本文目录一览:
- 1、核反应堆工作原理
- 2、核电站的工作原理是什么
- 3、核电站的原理是什么
- 4、航母上核反应堆的工作原理
- 5、核压水反应堆工作原理
- 6、核反应堆有哪几种类型?核反应堆的工作原理是什么?
- 7、谁能解释一下核反应堆的工作原理
- 8、核反应堆通常分哪几种类型?简述压水堆核电站的工作原理和工作过程.
- 9、核反应堆的工作原理是利用中子轰击重核发生的裂变反应.在众多的裂变反应中,有一种反应方程为 23
核反应堆工作原理
核反应堆工作原理是通过核裂变或核聚变反应,将核能转化为热能,并最终将其转化为电能。
核反应堆,又称为原子能反应堆或反应堆,是能维持可控自持链式核裂变反应,以实现核能利用的装置。核反应堆通过合理布置核燃料,使得在无需补加中子源的条件下能在其中发生自持链式核裂变过程。严格来说,反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。
原子由原子核与核外电子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。
链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动汽轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+载热体。
核反应堆类型:
1、气冷快堆
是快中子谱氦冷反应堆,采用闭式燃料循环,燃料可选择复合陶瓷燃料。它采用直接循环氦气轮机发电,或采用其工艺热进行氢的热化学生产。通过综合利用快中子谱与锕系元素的完全再循环,GFR能将长寿命放射性废物的产生量降到最低。此外,其快中子谱还能利用现有的裂变材料和可转换材料(包括贫铀)。
2、超临界水冷堆
是高温高压水冷堆,在水的热力学临界点(374℃,22.1兆帕)以上运行。超临界水冷却剂能使热效率提高到轻水堆的约1.3倍。该系统的特点是,冷却剂在反应堆中不改变状态,直接与能量转换设备相连接,因此可大大简化电厂配套设备。
以上内容参考:百度百科‐核反应堆
核电站的工作原理是什么
核电站的工作原理是利用核反应产生的热能,将水转化为蒸汽驱动涡轮发电机发电。具体来说,核电站通常采用核裂变反应,其中利用铀或钚等核燃料,通过控制裂变链式反应,释放出大量的热能。
核反应堆是核电站的关键设备,它通过控制核裂变反应的进程,控制链式反应的速度和热能的释放。反应堆中的燃料棒中装有核燃料,例如浓缩铀或钚等物质。当中子撞击核燃料时,会使核燃料原子发生裂变,产生更多的中子和释放出大量的热能。
在核反应堆中,燃料棒之间有冷却剂流动,通常使用水作为冷却剂。冷却剂在吸收核反应中产生的热量后,被加热成为高温高压的蒸汽。这些高温高压的蒸汽被输送到涡轮机,使涡轮机转动。涡轮机与发电机相连,通过转动发电机产生电能。
冷却剂在驱动涡轮机后冷却下来,再一次被输送到核反应堆中,形成循环,实现连续的热能转换和发电过程。
此外,核电站还设有安全系统,用于控制和监测核反应过程,确保核反应的安全运行。例如,稳定剂、控制棒和安全壳等设备,可以用于控制核反应速率、吸收中子、隔离核反应堆等,以确保核电站的安全性。
核电站的工作原理是利用原子核裂变反应释放出能量,经能量转化而发电。
核电站以核反应堆来代替火电站的锅炉,以核燃料在核反应堆中发生特殊形式的“燃烧”产生热量,使核能转变成热能来加热水产生蒸汽。核电站的系统和设备通常由两大部分组成:核的系统和设备,又称为核岛;常规的系统和设备,又称为常规岛。
在核电站中,反应堆的作用是进行核裂变,将核能转化为水的热能。水作为冷却剂在反应堆中吸收核裂变产生的热能,成为高温高压的水。然后沿管道进入蒸汽发生器的U型管内,将热量传给U型管外侧的汽轮机工质使其变为饱和蒸汽。
被冷却后的冷却剂再由主泵打回到反应堆内重新加热,如此循环往复,形成一个封闭的吸热和放热的循环过程,这个循环回路称为一回路,也称核蒸汽供应系统。
核电站的优势:
1、核能发电不像化石燃料发电那样排放巨量的污染物质到大气中,因此核能发电不会造成空气污染。
