本文目录一览:
- 1、哥德巴赫的猜想是什么?
- 2、哥德巴赫猜想是什么
- 3、哥德巴赫猜想是什么?
- 4、巴赫猜想
- 5、哥德巴赫猜想是什么意思?
- 6、哥德巴赫猜想是什么?
- 7、哥德巴赫猜想的内容
- 8、哥德巴赫猜想是什么?
- 9、哥德巴赫猜想是什么?
- 10、哥德巴赫猜想
哥德巴赫的猜想是什么?
哥德巴赫的猜想是近代三大数学难题之一,也就是哥德巴赫1742年给欧拉的信中提出猜想。哥德巴赫的猜想为任一大于2的偶数都可写成两个质数之和。
但是哥德巴赫知道自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。
哥德巴赫猜想的推算。
从关于偶数的哥德巴赫猜想可推出:任何一个大于7的奇数都能被表示成三个奇质数的和。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。
哥德巴赫猜想是什么
哥德巴赫猜想是17世纪法国数学家克劳德·哥德巴赫提出的一个有关质数的猜想,即:任何大于2的偶数都可以表示成两个质数之和。
哥德巴赫自己无法证明,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是欧拉也无法证明。
因现今数学界已经不使“1也是素数”这个约定,原初猜想的现代陈述为:任意大于5的整数都可写成三个质数之和。欧拉在回信中也提出另一等价版本,即任意大于2的偶数都可写成两个质数之和。今日常见的猜想陈述为欧拉的版本。把命题“任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和”记作“a+b”。
1966年陈景润证明了“1+2”成立,即“任意充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”。今日常见的猜想陈述为欧拉的版本,即任一大于2的偶数都可写成两个素数之和,亦称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。
从关于偶数的哥德巴赫猜想,可推出,任一大于7的奇数都可写成三个质数之和的猜想。后者称为“弱哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。若关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。
弱哥德巴赫猜想尚未完全解决,但1937年时前苏联数学家维诺格拉多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“三素数定理”。
世界近代数学的其他两大难题:
1、费玛大定理
皮耶·德·费马是一个17世纪的法国律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。但是他在数学领域取得的成就并不低于职业数学家差。主要对现代的微积分有所贡献。
简述:费玛大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。费马大定理被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年,英国数学家安德鲁·怀尔斯宣布自己证明了费玛大定理。
内容:他断言当整数n>2时,方程x+y=z没有正整数解。
2、四色问题
四色问题又称四色猜想、四色定理,是世界近代三大数学难题之一。地图四色定理最先是由一位毕业于伦敦大学叫格里斯的英国大学生提出来的。
内容:任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色。也就是说在不引起混淆的情况下一张地图只需四种颜色来标记就行。用数学语言表示:将平面任意地细分为不相重叠的区域,每一个区域总可以用1、2、3、4这四个数字之一来标记而不会使相邻的两个区域得到相同的数字。
哥德巴赫猜想是什么?
哥德巴赫猜想(Goldbach's conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。
用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。
这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。
哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。目前最好的结果是陈景润在1973年发表的陈氏定理(也被称为“1+2”)。
意义
民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,然而初等数学无法解决哥德巴赫猜想。哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。
扩展资料
背景
1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”
1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
参考资料来源:百度百科-哥德巴赫猜想
巴赫猜想
“巴赫猜想”是什么
哥德巴赫猜想(Goldbach Conjecture)
世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33*108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen's Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。
1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。
1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。
1937年,意大利的蕾西(Ricei)先后证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。
1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。
1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。
1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。
1956年,中国的王元证明了 “3 + 4 ”。
1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”。
1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。
哥达巴赫猜想是指什么??
