本文目录一览:
- 1、广义胡克定律公式
- 2、G=E2(1+v)怎么推导?
- 3、胡克定律公式
- 4、胡克定律是什么?
- 5、广义胡克定律
- 6、胡克定律 的那几个点怎么算 有什么 公式么
- 7、胡克定律的表达式是什么?
- 8、材料力学广义胡克定律
- 9、胡克定律的具体内容要很具体的!最好是大学的胡克定理!
广义胡克定律公式
广义胡克定律公式为F=-k·x或△F=-k·Δx,其中k是常数,是物体的劲度系数。在国际单位制中,F的单位是牛顿(N),x的单位是米(m)它是形变量(弹性形变),k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力F和弹簧的伸长量(或压缩量)x成正比,即F=k·x。k是物质的弹性系数,它只由材料的性质所决定,与其他因素无关。负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
G=E2(1+v)怎么推导?
G=E/2(1+v)推导:各向同性假设下,广义胡克定律,是拉梅常数而来的。
δx= λθ+2μεx
δy= λθ+2μεy
Θ=δx+δy+δz=(3λθ+2μ) θ
εx=δx /2μ + {λ/[2μ(3λθ+2μ)]}*Θ γyz=1/μ*τyz
设 δy=δz=τyz=τxz=τxy=0
εx=(λ+μ) /[μ(3λ+2μ)] * δx
εy=εz=-λ /[2μ(3λ+2μ)] * δx
γxy=γyz=γzx=0
另外拉伸试验得
εx=δx/E
εy=εz=-v/E
γxy=γyz=γzx=0
得
E=μ(3λ+2μ)/(λ+μ)
v=λ/2(λ+μ)
消去λ得
μ=E/[2(1+v)]
所以G=μ=E/[2(1+v)]
广义胡克定理
胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。
胡克定律公式
胡克定律(Hooke's
law),又译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量
(应变)在常系数E(称为弹性模量)下,与拉(或压)应力
σ
成正比例,即:或其中为总伸长(或缩减)量。胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。两年后他公布了谜底是:ut
tensio
sic
vis,意思是“力如伸长(那样变化)”(见参考文献[1]),这正是胡克定律的中心内容。胡克定律仅适用于特定加载条件下的部分材料。钢材在多数工程应用中都可视为线弹性材料,在其弹性范围内(即应力低于屈服强度时)胡克定律都适用。另外一些材料(如铝材)则只在弹性范围内的一部分区域行为符合胡克定律。对于这些材料需要定义一个应力线性极限,在应力低于该极限时线性描述带来的误差可以忽略不计。还有一些材料在任何情况下都不满足胡克定律(如橡胶),这种材料称为“非胡克型”(non-hookean)材料。橡胶的刚度不仅和应力水平相关,还对温度和加载速率十分敏感。胡克定律在磅秤制造、应力分析和材料模拟等方面有广泛的应用。
胡克定律
在弹性限度内,弹簧的弹力和弹簧的形变量(伸长或压缩值)成正比。写作:
F=k·x
其中:“F”,表示弹簧的弹力,弹力是弹簧发生形变时对施力物的作用力。
“x”,是弹簧伸长或缩短的长度,注意“x”是以弹簧无形变时的长度为基准,即x=x'-x0或x=x0-x'。
“k”,叫弹簧的劲度系数,它描述单位形变量时所产生弹力的大小,k值大,说明形变单位长时需要的力大,或者说弹簧“硬”。k跟弹簧材料、长短、粗细等都有关系。k的国际单位是牛/米。
-------------------------------------------------------------------
亲~你好! 很高兴回答你的问题, 如有不懂可继续追问
如果您满意,请点击下面的【采纳为满意回答】
手机提问的朋友可以在右上角点击【评价】
谢谢!