2、核能发电无碳排放,不会加重地球温室效应。
3、核能发电所使用的铀燃料,除了发电外,暂时没有其他的用途。
4、核燃料的能量密度比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000万千瓦的核能电厂一年只需30吨的铀燃料,一航次的飞机就可以完成运送。
5、核能发电的成本中,燃料费用所占的比例较低,核能发电的成本不易受到国际经济形势的影响,故发电成本较为稳定。
以上内容参考:百度百科‐核电站
核电站的原理是什么
核电站发电的奥秘主要在反应堆上,反应堆又称核反应堆或原子反应堆,它是装配了核燃料以实现大规模可控制裂变链式反应的装置。核反应堆的原理是当铀235的原子核受到外来中子攻击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出两到三个中子,裂变产生的中子又去轰击另外的铀235原子核引起新裂变,如此持续进行就是裂变的链式反应。
链式反应产生大量热能,用循环水带走热量才能避免反应堆因过热烧毁。导出的热量,使水变成水蒸汽,推动汽轮机发电。
然而实际中反应堆里的高速中子会大量分散,这就需要使中子减速增加与原子核碰撞的机会。核反应堆必须有控制设施才能控制工作状态,尤其裂变产物有放射性,不加防护会伤及人体。最终核反应堆就由核燃料慢化系热载体控制设施和防护装置组成,在安全可靠的前提下,核电站得以运转。
核电站的作用
利用核能进行发电的电站称为核电站,当今世界上只能利用裂变的链式反应产生的能量来发电。
核电站就是利用一座或若干座动力反应堆所产生的热能来发电,或发电兼供热的动力设施。反应堆是核电站的关键设备,链式裂变反应就在其中进行。将原子核裂变释放的核能转换成热能,再转变为电能的系统和设施,通常称为核电站。
世界上核电站常用的反应堆有轻水堆、重水堆和改进型气冷堆及快堆等,但使用最广泛的是轻水堆。按产生蒸汽的过程不同,轻水堆可分成沸水堆核电站和压水堆核电站两类。压水堆是以普通水作冷却剂和慢化剂,它是从军用堆基础上发展起来的最成熟、最成功的动力堆堆型。压水堆核电站占全世界核电总容量的60%以上。
核电站用的燃料是铀。用铀制成的核燃料在“反应堆”的设备内发生裂变而产生大量热能,再用处于高压下的水把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。
我国发展核电站的重要意义
第一,有利于保障国家能源安全。一次能源的多元化,是国家能源安全战略的重要保证。我国人均能源资源占有率较低,分布也不均匀,为保证我国能源的长期稳定供应,核能将成为必不可少的替代能源。
第二,有利于调整能源结构,改善大气环境。我国一次能源以煤炭为主,长期以来,煤电发电量占总发电量的80%以上。与火电相比,核电不排放二氧化硫、烟尘、氮氧化物和二氧化碳。以核电替代部分火电,不但可以减少煤炭的开采、运输和燃烧总量,而且是电力工业减排污染的有效途径,也是缓解地球温室效应的重要措施。
第三,有利于提高装备制造业水平,促进科技进步。核电工业属于高技术产业,其中核电设备设计与制造的技术含量高,质量要求严,产业关联度高,涉及上下游几十个行业。加快核电自主化建设,有利于推广应用高新技术,促进技术创新,对提高我国制造业整体工艺、材料和加工水平将发挥重要作用。
航母上核反应堆的工作原理
主要是它有两座压水式核反应堆,其主要工作原理和蒸汽涡轮机相似,不同的是前者依靠核子撞击(裂变)产生的能量,来使水变成水蒸气。这样要比一般的蒸汽涡轮机强的多。不仅其燃料需要少,续航能力也比以前强。但是,并不是核动力航母上,就没有蒸汽涡轮机。其实美国的“尼米兹”
除了压水式核反应堆外,还有4台蒸汽涡轮机,作为备用动力。
目前世界上所有的用于发电或者军事的核反应堆都是核裂变,核聚变仅在试验室中存在模型,核专家们还没有解决它的安全使用这一难题。
更广泛的意义上讲,反应堆这一术语应覆盖裂变堆、聚变堆、裂变聚变混合堆,但一般情况下仅指裂变堆。
核反应堆的工作原理是这样的:
原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。
还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。
核聚变
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。
相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。
目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。
代表船只
尼米兹级核动力航空母舰(NimitzClassAircraftCarrier)
尼米兹级核动力航空母舰是美国的一种多用途大型航空母舰,是目前世界上最大的战舰,所有这个级别的舰艇都是以核动力推进的。装备4座升降机、4台蒸汽弹射器和4条拦阻索。可以每20秒弹射出一架作战飞机。舰载作战联队中的机型配备根据作战任务性质的不同也有所不同,可搭载不同用途的舰载飞机对敌方飞机、船只、潜艇和陆地目标发动攻击,并保护海上舰队。以它为核心的战斗群通常由4至6艘巡洋舰、驱逐舰、潜艇和补给舰只构成。
主要特点
与常规动力航母相比,核动力航母显示出诸多优越性:
一、核动力这一巨大的动力资源使航母具有更强的机动性。
核动力航母可以高速驶往世界任何海域。在最高航速上,核动力航母和常规动力航母难分伯仲,但在连续高速航行能力上,核动力航母却独占鳌头。因而在地区性危机和冲突中,核动力航母可以迅速奔赴现场,起到不可替代的威慑和实战的双重效能。
二、核动力使航母节省出大量空间和载重吨位。
一方面可以装载更多的航空燃油,以满足舰载机作战的需要;另一方面大大改善了舰员的居住和工作条件。
三、核动力使航母减少了对基地和后勤支援的依赖。
核动力航母更换一次燃料可以连续航行50万海里,不用海外基地的支援。而常规动力航母执行同样的任务,却需要事先在世界各地建立燃料补给网。
缺点
核反应炉造价及维修费用极高。
美国“尼米兹”号(CVN68)
母港为美国弗吉尼亚州的诺福克军港
舰长:332.9米,舰宽:40.8米,飞行甲板最宽76.8米,吃水:11.3米。
动力装置:核动力,2座压水堆,4台蒸汽轮机,4台应急柴油机,4轴推进功率:194兆瓦(26万马力)航速:30节以上续航力:80万~100万海里。
主要武器装备:3座“海麻雀”防空导弹系统,4座“密集阵”近战武器系统(CVN-68和CVN-69为3座),3座324毫米3联装鱼雷发射系统搭载飞机:固定翼飞机约80架,直升机6架。
人员:舰员3184人,航空人员2800人。
核压水反应堆工作原理
压水堆是核潜艇使用最多的堆型,原理是:由核反应堆中的铀—235核燃料进行链式核反应并产生高温,高温把核反应堆内密闭循环的纯净水“煮开”变为蒸汽后,经喷嘴加速变为蒸汽流推动汽轮机运转。汽轮机的转速经过减速齿轮减速后带动螺旋桨。能量转换全过程大致为:核能→热能→机械能→动能。
核能产生于核反应堆中的铀原子核裂变,当铀原子核连续裂变时(称“链式反应”),会产生巨大的热能。核反应堆的作用就好比是我们都很熟悉的锅炉,不过锅炉里的水一般是用火加热的,而核反应堆里的水是用核燃料“加热”的,所以过去也把核反应堆俗称为“原子锅炉”。
核动力装置通常由一回路和二回路组成,它们都是密闭的循环回路。
一回路由主冷却剂系统和各种辅助系统组成,主冷却剂系统包括核反应堆、主冷却剂泵、蒸汽发生器、稳压器等设备。一回路里的高温高压纯净水被核燃料加热后,由主冷却剂泵推动,经蒸汽发生器把热量传导给二回路水,使之变为蒸汽,然后一回路里被冷却的水再次返回核反应堆里,继续把核燃料产生的热量带出来,并慢化中子参与链式核反应。所以一回路里的水被称为冷却剂和慢化剂。核燃料释放的热量多少,是由控制棒来调节的。
二回路里,前半部分流动的是被一回路加热后的蒸汽,后半部分流动的是被冷凝器冷却后的水。一二回路的交会处是蒸汽发生器,二回路的水在蒸汽发生器里被加热后变成饱和蒸汽用来驱动汽轮发电机,提供电源。
核反应堆有哪几种类型?核反应堆的工作原理是什么?