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫写信给当时的大数学家欧拉,提出了以下的猜想: (a)任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。
当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, ……等等。有人对33*108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。
但严格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。
人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。
到了20世纪20年代,才有人开始向它靠近。1920年挪威数学家布朗用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了哥德巴赫猜想。 目前最佳的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。”
通常都简称这个结果为大偶数可表示为 “1 + 2”的形式。 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t”问题)之进展情况如下: 1920年,挪威的布朗证明了‘“9 + 9”。
1924年,德国的拉特马赫证明了“7 + 7”。 1932年,英国的埃斯特曼证明了“6 + 6”。
1937年,意大利的蕾西先后证明了“5 + 7”, “4 + 9”, “3 + 15”和“2 + 366”。 1938年,苏联的布赫夕太勃证明了“5 + 5”。
1940年,苏联的布赫夕太勃证明了“4 + 4”。 1948年,匈牙利的瑞尼证明了“1 + c”,其中c是一很大的自然数。
1956年,中国的王元证明了“3 + 4”。 1957年,中国的王元先后证明了 “3 + 3”和“2 + 3”。
1962年,中国的潘承洞和苏联的巴尔巴恩证明了“1 + 5”, 中国的王元证明了“1 + 4”。 1965年,苏联的布赫 夕太勃和小维诺格拉多夫,及 意大利的朋比利证明了“1 + 3 ”。
1966年,中国的陈景润证明了 “1 + 2 ”。 从1920年布朗证明"9+9"到1966年陈景润攻下“1+2”,历经46年。
自"陈氏定理"诞生至今的30多年里,人们对哥德巴赫猜想猜想的进一步研究,均劳而无功。 布朗筛法的思路是这样的:即任一偶数(自然数)可以写为2n,这里n是一个自然数,2n可以表示为n个不同形式的一对自然数之和: 2n=1+(2n-1)=2+(2n-2)=3+(2n-3)=…=n+n 在筛去不适合哥德巴赫猜想结论的所有那些自然数对之后(例如1和2n-1;2i和(2n-2i),i=1,2,…;3j和(2n-3j),j=2,3,…;等等),如果能够证明至少还有一对自然数未被筛去,例如记其中的一对为p1和p2,那么p1和p2都是素数,即得n=p1+p2,这样哥德巴赫猜想就被证明了。
前一部分的叙述是很自然的想法。关键就是要证明'至少还有一对自然数未被筛去'。
目前世界上谁都未能对这一部分加以证明。要能证明,这个猜想也就解决了。
然而,因大偶数n(不小于6)等于其对应的奇数数列(首为3,尾为n-3)首尾挨次搭配相加的奇数之和。故根据该奇数之和以相关类型质数+质数(1+1)或质数+合数(1+2)(含合数+质数2+1或合数+合数2+2)(注:1+2 或 2+1 同属质数+合数类型)在参与无限次的"类别组合"时,所有可发生的种种有关联系即1+1或1+2完全一致的出现,1+1与1+2的交叉出现(不完全一致的出现),同2+1或2+2的"完全一致",2+1与2+2的"不完全一致"等情况的排列组合所形成的各有关联系,就可导出的"类别组合"为1+1,1+1与1+2和2+2,1+1与1+2,1+2与2+2,1+1与2+2,1+2等六种方式。
因为其中的1+2与2+2,1+2 两种"类别组合"方式不含1+1。所以1+1没有覆盖所有可形成的"类别组合"方式,即其存在是有交替的,至此,若可将1+2与2+2,以及1+2两种方式的存在排除,则1+1得证,反之,则1+1不成立得证。
然而事实却是:1+2 与2+2,以及1+2(或至少有一种)是陈氏定理中(任何一个充分大的偶数都可以表示为两个素数的和,或一个素数与两个素数乘积的和),所揭示的某些规律(如1+2的存在而同时有1+1缺失的情况)存在的基础根据。所以1+2与2+2,以及1+2(或至少有一种)。
哥得巴赫猜想是什么?具体讲一下
史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想: 一、任何不小于6的偶数,都是两个奇质数之和; 二、任何不小于9的奇数,都是三个奇质数之和。 这就是数学史上著名的“哥德巴赫猜想”。
显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。
从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。
证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。
我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。
20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。”
从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。 1924年,德国数学家雷德马赫证明了定理“7+7”。
很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。
1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。
有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
巴赫猜想是什么
歌德巴赫猜想:
1.每个不小于6的偶数都是两个奇素数之和;
2.每个不小于9的奇数都是三个奇素数之和。
哥德巴赫猜想的来源:
1729年~1764年,哥德巴赫与欧拉保持了长达三十五年的书信往来。
在1742年6月7日给欧拉的信中,哥德巴赫提出了一个命题。他写道:
"我的问题是这样的:
随便取某一个奇数,比如77,可以把它写成三个素数之和:
77=53+17+7;
再任取一个奇数,比如461,
461=449+7+5,
也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。这样,我发现:任何大于7的奇数都是三个素数之和。
但这怎样证明呢?虽然做过的每一次试验都得到了上述结果,但是不可能把所有的奇数都拿来检验,需要的是一般的证明,而不是一个别的检验。"
欧拉回信说,这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和,但是这个命题他也没能给予证明。
不难看出,哥德巴赫的命题是欧拉命题的推论。事实上,任何一个大于5的奇数都可以写成如下形式:
2N+1=3+2(N-1),其中2(N-1)≥4.
