机的诞生,直接导致了第一次工业革命的诞生,人类由此迈入了蒸汽时代,机械化生产时代开始到来。
而能量守恒定律的提出还是没有打消科学家们的梦,他们梦想着制造另一种永动机,希望它不违反热力学第一定律,而且既经济又方便。比如,这种热机可直接从海洋或大气中吸取热量使之完全变为机械功。由于海洋和大气的能量是取之不尽的,因而这种热机可永不停息地运转做功,也是一种永动机。
中国民科造的磁动机就属于第二种
简单来说,人们认识到能量是不能被凭空制造出来的,所以他们试图从海洋、大气乃至宇宙中吸取热能,并将这些热能作为驱动永动机转动和功输出的源头,从单一热源吸热使之完全变为有用功而不产生其它影响的热机这也被称为第二类永动机。
科学家认为只要做到了只有单一的热源,它从这个单一热源吸收的热量,可以全部用来做功,而不引起其他变化,第二类永动机就能够成功。
在这个时候,随着科学的发展,牛顿经典力学的一些局限性也暴露了出来,比如牛顿经典力学认为力学过程是可逆的,可逆性是指时间反演,即过程按相反的顺序进行。在经典力学的运动方程中,把时间参量 t换成-t,就意味着过程按相反的顺序历经原来的一切状态,最后回到初始状态。
而1850 年克劳修斯在论文中提出了一条基本定律:“没有某种动力的消耗或其他变化,不可能使热从低温转移到高温。“这个定律被称为热力学第二定律。而热力学第二定律则与力学过程的可逆性相矛盾。
所以克劳修斯在 1854 年的随笔《关于热的力学理论的第二基础定理的一个修正形式》提出了新的物理量来解释这种现象,,1865 年正式命名为熵,以符号S表示。
克劳修斯从热机的效率出发,认识到正转变(功转变成热量)可以自发进行,而负转变(热量转变成功)作为正转变的逆过程却不能自发进行。负转变的发生需要同时有一个正转变伴随发生,并且正转变的能量要大于负转变,这实际是意味着自然界中的正转变是无法复原的。
由此克劳修斯提出了热力学第二定律的又一个表述方式,也被称为熵增原理,那就是:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。
简而言之就是孤立系统的熵永不自动减少,熵在可逆过程中不变,在不可逆过程中增加,可以说非常鲜明地指出了不可逆过程的进行方向。
熵增原理是热力学第二定律的另外一种表述形式,却又拥有更加深刻的含义,它创造了“熵”这个概念。这个概念在后来被广泛应用,香农把熵的概念,引申到信道通信的过程中,从而开创了”信息论“这门学科,从而宣告了信息时代的到来。
熵增原理表明,在绝热条件下,只可能发生dS≥0 的过程,其中dS = 0 表示可逆过程;dS>0表示不可逆过程,dS<0 过程是不可能发生的。但可逆过程毕竟是一个理想过程。因此,在绝热条件下,一切可能发生的实际过程都使系统的熵增大,直到达到平衡态。
绝热过程是一个绝热体系的变化过程,即体系与环境之间无热量交换的过程。在绝热过程中,Q = 0 ,有ΔS(绝热)≥ 0(大于时候不可逆,等于时候可逆) 或 dS(绝热)≥0 (>0不可逆;=0可逆)
熵增原理最大的意义就是从能量品质的角度规定了能量转换过程中的方向、条件和限度问题。
熵增原理的出现表示经典力学的可逆性并不适用于所有情况,它只在有普遍的力学原理做保证的情况下才准确,热运动就是一个不可逆的过程。同时也彻底宣告了永动力的灭亡。因为从海水吸收热量做功,就是从单一热源吸取热量使之完全变成有用功并且不产生其他影响是无法实现的。
而薛定谔就则指出,熵增过程也必然体现在生命体系当中。也就是说,生命体系中的熵也应该是不断增大的,也只能是从有序向无序发展。但是从某种角度上而言,生命的意义就在于具有抵抗自身熵增的能力,即具有熵减的能力,最典型的表现就是进食行为,我们从食物中汲取了“负熵”来维持生命的有序,即“新陈代谢的实质就是及时全部消除有机体无时无刻不产生的全部负熵”。这里的有序和无序是描述宏观态的。
因此,机体是在新陈代谢过程中成功地从周围环境中不断地吸收负熵,向周围环境释放其生命活动不得不产生的全部正的熵维持生存和进化的。总之,生命体是开放的、不可逆的非热力学平衡体系。平衡态是无序的,而非平衡态则是有序的根源,这是与热力学第二定律一致的,也是符合熵增原理的。薛定谔生动地用“生命赖负熵为生”这一句名言概括。
虽然如此,生命的减熵行为却起不到任何效果,毕竟在浩瀚无垠的宇宙当中,人类等生命简直是渺小到可以忽略不计。熵增的必然性和不可逆性,注定了生命只能从有序发展为无序,并最终走向老化、死亡。所以熵增原理也被很多人称为:最令人绝望的物理定律。(依据熵增原理,地球生物都会从从有序走向无序,也就是走向死亡!)