核裂变和核聚变!`
中进行可控自持链式裂变反应以产生热能的装置。裂变反应堆利用可裂变的重元素(如铀-235、铀-233和钚-239),在中子的作用下,形成可控自持链式裂变反应,释放能量。典型的反应方程式如下:
[323-01]
世界上第一座裂变反应堆于1942年12月 2日在芝加哥大学达到临界。那是一座以天然铀为燃料、石墨为慢化剂的实验性反应堆。第一座原型生产堆于1943年11月建成并投入运行。1954年6月27日,苏联建成世界上第一座核电站,采用天然铀石墨慢化压力管式水冷反应堆,电功率为5000千瓦。1961年7月,美国建成世界上第一座商用压水堆核电站,电功率为28.5万千瓦(初期设计值)。到80年代,裂变反应堆已成为世界上最重要的替代能源。
核反应堆按用途可分为:舰船推进、发电、供热的动力堆,生产裂变材料钚或氚的生产堆,做材料和燃料辐照试验用的试验堆等;按结构可分为:均匀堆、半均匀堆、非均匀堆、固体燃料堆、液体燃料堆、游泳池式堆、壳式加压型反应堆、压力管式加压型反应堆等;按中心能谱可分为:热中子堆、快中子堆、中能中子堆和谱移堆;按冷却剂可以分为:轻水堆、重水堆、压水(重水)堆、沸水(重水)堆、气冷堆、液态金属冷却堆等;按慢化剂可分为:轻水堆、重水堆、石墨堆等;按燃料增殖性可分为:增殖堆和非增殖堆。核电站应用最普遍的是压水堆。
裂变反应堆系统的一般组成是:核燃料元件、控制棒及其驱动机构、慢化剂、冷却剂以及堆内结构部件构成的堆心堆心连同包容它的反应堆容器称为反应堆(见图[反应堆示意])。通常所说的反应堆实际多指反应堆系统或反应堆装置。反应堆系统还包括主冷却回路管道、主冷却泵(或鼓风机)、蒸发器(或热交换器)以及进一步冷却或利用热能的二次回路。
核燃料 在反应堆中受中子作用产生核裂变反应并释放中子和热量的一种材料。作为燃料“烧掉”的是 3种可裂变核素铀-233、铀-235和钚-239中的一种或其混合物。直到80年代,广泛使用的核燃料是铀。天然铀中含铀-235只有0.71%,需通过扩散、离心、激光等方法将天然铀中的铀-235和铀-238分离,提供铀-235含量比天然铀比例更高的浓缩的铀燃料。另两种可裂变核素是在反应堆中人工生产的。核燃料的应用形式有作为固体燃料的纯金属、合金、化合物(特别是钠的氧化物和碳化物)以及作为液体燃料的水溶液、液态金属溶液和悬浮物。对固体燃料来说,为了包容裂变产物和防止核燃料的氧化和腐蚀,采用金属或石墨包壳将燃料包覆起来。这种燃料称为芯体。一组用合金包覆的燃料元件(形式可为棒状、片状和环状)可装配成组件,元件之间的定位部件称为定位架。目前运行的压水堆、沸水堆、重水堆都采用这种燃料组件。用石墨包覆的核燃料颗粒与石墨混合,压制成球形或棱柱形燃料元件,可用于高温气冷堆。锆与金属铀的合金经氢化,形成铀氢锆元件,用不锈钢管包覆,可作为一种特殊试验堆(TRCA,实际是半均匀堆)的燃料元件。
慢化剂 核燃料裂变反应释放的中子为快中子,而在热中子或中能中子反应堆中要应用慢化中子维持链式反应,慢化剂就是用来将快中子能量减少,使之慢化成为中子或中能中子的物质。选择慢化剂要考虑许多不同的要求。首先是核特性:即良好的慢化性能和尽可能低的中子俘获截面;其次是价格、机械特性和辐照敏感性。有时慢化剂兼作冷却剂,既使不是,在设计中两者也是紧密相关的。应用最多的固体慢化剂是石墨,其优点是具有良好的慢化性能和机械加工性能,小的中子俘获截面和价廉。石墨是迄今发现的可以采用天然铀为燃料的两种慢化剂之一;另一种是重水。其他种类慢化剂则必须使用浓缩的核燃料。从核特性看,重水是更好的慢化剂,并且因其是液体,可兼做冷却剂,主要缺点是价格较贵,系统设计需有严格的密封要求。轻水是应用最广泛的慢化剂,虽然它的慢化性能不如重水,但价格便宜。重水和轻水有共同的缺点,即产生辐照分解,出现氢、氧的积累和复合。
控制棒 在反应堆中起补偿和调节中子反应性以及紧急停堆的作用。制作控制棒的材料其热中子吸收截面大,而散射截面小。好的控制棒材料(如铪、镝等)在吸收中子后产生的新同位素仍具有大的热中子吸收截面,因而使用寿命很长。核电站常用的控制棒材料有硼钢、银-铟-镉合金等。其中含硼材料因资源丰富、价格低,应用较广,但它容易产生辐照脆化和尺寸变化(肿胀)。银-铟-镉合金热中子吸收截面大,是轻水堆的主要控制材料。
