本文目录一览:
- 1、共轭复数的运算是什么?
- 2、共轭复数怎么求?
- 3、复数共轭的运算
- 4、共轭复数是怎么求出来的?
- 5、共轭复数的公式
- 6、数学上的共轭公式是什么意思?
- 7、共轭复数的模的运算性质
- 8、复数和共轭复数的运算
- 9、“共轭复数”的基本概念和运算方法是什么?
共轭复数的运算是什么?
一个复数乘以它的共轭复数,结果是这个复数模的平方。因为(x+yi)(x+yi)=x∧2+y∧2
两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源。
两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反。
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i。
扩展资料:
代数特征:
1、减法法则
两个复数的差为实数之差加上虚数之差(乘以i)
即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i
2、乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2 = -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
即:z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(bc+ad)i.
3、除法法则
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
参考资料来源:百度百科-共轭复数
共轭复数怎么求?
解答过程如下:
y2-2y+10=0
根据一元二次方程根的公式,有:
y=[-(-2)±√(-2)2-4×1×10]/2=(2±√-36)/2=(2±√36i2)/2=1±6i
扩展资料:
共轭复数
两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作
(z上加一横,英文中可读作Conjugate z,z conjugate or z bar),有时也可表示为
。
根据定义,若z=a+ib(a,b∈R),则
=a-ib(a,b∈R)。在复平面上,共轭复数所对应的点关于实轴对称。(如右图)
共轭根式
当
都是有理根式,而
、
中至少有一个是无理根式时,称
和
互为“共轭根式”。由平方差公式,这两式的积为有理式
共轭双曲线
以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线叫做原双曲线的共轭双曲线,如双曲线H:
与 双曲线H':
叫做一对共轭双曲线(a>0,b>0)。
主要性质有:它们有共同的渐近线,它们的四个焦点共圆,它们的离心率的倒数的平方和等于1。
参考资料来源:百度百科-- 共轭
参考资料来源:百度百科--共轭复根定理
复数共轭的运算
设Z=a+bi,a,b属于实数R,Z共轭=a-bi,
│Z│^2=│z共轭│^2=z*z共轭,
共轭复数是怎么求出来的?
具体如图:
根据一元二次方程求根公式韦达定理:
,当 时,方程无实根,但在复数范围内有2个复根。复根的求法为 (其中 是复数, )。
由于共轭复数的定义是形如 的形式,称 与 为共轭复数。
另一种表达方法可用向量法表达: , 。其中 ,tanΩ=b/a。
由于一元二次方程的两根满足上述形式,故一元二次方程在 时的两根为共轭复根。
根与系数关系: , 。
扩展资料:
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i.
参考资料来源:百度百科——共轭复根
共轭复数的公式
根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称(详见附图)。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数.在复平面上.表示两个共轭复数的点关于X轴对称.而这一点正是共轭一词的来源.两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做轭.如果用Z表示X+Yi,那么在Z字上面加个一就表示X-Yi,或相反.共轭复数有些有趣的性质:另外还有一些四则运算性质.
数学上的共轭公式是什么意思?
比如说,1/a+bi化简,分子分母同乘a-bi得:(a-bi)/(a^2+b^2)
两个实部相等,虚部互为相反数的复数互为共轭复数(conjugate complex number)。(当虚部不等于0时也叫共轭虚数)复数z的共轭复数记作zˊ。
根据定义,若z=a+bi(a,b∈R),则 zˊ=a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称(详见附图)。
1.代数特征:
(1)|z|=|z′|;
(2)z+z′=2a(实数),z-z′=2bi;
(3)z? z′=|z|^2=a^2+b^2(实数);
(4)z″=z.