若欧拉的命题成立,则偶数2(N-1)可以写成两个素数之和,于是奇数2N+1可以写成三个素数之和,从而,对于大于5的奇数,哥德巴赫的猜想成立。
但是哥德巴赫的命题成立并不能保证欧拉命题的成立。因而欧拉的命题比哥德巴赫的命题要求更高。
现在通常把这两个命题统称为哥德巴赫猜想
巴赫猜想是什么?
数论中著名难题之一。1742年,德国数学家哥德巴赫提出:每一个不小于6的偶数都是两个奇素数之和;每一个不小于9的奇数都是三个奇素数之和。实际上,后者是前者的推论。两百多年来,许多数学家孜孜以求,但始终未能完全证明。1966年,中国数学家陈景润证明了“任何一个充分大的偶数都可以表示成一个素数与另一个素因子不超过2个的数之和”,简称“1+ 2”。这是迄今世界上对“哥德巴赫猜想”研究的最佳成果。
德国数学家哥德巴赫曾经写信给欧拉 信中提出一个猜想就是 任何大于或等于6的整数 可以表示成3个素数 也就是质数的和 欧拉回信中说他相信这个论断是正确的 并指出为了解决这个问题 只要证明没一个大于2的偶数都是俩个素数的和 但欧拉不能证明 这个命题呗称作哥特巴赫猜想 简记作 1+1
巴赫猜想??到底是为什么?
哥德巴赫猜想,是数论里的一个未解问题。
现今的表达方式有: 1. 任何一个大于2的偶数,都可以表示成两个素数之和。(A) (例: 4 = 2 + 2) 2. 任何一个不小于9的奇数,都可以表示成三个奇素数之和。
(B) (例: 9 = 3 + 3 + 3) 3. 任何一个大于5的奇数(偶数亦可),都可以表示成三个素数之和。(C) (例: 7 = 2 + 2 + 3 ;6 = 2 + 2 + 2) 目录 [隐藏] * 1 历史 * 2 试图证明 * 3 民间数学爱好者的尝试 * 4 变异 * 5 坊间相关书籍 * 6 外部链接 [编辑] 历史 1742年6月7日,德国数学家克里斯蒂安·哥德巴赫写信给瑞士数学家莱昂哈德·欧拉,提出了以下的猜想:“任何不小于4的整数都可以表示成两个或两个以上的素数之和”(与现今表达有出入,原因是哥德巴赫认为1也是素数)。
(A)是欧拉在回信中使用的表达,被称为二重哥德巴赫猜想或强猜想,猜想B与猜想C被称为三重歌德巴赫猜想或弱猜想。通过初等的代数变换,可以知道A是B与C的充分条件,即若A正确即可推出B以及C正确。
关于该猜想最初的突破来自俄国的维诺格拉多夫,他用圆法和指数和估计无条件地证明了猜想B是正确的。他证明了每一个充分大的奇数都可以表示成三个奇素数的和。
这里,充分大的下限可表示为大约10的400次方。于是关于猜想B的证明便归结为验证小于该数的每一个奇数。
1966年,陈景润证明了“1 + 2”,也就是:“任何一个足够大的偶数,都可以表示为一个素数及一个不超过二个素数的乘积之和。” [编辑] 试图证明 就像许多著名的数学未解问题,对哥德巴赫猜想有不少宣称的证明,但都未为数学界所接受。
因为哥德巴赫猜想容易为行外人理解,这一直是伪数学家一个很普遍的目标。他们试图证明它,或有时试图反证它,使用的仅是高中数学。
它和四色定理和费马最后定理遭遇相同,后两问题都易于叙述,但其证明则非一般地繁复。 像哥德巴赫猜想这类问题,不能排除以简单方法解决的可能,但以专业数学家对这类问题所花费的大量精力,第一个证明并不可能容易得出。
从6=3+3、8=3+5、10=5+5、12=5+7、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。
20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,希尔伯特在国际数学家大会上把“哥德巴赫猜想”列为23个数学难题之一。 20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。
解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。 1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。
这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之乘积。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。
1957年,中国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。
1965年,苏联数学家证明了“1+3”。 1966年,中国数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的乘积。”
这个定理被世界数学界称为“陈氏定理”。 由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。
但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