熵增原理适用于很多领域,包括与达尔文的进化论是否矛盾等。
而科学家对于熵增原理最大的争论是宇宙是否是一个封闭系统,因为熵增作用发挥作用的条件必须是在孤立系统系统中,然后达到平衡熵最大。孤立系统是在热力学之中,与其他物体既没有物质交换也没有能量交换的系统称为孤立系统 。任何能量或质量都不能进入或者离开一个孤立系统,只能在系统内移动。
而地球就是一个开放系统,熵增原理可以适用于生命,自然也能适用于地球,所以地球上的生物通过从环境摄取低熵物质(有序高分子)向环境释放高熵物质(无序小分子)来维持自身处于低熵有序状态。而地球整体的负熵流来自于植物吸收太阳的光流(负熵流)产生低熵物质。使得地球上会出现生物这种有序化的结构。不至于使熵一直处于增大的状态,
所以科学家就思考,宇宙是否是一个孤立系统,因为宇宙是不存在“外界”的,我们不断在消耗着能量,且不可逆,熵不断在增加正在走向它的最大值,因此宇宙一旦到达热动平衡状态,就完全死亡。这种情景称为“热寂”,这样的宇宙中再也没有任何可以维持运动或是生命的能量存在。
而这引来部分科学家的反对,他们宣称熵增原理只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。
由于涉及到宇宙未来、人类命运等重大问题,因而它所波及和影响的范围已经远远超出了科学界和哲学界,成了近代史上一桩最令人懊恼的疑案。
但不管怎么样,熵增原理作为热力学四大定律之一,指导着热力学的研究,在物理学中发挥着重大的作用。

破镜难重圆,简单的熵增定律,为何最让科学家感到绝望?

一个已经碎了的杯子不可能在没有外部力量的参与下,自动从碎片再恢复到杯子的形态。
这一简单又显而易见的道理反映到物理学上,就是大名鼎鼎的热力学第二定律, 也是让无数科学家心灰意冷的熵增定律。
熵增定律最早脱胎于热力学,是在研究永动机和热机效率时被发现的,后来随着宇宙学的进步,科学界发现熵增定律放在宇宙层面也同样适用,因为我们所处的 宇宙就是一个最大的孤立系统 ,内部的星系和原子们在漫长时间过后,都会因为熵值的上升而消亡。
具体到恒星上来看,虽然现在银河系每年都还能产出 50多颗新的恒星 ,但随着时间的推移,几十亿年到几百亿年后,以太阳为代表的黄矮星,以及质量更大寿命更短的恒星们,就会集体寿终正寝,以白矮星或者中子星,甚至是黑洞的形式存在于宇宙中。
在宇宙学家最开始的设想中,足够漫长的时间过后:白矮星和中子星会熄灭,黑洞会蒸发,宇宙中残余的星云也不足以产生新的恒星。
最后的最后,宇宙中所有恒星都会熄灭,整个宇宙空间将没有一丝光亮,整体温度也会因为黑暗而变成绝对零度,最终达到 “死得不能再死” 的热寂状态。
但近些年来有关宇宙加速膨胀和暗能量的研究,却指出宇宙最后不会被熵增定律毁灭,因为人类现在观测到的宇宙中的物质, 只占了宇宙质能总量的4.9%,属于占比最小的重子物质 ,剩下占比26.8%的暗物质和占比68.3%的暗能量,才是宇宙的主流。
人类现在的宇宙学和物理学,只是建立在占比仅有4.9%的普通物质上的,对于真正能决定宇宙命运的暗物质和暗能量还知之甚少。
根据现有的观测结果,是暗物质的存在让星系获得了额外的引力,才不至于因速度过快而分崩离析,而宇宙大爆炸138.2亿年后的今天,暗能量还在让宇宙加速膨胀中,这也是为什么天文学家眼中的其他星系都在远离地球的原因, 而且距离地球越远的星系,远离地球的速度就越快。
如果宇宙一直加速膨胀,那么星系与星系间的距离就会越来越大,久而久之星系内恒星的距离也会越来越大,随着宇宙物质密度的不断下降,终有一天宇宙加速膨胀的力量会 作用到太阳系内, 让行星与行星间的距离越来越大。
在有关大撕裂的最终推测里, 宇宙膨胀之力会施加在宇宙中每个原子身上 ,到时候宇宙中所有原子都会被撕碎,宇宙也将被撕裂。
在阿西莫夫《最后的问题》中,超级计算机存在的意义只为回答一个问题: 熵增能被逆转吗?
最后的结局是计算机算出了答案,但那时宇宙中已没有了人类,于是计算机成了新的“上帝”,说了句 “有光吧” ,而后新的恒星便诞生了,宇宙从热寂状态又回到了低熵状态。
但在现实的宇宙中,以人类文明为代表的低熵体们,虽然能用技术手段降低某一区域内的熵值,甚至是再点燃一颗恒星,但放到宇宙层面上来看,低熵体们的这些行为其实只是 局部熵减,整体熵增 ,整个宇宙仍然在向混乱发展。
熵增这样的宇宙规律,也许就是物理学的底线, 它让毁灭比重生更简单,让一切都有了寿命,让混乱比秩序更容易出现 ,但也正因为有了熵增,低熵体们才会分外珍惜时间,热爱一切值得热爱的事物。