2.运算特征:
(1)(z1+z2)′=z1′+z2′
(2) (z1-z2)′=z1′-z2′
(3) (z1·z2)′=z1′·z2′
(4) (z1/z2)′=z1′/z2′ (z2≠0)
3 模的运算性质:
① | z1·z2| = |z1|·|z2|
②
③┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
| z1-z2| = | z1-z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线
ps:z′表示复数z的共轭复数(实际形式为z上一横),z″表示复数z的共轭复数的共轭复数(为z上两横)
度娘的
共轭复数的模的运算性质
1、 | z1·z2| = |z1|·|z2|
2、┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|
3、| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线
表示复数z的共轭复数,
表示复数z的共轭复数的共轭复数。
扩展资料:
共轭复数的加法法则:
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即 (a+bi)±(c+di)=(a±c)+(b±d)i。
共轭复数的减法法则:
两个复数的差为实数之差加上虚数之差(乘以i),即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
共轭复数的乘法法则:
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2 = -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。即:z1z2=(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(bc+ad)i。
① | z1·z2| = |z1|·|z2|②③┃| z1|-| z2|┃≤| z1+z2|≤| z1|+| z2|| z1-z2| = | z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线PS:z′表示复数z的共轭复数(实际形式为z上一横),z″表示复数z的共轭复数的共轭复数(为z上两横),即z〃=z。
共轭复数的性质:
(1)︱x+yi︱=︱x-yi︱
(2)(x+yi)*(x-yi)=x2+y2=︱x+yi︱2=︱x-yi︱2
复数四则运算法则若复数z1=a+bi,z2=c+di,其中a,b,c,d∈R,则z1±z2=(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)·(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=(ac+bd)/(c2+d2)+(bc-ad)i/(c2+d2)
其实两复数相除,完全可以转化为两复数相乘:(a+bi)÷(c+di)=(a+bi)/(c+di),此时分子分母同时乘以分母c+di的共轭复数c-di即可。
虚数单位i的乘方i(4n+1)=i,i(4n+2)=-1,i(4n+3)=-i,i4n=1(其中n∈Z)
扩展资料
1、复数模的计算方法
(1)利用复数的三角形式,转化为求三角函数式的最值问题;
(2)考虑复数的几何意义,转化为复平面上的几何问题;
(3)化为实数范围内的最值问题,或利用基本不等式;
(4)转化为函数的最值问题。
2、复数的大小关系
复数无法比较大小,即两个复数只有相等和不等两种等量关系。
两个复数是相等的,当且仅当它们的实部是相等的并且它们的虚部是相等的,就是说,a+bi=c+di当且仅当a=c并且b=d.
参考资料来源:百度百科-共轭复数
复数和共轭复数的运算
①
|
z1·z2|
=
|z1|·|z2|
②③┃|
z1|-|
z2|┃≤|
z1+z2|≤|
z1|+|
z2|
|
z1-z2|
=
|
z1z2|,是复平面的两点间距离公式,由此几何意义可以推出复平面上的直线、圆、双曲线、椭圆的方程以及抛物线
ps:z′表示复数z的共轭复数(实际形式为z上一横),z″表示复数z的共轭复数的共轭复数(为z上两横),即z〃=z。
其实涉及到两个复数相乘的共轭等于两个复数各自取共轭后的乘积,具体用(a+bj)(c+dj)可以自己验证一下。当然,用极坐标会更方便。
首先你要知道:对于复数x,y,有(x/y)的共轭=x的共轭/y的共轭,(x-y)的共轭=x的共轭-y的共轭,对于加法和乘法也有类似结论,你可以通过设x=a+bi,y=c+di,然后算一算便可轻松证明这个结论。
另外,对于复数z,z的模的平方=z*z的共轭,这个证明也很简单
已知x=(a-z)/(1+a的共轭*z的共轭)
两边同取共轭得x的共轭=(a的共轭-z的共轭)/(1+a*z)
两式相乘得:利用z*z的共轭=z的模的平方=1化简一下你会发现分子分母一样了,这里省略了一点简单的计算,很抱歉,如需要我之后可以补上
因为分子分母一样了,所以结果为x的模=1,即B选项
“共轭复数”的基本概念和运算方法是什么?
首先你要知道:对于复数x,y,有(x/y)的共轭=x的共轭/y的共轭,(x-y)的共轭=x的共轭-y的共轭,对于加法和乘法也有类似结论,你可以通过设x=a+bi,y=c+di,然后算一算便可轻松证明这个结论。
另外,对于复数z,z的模的平方=z*z的共轭,这个证明也很简单
已知x=(a-z)/(1+a的共轭*z的共轭)
两边同取共轭得x的共轭=(a的共轭-z的共轭)/(1+a*z)
两式相乘得:利用z*z的共轭=z的模的平方=1化简一下你会发现分子分母一样了,这里省略了一点简单的计算,很抱歉,如需要我之后可以补上
因为分子分母一样了,所以结果为x的模=1,即b选项
1.
基本概念:共轭复数,两个实部相等,虚部互为相反数的复数互为共轭复数。当虚部不为零时,共轭复数就是实部相等,虚部相反,如果虚部为零,其共轭复数就是自身。
2.
运算方法:
(1)加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。即
(a+bi)±(c+di)=(a±c)+(b±d)i.
(2)减法法则:两个复数的差为实数之差加上虚数之差(乘以i),即:z1-z2=(a+ib)-(c+id)=(a-c)+(b-d)i。
(3)乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2
=
-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(4)除法法则:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
(5)开放法则:若z^n=r(cosθ+isinθ),则z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=0,1,2,3……n-1)
运算特征:
(1)(z1+z2)′=z1′+z2′
(2)
(z1-z2)′=z1′-z2′
(3)
(z1·z2)′=z1′·z2′
(4)
(z1/z2)′=z1′/z2′
(z2≠0)
总结:和(差、积、商)的共轭等于共轭的和(差、积、商)。