[编辑] 民间数学爱好者的尝试 有很多非专业数学爱好者试图证明这个猜想,但是这些证明往往被看作民间“猜想”爱好者不自量力的举动。专业数学研究者认为证明这一猜想需要深刻的数论理论知识,然而几乎所有的民间数学爱好者的“证明”使用的数学工具往往仅仅是初等数学或者微积分。
对此专业人士认为,依靠这些简单的数学工具是无法证明哥德巴赫猜想的,并且因此而希望民间爱好者停止尝试。
1+1=3哥伦巴赫猜想?证明
“哥德巴赫猜想”公式及“哥猜”证明 “哥德巴赫猜想”的证明:设偶数为M,素数删除因子为√M≈N,那么,偶数的奇素数删除因子为:3,5,7,11…N,1、 偶数(1+1)最低素数对的正解公式为:√M/4,即N/4.2、如果偶数能够被奇素数删除因子L整除.偶数的素数对为最低素数对*(L-1)/(L-2),比如说偶数能够被素数3整除,该偶数的素数对≥(3-1)/(3-2)*N/4=N/2,又如偶数能够被素数5整除,素数对≥(5-1)/(5-2)*N/4=N/3,如果偶数既能被素数3整除,又能被素数5整除,那么,该偶数的素数对≥2N/3.对于偶数能够被其它奇素数删除因子整除,照猫画虎.∵当偶数为大于6小于14时,都知道有“哥德巴赫猜想”(1+1)的解.又根据上面的“哥猜”正解公式,大于16的偶数(1+1)的素数对都≥1,∴“哥德巴赫猜想”成立 猜想:歌德巴赫猜想一:任意一个>=6的偶数都可以表示为两个素数相加.经我猜想得:任意奇质数末尾数必为1,3,5,7,9 (其中1 ,9 至少为两位数,如11,19) 这样就有:1+1,1+3,1+5,1+7,1+9,3+3,3+1,3+5,3+7,3+9,5+5,5+1,5+3,5+7,5+9,7+7,7+1,7+3,7+5,7+9,9+9,9+1,9+3,9+5,9+7,(其中都可以为多位数的素数相加) 所得的和末尾必为0,2,4,6,8,(都需>=6的偶数) 这样所的的和必定为>=6的偶数,但这不一定可以填充所有的偶数,所以这方法是错误的`!条件不充分的!。
“哥得巴赫猜想”是怎么回事儿?
史上和质数有关的数学猜想中,最著名的当然就是“哥德巴赫猜想”了。
1742年6月7日,德国数学家哥德巴赫在写给著名数学家欧拉的一封信中,提出了两个大胆的猜想:
一、任何不小于6的偶数,都是两个奇质数之和;
二、任何不小于9的奇数,都是三个奇质数之和。
这就是数学史上著名的“哥德巴赫猜想”。显然,第二个猜想是第一个猜想的推论。因此,只需在两个猜想中证明一个就足够了。
同年6月30日,欧拉在给哥德巴赫的回信中, 明确表示他深信哥德巴赫的这两个猜想都是正确的定理,但是欧拉当时还无法给出证明。由于欧拉是当时欧洲最伟大的数学家,他对哥德巴赫猜想的信心,影响到了整个欧洲乃至世界数学界。从那以后,许多数学家都跃跃欲试,甚至一生都致力于证明哥德巴赫猜想。可是直到19世纪末,哥德巴赫猜想的证明也没有任何进展。证明哥德巴赫猜想的难度,远远超出了人们的想象。有的数学家把哥德巴赫猜想比喻为“数学王冠上的明珠”。
我们从6=3+3、8=3+5、10=5+5、……、100=3+97=11+89=17+83、……这些具体的例子中,可以看出哥德巴赫猜想都是成立的。有人甚至逐一验证了3300万以内的所有偶数,竟然没有一个不符合哥德巴赫猜想的。20世纪,随着计算机技术的发展,数学家们发现哥德巴赫猜想对于更大的数依然成立。可是自然数是无限的,谁知道会不会在某一个足够大的偶数上,突然出现哥德巴赫猜想的反例呢?于是人们逐步改变了探究问题的方式。
1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。
20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。
1920年,挪威数学家布朗证明了定理“9+9”,由此划定了进攻“哥德巴赫猜想”的“大包围圈”。这个“9+9”是怎么回事呢?所谓“9+9”,翻译成数学语言就是:“任何一个足够大的偶数,都可以表示成其它两个数之和,而这两个数中的每个数,都是9个奇质数之和。” 从这个“9+9”开始,全世界的数学家集中力量“缩小包围圈”,当然最后的目标就是“1+1”了。
1924年,德国数学家雷德马赫证明了定理“7+7”。很快,“6+6”、“5+5”、“4+4”和“3+3”逐一被攻陷。1957年,我国数学家王元证明了“2+3”。1962年,中国数学家潘承洞证明了“1+5”,同年又和王元合作证明了“1+4”。1965年,苏联数学家证明了“1+3”。
1966年,我国著名数学家陈景润攻克了“1+2”,也就是:“任何一个足够大的偶数,都可以表示成两个数之和,而这两个数中的一个就是奇质数,另一个则是两个奇质数的和。”这个定理被世界数学界称为“陈氏定理”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。
哥德巴赫猜想是什么意思?
哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个质数之和的猜想。从多个角度分析这个猜想,可以带来以下的理解:
1.数学领域:哥德巴赫猜想是数学领域中的一项重要猜想,自提出以来一直备受关注和研究。虽然这个猜想还没有被证明,但是它已经被数学家们通过各种方法进行了一系列的研究和验证,成为了数学领域中一个重要的未解之谜。
2.计算机科学领域:哥德巴赫猜想也可以应用于计算机科学领域。例如,在图论中,哥德巴赫猜想可以转化为图论问题,即任何一个超过2个节点的图都可以表示为两个最大度为奇数的子图的并。
3.哲学领域:哥德巴赫猜想也可以引发哲学思考。例如,它暗示着宇宙中任何物质都可以分解为最小的物质粒子,这些粒子之间通过相互作用形成各种物体和现象。这种思想与物理学中的基本粒子理论相符合。
总之,哥德巴赫猜想是一个充满智慧和挑战的数学问题,它不仅在数学领域中具有重要意义,也可以应用于其他领域,为人们提供更深刻的认识和理解。
“ 聪明出于勤奋,天才在于积累。——华罗庚”
每天十分钟,数学很轻松!欢迎来到暖爸的数学碎碎念。大家好,我是爱数学的暖爸。今天跟大家一起分享一下1+1和哥德巴赫猜想的故事。
我们大家都应该听说过,我国著名的数学家陈景润证明了1+2的问题,但是1+1却没人能证明出来。
小时候听说这个故事的时候一直脑子里有一个疑问。“1+2”和“1+1”那么简单的事情,还需要证明吗,而且还证明不出来?相信很多人都有同样的疑问吧。
后来听说陈老当年证明的“1+2”和哥德巴赫猜想有关系。这时候才觉得可能没有之前想的那么简单了,因为大家都知道哥德巴赫猜想是数学界至今没有解决的难题。所以我才深入的去了解1+1和哥德巴赫猜想的故事,今天在这里分享给大家。
哥德巴赫是谁
哥德巴赫(Goldbach C.), 德国数学家。1690出生于格奥尼格斯别尔格(现名加里宁城)。曾在英国牛津大学学习;原学法学,由于在欧洲各国访问期间结识了伯努利家族,所以对数学研究产生了兴趣;曾担任中学教师。1725年到俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年移居莫斯科,并在俄国外交部任职。曾提出著名的哥德巴赫猜想。
哥德巴赫是认识伯努利家族的。而伯努利家族中的约翰·伯努利正是欧拉的老师,由于哥德巴赫猜想的故事里有欧拉的参与,所以我们接下来一起看一下到底是怎么回事。
莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家,18世纪数学界最杰出的人物之一。数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本。《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
哥德巴赫猜想是什么?1742年50多岁的哥德巴赫在给瑞士数学家欧拉的一封信中提到一个猜想:
任一大于2的整数都可写成三个质数之和。
质数也称为素数,现在的定义是指只能被1和它本身整除的大于1的自然数。但是在哥德巴赫生活的年代1也被认为是质数。
我们可以试一下看看哥德巴赫猜想是什么意思:7=2+2+3,9=2+2+5,10=2+3+5,……,20=2+5+13……
哥德巴赫觉得自己的猜想是对的,但是他自己想尽了办法,也没能把猜想实际证明出来。于是他想起了大名鼎鼎的欧拉,就写信说了自己的想法,想让欧拉帮忙证明。但是欧拉最终也没能成功地证明出来。不过欧拉做了一个等价的猜想:
任一大于2的偶数都可写成两个质数之和。
现在采用的哥德巴赫猜想的版本就是欧拉的这个版本。也被称作 “强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。就这样哥德巴赫猜想成为了世界近代三大数学难题之一,也成了数学界大佬们都想破解的难题。
哥德巴赫猜想与1+1有什么关系呢?