压水堆中采用棒束控制,控制材料制成棒状,每个棒束由24根控制棒组成,均匀分布在17×17的燃料组件间。核电站通过专门驱动机构调节控制棒插入燃料组件的深度,以控制反应堆的反应性,紧急情况下则利用控制棒停堆(这时,控制棒材料大量吸收热中子,使自持链式反应无法维持而中止)。
冷却剂 由主循环泵驱动,在一回路中循环,从堆心带走热量并传给二回路中的工质,使蒸汽发生器产生高温高压蒸汽,以驱动汽轮发电机发电。冷却剂是唯一既在堆心中工作又在堆外工作的一种反应堆成分,这就要求冷却剂必需在高温和高中子通量场中工作是稳定的。此外,大多数适合的流体以及它们含有的杂质在中子辐照下将具有放射性,因此冷却剂要用耐辐照的材料包容起来,用具有良好射线阻挡能力的材料进行屏蔽。
理想的冷却剂应具有优良慢化剂核特性,有较大的传热系数和热容量、抗氧化以及不会产生很高的放射性。液态钠(主要用于快中子堆)和钠钾合金(主要用于空间动力堆)具有大的热容量和良好的传热性能。轻水在价格、处理、抗氧化和活化方面都有优点,但是它的热特性不好。重水是好的冷却剂和慢化剂,但价格昂贵。气体冷却剂(如二氧化碳、氦)具有许多优点,但要求比液体冷却剂更高的循环泵功率,系统密封性要求也较高。有机冷却剂较突出的优点是在堆内的激活活性较低,这是因为全部有机冷却剂的中子俘获截面较低,主要缺点是辐照分解率较大。应用最普遍的压水堆核电站用轻水作冷却剂兼慢化剂。
屏蔽 为防护中子、γ射线和热辐射,必须在反应堆和大多数辅助设备周围设置屏蔽层。其设计要力求造价便宜并节省空间。
对γ射线屏蔽,通常选择钢、铅、普通混凝土和重混凝土。钢的强度最好,但价格较高;铅的优点是密度高,因此铅屏蔽厚度较小;混凝土比金属便宜,但密度较小,因而屏蔽层厚度比其他的都大。
来自反应堆的γ射线强度很高,被屏蔽体吸收后会发热,因此紧靠反应堆的γ射线屏蔽层中常设有冷却水管。某些反应堆堆心和压力壳之间设有热屏蔽,以减少中子引起压力壳的辐照损伤和射线引起压力壳发热。
中子屏蔽需用有较大中子俘获截面元素的材料,通常含硼,有时是浓缩的硼-10。有些屏蔽材料俘获中子后放射出γ射线,因此在中子屏蔽外要有一层γ射线屏蔽。通常设计最外层屏蔽时应将辐射减到人类允许剂量水平以下,常称为生物屏蔽。核电站反应堆最外层屏蔽一般选用普通混凝土或重混凝土。
谁能解释一下核反应堆的工作原理
基本原理是U-235或Pu-239在中子作用下发生核裂变的链式反应,并且在此过程中放出大量的热量。为了控制核裂变的速度,不至于发生爆炸,需要加入中子吸收剂和中子减速剂(通常是石墨棒),以实现受控核裂变。除此之外还要通过冷却剂(通常用轻水)不断给反应堆降温,防止堆芯熔损。
核反应堆通常分哪几种类型?简述压水堆核电站的工作原理和工作过程.
现在有的堆型有重水堆、压水堆、沸水堆、高温气冷堆、快中子堆等等。
压水堆核电站的工作原理是通过U-235的裂变反应将核能释放出来,经过堆芯的高温高压水将堆芯的热量带到蒸汽发生器,产生的蒸汽推动汽轮机发电。
1 核反应堆根据燃料类型分为天然气铀堆、浓缩铀堆、钍堆;
根据中子能量分为快中子堆和热中子堆;
根据冷却剂(载热剂)材料分为水冷堆、气冷堆、有机液冷堆、液态金属冷堆;
根据慢化剂(减速剂)分 为石墨堆、重水堆、压水堆、沸水堆、有机堆、熔盐堆、铍堆 根据中子通量分为高通量堆和一般能量堆;
根据热工状态分为沸腾堆、非沸腾堆、压水堆;
根据运行方式分为脉冲堆和稳态堆,等等。
核反应堆概念上可有900多种设计,但现实能由理论到实际的是很少的。
2
压水堆
使用加压轻水(h2o)作冷却剂和慢化剂,且水在堆内不沸腾的核反应堆。燃料为加浓铀。
当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。
一、用循环水带走热量才能避免反应堆因过热烧毁。
导出的热量可以使水变成水蒸气,推动气轮机发电。高温高压水将热能带到蒸汽发生器,产生的水蒸汽推动叶片,让发电机发电。
核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。
p s:铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作
哈哈 顺便复习一下哈!
核反应堆的工作原理是利用中子轰击重核发生的裂变反应.在众多的裂变反应中,有一种反应方程为 23
根据电荷数守恒、质量数守恒,知aX的电荷数为0,质量数为3,则a=3,X的质量数为1,电荷数为0,则X为中子.故B正确,A、C、D错误.故选B.