-----------------------------------------------------------------
胡克定律的表达式为 F=k·x或 △F=k·Δx,其中 k是 常数,是物体的
劲度(倔强)系数。在国际单位制中, F的单位是 牛,x的单位是 米,它是形变量(弹性形变), k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
F=KX 其中k是定值,是物体劲度系数一般做题时会给你。x是弹性形变值 通俗说就是弹簧伸长或缩短的长度。
表达式:F=-k·x或△F=-k·Δx
从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。
许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量(应变)在常系数E(称为弹性模量)下,与拉(或压)应力 σ 成正比例,即:F=-k·x或△F=-k·Δx
扩展资料:
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力F和弹簧的伸长量(或压缩量)x成正比,即F= k·x 。k是物质的弹性系数,它只由材料的性质所决定,与其他因素无关。负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
在线弹性阶段,广义胡克定律成立,也就是应力σ1<σp(σp为比例极限)时成立。在弹性范围内不一定成立,σp<σ1<σe(σe为弹性极限),虽然在弹性范围内,但广义胡克定律不成立。
胡克定律能精确地描述普通弹簧在变形不太大时的力学行为。
胡克定律应用的一个常见例子是弹簧,在弹性限度内,弹簧的弹力f和弹簧的长度变化量x成线性关系。即: f=.kx。
式中k是弹簧的劲度系数(或称为倔强系数),它由弹簧材料的性质和几何外形所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反,这种弹力称为回复力,表示它有使系统回复平衡的趋势,满足上式的弹簧称为线性弹簧。
参考资料来源:百度百科——胡克定律
胡克定律是什么?
胡克定律是力学基本定律之一。适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比。这个定律是英国科学家胡克发现的,所以叫做胡克定律。 胡克定律的表达式为F=-kx或△F=-kΔx,其中k是常数,是物体的劲度(倔强)系数。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力
胡克定律实验:力学弹性理论中的一条基本定律
胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式: σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23, σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,
(1) σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及 式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比。λ、G、E和v之间存在下列联系: 式(1)适用于已知应变求应力的问题,式
(2)适用于已知应力求应变的问题。 根据无初始应力的假设,(f 1)0应为零。对于均匀材料,材料性质与坐标无关,因此函数 f
1 对应变的一阶偏导数为常数。因此应力应变的一般关系表达式可以简化为 上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个。 如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数。 但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。 这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。
广义胡克定律
广义胡克定律是1993年全国科学技术名词审定委员会公布的力学名词。
胡克定律,曾译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。
从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。
许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量(应变)在常系数E(称为弹性模量)下,与拉(或压)应力 σ 成正比例,即:弹簧给予物体的力F与长度变化量x成线性关系(F=-k·x或△F=-k·Δx)。
胡克定律的内容为:在材料的线弹性范围内(见上图的材料应力应变曲线的比例极限范围内),固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力与应变成正比,即,式中为常数,称为弹性模量或杨氏模量。
把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式。
胡克定律 的那几个点怎么算 有什么 公式么
胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f= -kx.k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反.各向同性材料的广义胡克定律有两种常用的数学形式:σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23,σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1) σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比.λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题
胡克定律的表达式是什么?
在线弹性阶段,广义胡克定律成立,也就是应力σ1<σp(σp为比例极限)时成立。在弹性范围内不一定成立,σp<σ1<σe(σe为弹性极限),虽然在弹性范围内,但广义胡克定律不成立。
胡克定律的内容为:在材料的线弹性范围内(见上图的材料应力应变曲线的比例极限范围内),固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。