随着几代数学家们不断的研究和努力,最后研究哥德巴赫猜想的问题逐渐地转化成了研究这样一个问题:
任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b"。
那么当a=1且b=1时,就记作1+1,显然1+1就是哥德巴赫猜想,这就是为什么哥德巴赫猜想也叫做1+1的原因,也就是为什么1+1那么难证明的原因。
从1920年到1966年,大约50年间,在一大批顶尖数学家的努力下,"9 + 9","7 + 7","6 + 6", "5 + 5","4 + 4", "3 + 4","2 + 3", "1 + 5", "1 + 4", "1 + 3","1+2" 等不断地被证明出来.
其中最接近1+1的1+2就是由我国著名的数学家陈景润先生在1966年证明的。陈老是我们中国的骄傲。
这也就是我们听说的陈老证明了1+2,但是还没有人能证明1+1的故事。但是我们相信随着科学和数学的不断发展和进步,将来肯定会有人可以证明1+1成立。
好了,今天关于哥德巴赫猜想和1+1的故事就分享到这里,大家有任何问题欢迎留言。
哥德巴赫猜想是一个关于质数的猜想,由哥德巴赫提出来的,并且当时提出来之后被很多著名的数学家进行的验证,目前依然没有办法能够证明这个猜想的具体性质,而世界三大数学猜想中的费马猜想以及四色猜想已经得到了很好的证明,只有哥德巴赫猜想依然没有完全得到证实,在当今的数学领域最为接近这个猜想的数学家是来自亚洲的陈景润,下面带大家具体的认识一下哥德巴赫猜想以及世界三个数学猜想的具体内容和研究现状。
哥德巴赫
彼得堡科学院院士哥德巴赫正在研究把任何数表示成几个质数的和的问题。哥德巴赫发现,总可以把任何一个数分解成不超过三个质数和。但他不能证明这个命题,甚至找不到证明它的方法,于是,他写信全告诉欧拉这件事。在1742年6月7日的信中,哥德巴赫告诉欧拉,他想冒险发表下面的假定;“大于5的任何数(正整数),是三个质数的和”。欧拉回信说:他认为“每一个偶数都是两个质数的和”这论断是一个完全正确的定理。显然,哥德巴赫的断语就是欧拉这论断的简单推论(因为:奇数=3+偶数) 。然而,欧拉也不能证明它。这就是著名的哥德巴赫猜想。
打开APP查看高清大图
关于哥德巴赫问题,不论是提出问题的哥德巴赫本人还是大数学家欧位都不能做出什么结果。上世纪一个超群数学家康托耐心地试验了从2到1000的所有偶数,说明在这范围内,哥德巴赫断言是成立的,但这能说明什么呢?此后,多少著名的学者都为哥德巴赫问题花费了无数的精力,力图开辟解决这一问题的道路,或者将它与数学的其他问题联系起来。但要严格证明它,却毫无结果,1912年,数论大师兰道在国际数学家会议上说:这个问题要用近代数学工具来解决是绝对不可能的。
到二十年代初期,问题才有了一点进展,挪威数学家布朗用古老的筛法证明了:每一个偶数是九个互数因子之和加九个素数因子之积,简记为(9+9),延自这一派的方法,1924年拉德马哈尔证明了(7+7),1932年爱斯斯尔曼证明了(6+6);1938年,布赫斯塔勃先后证明了(5+5)和(4+4);1956年维诺格拉多夫证明的(3+3);1958年我国数学家王元证明了(2+3)。
另一证明方法是1948年由匈牙利数学家兰恩易开辟的,他证明了每一个大偶数都是一个素数和一个“素因子示超过六个的”数之和,简记为(1+6),1962年,山东大学教授潘承洞证明了(1+5),同年,他又和王元证明了(1+4);三年后1965年,布赫斯塔勃、维诺格拉多夫和庞皮艾黎都证明了(1+3)。
陈景润继承了前人的结果,吸取了前人的智慧,施展了他坚韧不拔的毅力,顽强地向哥德巴赫问题挺进。为了能最快阅读最新的国久的有关资料,了解外国的新结果,他在掌握英、俄两门外语基础上,又自学了德、法、日、意和西班牙语。同时在数论方面接连攻下了三十多道难题中的六、七题,为解决哥德巴赫问题做出了必不可少的锻炼和准备。
例如他在圆内整点问题,球内整点问题,华林问题,三维除数问题上,都改进了中外数学家的结果。经过这一艰苦的历程,1966年,陈景润在《科学通报》第一十七期上发表了他已经证明(1+2)的成果。已故的著名数学家闵嗣鹤教授审核了二百多页论文手稿,确认其证明无误,但建议他加以简化,此后陈景泣不分白天黑夜,一笔又一笔推演了六麻袋稿子,经过七易寒暑,终于写出了著名的论文:“大偶数表为一个素数及一个不超过一个素数的乘积之和”,精心论证了(1+2),其中定理
被英国数学家哈勃斯丹和西德数学家李希特誉为“陈氏定理”,是“筛法”的“光辉的顶点”,并立即补入即将刊印出版的他们合著的《筛法》一书中,英国数学家赞扬陈景润说“你移动了群山”。
由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的 数学方法 ,以往的路很可能都是走不通的。
打开APP查看高清大图
陈景润为祖国增添了荣誉,他的突破为推动学林繁荣做出了极大的贡献。1978年他出席了第一届全国科学大会。先后当选为第四届、第五届人大代表为会议主席团成员。
1979年初,他和著名的拓扑学家吴文俊夫妇应美国普林斯顿高级研究所所长伍尔夫教授的邀请,前往讲学和作短期的研究工作。在那里,陈景润又利用有利条件,完成子论文《算术级数中的最小素数》,把最小素数从原来的80推进到16,这是当前世界上最新的成果,受到了国际数学界的好评
哥德巴赫猜想(Goldbach's Conjecture)是数学领域中的一个未解决的著名问题,由德国数学家克里斯蒂安·哥德巴赫(Christian Goldbach)于1742年提出。这个猜想是关于素数和加法问题的。哥德巴赫猜想的内容如下:
任何一个大于2的偶数都可以表示为两个素数之和。
用数学符号表示,即:
对于任意大于2的偶数n,存在两个素数p和q,使得:
n = p + q
尽管哥德巴赫猜想在数学史上已经存在了很长一段时间,并且许多数学家都尝试证明它,但直到目前为止,这个猜想仍然没有被证明。哥德巴赫猜想是数学中的一个未解之谜,它吸引了无数数学家的关注,并且激发了许多研究。
哥德巴赫猜想(Goldbach's conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。
用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。
这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。
哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。目前最好的结果是陈景润在1973年发表的陈氏定理(也被称为“1+2”)。
意义
民间数学家解决哥德巴赫猜想大多是在用初等数学来解决问题,然而初等数学无法解决哥德巴赫猜想。哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。
扩展资料
背景
1742年6月7日,哥德巴赫写信给欧拉,提出了著名的哥德巴赫猜想:随便取某一个奇数,比如77,可以把它写成三个素数之和,即77=53+17+7;再任取一个奇数,比如461,可以表示成461=449+7+5,也是三个素数之和,461还可以写成257+199+5,仍然是三个素数之和。例子多了,即发现“任何大于5的奇数都是三个素数之和。”
1742年6月30日欧拉给哥德巴赫回信。这个命题看来是正确的,但是他也给不出严格的证明。同时欧拉又提出了另一个命题:任何一个大于2的偶数都是两个素数之和。但是这个命题他也没能给予证明。
参考资料来源:百度百科-哥德巴赫猜想
哥德巴赫猜想是什么?