把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式:
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模量。这些关系也可写为:
E为弹性模量(或杨氏模量);v为泊松比。λ、G、E和v之间存在下列联系:
式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
扩展资料
胡克在力学方面的贡献尤为卓著。他建立了弹性体变形与力成正比的定律,即胡克定律。他还同惠更斯各自独立发现了螺旋弹簧的振动周期的等时性等。他曾协助玻意耳发现了玻意耳定律。他曾为研究开普勒学说作出了重大成绩。
在研究引力可以提供约束行星沿闭合轨道运动的向心力问题上,1662年和1666年间,胡克做了大量实验工作。他支持吉尔伯特的观点,认为引力和磁力相类似。1664年胡克曾指出彗星靠近太阳时轨道是弯曲的。他还为寻求支持物体保持沿圆周轨道的力的关系而作了大量实验。
1674年他根据修正的惯性原理,从行星受力平衡观点出发,提出了行星运动的理论,在1679年给牛顿的信中正式提出了引力与距离平方成反比的观点,但由于缺乏数学手段,还没有得出定量的表示。
参考资料来源:百度百科-虎克定律
参考资料来源:百度百科-胡克
材料力学广义胡克定律
材料力学广义胡克定律是在弹性极限内,弹性物体的应力与应变成正比。
资料扩展:
胡克定律的内容是:在弹性限度内,弹簧所受的拉力与形变量成正比。F=k△x,其中k为劲度系数,△x为形变量,F为所受的拉力。给出一个弹簧,k是固定不变的。
如果一个弹簧在自然状态下(不受外力)的长度是10厘米,如果用5牛的拉力拉弹簧,弹簧伸长5厘米,求劲度系数k。
则用k=F/△x,其中F的单位是牛,△x的单位是米。则k=F/△x=5N/0.05m=100N/m胡克证明了弹簧震动是等时的,还把弹簧应用于钟表制造。
在物理学中主要用于研究与弹簧有关的问题。测力计(有时叫弹簧秤): 利用金属的弹性体制成标有刻度用以测量力的大小的仪器,谓之“测力计”。
测力计有各种不同的构造形式,但它们的主要部分都是弯曲有弹性的钢片或螺旋形弹簧。当外力使弹性钢片或弹簧簧发生形变时,通过杠杆等传动机构带动指针转动,指针停在刻度盘上的位置,即为外力的数值。
胡克定律的具体内容要很具体的!最好是大学的胡克定理!
胡克定律
胡克定律是力学基本定律之一.适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比.这个定律是英国科学家胡克发现的,所以叫做胡克定律.
胡克定律的表达式为f=kx,其中k是常数,是物体的倔强系数.在国际单位制中,f的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米.倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力
弹性定律是胡克最重要的发现之一,也是力学最重要基本定律之一.在现代,仍然是物理学的重要基本理论.胡克的弹性定律指出:在弹性限度内,弹簧的弹力f和弹簧的长度x成正比,即f= -kx.k是物质的弹性系数,它由材料的性质所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反.
为了证实这一定律,胡克还做了大量实验,制作了各种材料构成的各种形状的弹性体.
prison break里面说的是力学的胡克定律,这个是材料力学里面的知识点,具体计算起来比较复杂.记得以前看过一个记录片,关于爆破的方法,在一个实心的大块混凝土结构上,通过计算得出关键的受力点,然后在这几个受力点上打孔,接着放入引爆所需要的最少量的炸药,进行引爆,引爆的结果就是会导致混凝土爆炸影响范围最小,这种爆破方法就是通过精确的计算来决定爆破最好的效果,从而不会影响其他的附近的建筑物.
胡克定律
Hook's law
材料力学和弹性力学的基本规律之一.由R.胡克于1678年提出而得名.胡克定律的内容为:在材料的线弹性范围内,固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量.把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律.胡克定律为弹性力学的发展奠定了基础.各向同性材料的广义胡克定律有两种常用的数学形式:
σ11=λ(ε11+ε22+ε33)+2Gε11,σ23=2Gε23,
σ22=λ(ε11+ε22+ε33)+2Gε22,σ31=2Gε31,(1)
σ33=λ(ε11+ε22+ε33)+2Gε33,σ12=2Gε12,及
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模 量;E为弹性模量(或杨氏模量);v为泊松比.λ、G、E和v之间存在下列联系:式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题.
根据无初始应力的假设,(f 1)0应为零.对于均匀材料,材料性质与坐标无关,因此函数 f 1 对应变的一阶偏导数为常数.因此应力应变的一般关系表达式可以简化为
上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律.
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个.
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn 是坐标x,y,z的函数.
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力.
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数.
郑玄-胡克定律
它是由英国力学家胡克(Robert Hooke,1635-1703) 于1678年发现的,实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《考工记·马人》一文的“量其力,有三钧”一句作注解中写到:“假设弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺.”以正确地提示了力与形变成正比的关系,郑玄的发现要比胡克要早一千五百年.因此胡克定律应称之为“郑玄——胡克定律.”