在1742年6月7日给欧拉的信中,哥德巴赫提出了以下猜想:
a) 任一不小于6之偶数,都可以表示成两个奇质数之和;
b) 任一不小于9之奇数,都可以表示成三个奇质数之和。
欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。现在通常把这两个命题统称为哥德巴赫猜想。把命题"任何一个大偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",哥氏猜想就是要证明"1+1"成立。
哥德巴赫猜想是世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被1和它本身整除的数)之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(9 + 9)。这种缩小包围圈的办法很管用,科学家们于是从(9+9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen's Theorem)——“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。
在陈景润之前,关於偶数可表示为 s 个质数的乘积与 t 个质数的乘积之和(简称“s + t ”问题)之进展情况如下:
1920年,挪威的布朗(Brun)证明了 "9 + 9 "。
1924年,德国的拉特马赫(Rademacher)证明了"7 + 7 "。
1932年,英国的埃斯特曼(Estermann)证明了 "6 + 6 "。
1937年,意大利的蕾西(Ricci)先后证明了"5 + 7 ", "4 + 9 ", "3 + 15 "和"2 + 366 "
1938年,苏联的布赫夕太勃(亦译布赫斯塔勃)证明了"5 + 5 "。
1940年,苏联的布赫夕太勃证明了 "4 + 4 "。
1948年,匈牙利的瑞尼(Renyi)证明了"1 + c ",其中 c 是一很大的自然数。
1956年,中国的王元证明了 "3 + 4 "。
1957年,中国的王元先后证明了 "3 + 3 "和 "2 + 3 "。
1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 "1 + 5 ", 中国的王元证明了"1 + 4 "。
1965年,苏联的布赫夕太勃和小维诺格拉多夫(BHHopappB),及意大利的朋比利(Bombieri)证明了"1 + 3 "。
1966年,中国的陈景润证明了 "1 + 2 "。
最终会由谁攻克 "1 + 1 "这个难题呢?现在还没法预测。
哥德巴赫猜想的内容
哥德巴赫猜想的内容:任一大于2的偶数都可写成两个素数之和。任一大于5的奇数都可写成三个质数之和的猜想。
哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。哥德巴赫1742年在给欧拉的信中提出了以下猜想:任一大于2的整数都可写成三个质数之和。
但是哥德巴赫自己无法证明它,于是就写信请教赫赫有名的大数学家欧拉帮忙证明,但是一直到死,欧拉也无法证明。因现今数学界已经不使用“1也是素数”这个约定,原初猜想的现代陈述为:任一大于5的整数都可写成三个质数之和。
n>5:当n为偶数,n=2+(n-2),n-2也是偶数,可以分解为两个质数的和;当n为奇数,n=3+(n-3),n-3也是偶数,可以分解为两个质数的和。欧拉在回信中也提出另一等价版本,即任一大于2的偶数都可写成两个质数之和。常见的猜想陈述为欧拉的版本。
把命题“任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和”记作“a+b”。1966年陈景润证明了“1+2”成立,即“任一充分大的偶数都可以表示成二个素数的和,或是一个素数和一个半素数的和”。
哥德巴赫猜想是什么?
哥德巴赫猜想是一个数学猜想,即任何一个大于2的偶数都可以表示成两个质数之和。例如,4可以表示为2+2,6可以表示为3+3或2+4,8可以表示为3+5或5+3,以此类推。这个猜想由德国数学家哥德巴赫在1742年提出,至今仍未被证明或证伪。
哥德巴赫猜想(Goldbach's conjecture)是数论中存在最久的未解问题之一。这个猜想最早出现在1742年普鲁士人克里斯蒂安·哥德巴赫与瑞士数学家莱昂哈德·欧拉的通信中。用现代的数学语言,哥德巴赫猜想可以陈述为:任一大于2的偶数,都可表示成两个素数之和。
这个猜想与当时欧洲数论学家讨论的整数分拆问题有一定联系。整数分拆问题是一类讨论“是否能将整数分拆为某些拥有特定性质的数的和”的问题,比如能否将所有整数都分拆为若干个完全平方数之和,或者若干个完全立方数的和等。而将一个给定的偶数分拆成两个素数之和,则被称之为此数的哥德巴赫分拆。
哥德巴赫猜想也是二十世纪初希尔伯特第八问题中的一个子问题。然而,虽然哥德巴赫猜想在过去的数十年中,被许多数学家尝试证明,但至今仍未得到完整的证明。
哥德巴赫猜想是什么?
哥德巴赫猜想
我们容易得出:
4=2+2, 6=3+3,8=5+3,
10=7+3,12=7+5,14=11+3,……
那么,是不是所有的大于2的偶数,都可以表示为两个素数的呢?
这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。现在,哥德巴赫猜想的一般提法是:每个大于等于6的偶数,都可表示为两个奇素数之和;每个大于等于9的奇数,都可表示为三个奇素数之和。其实,后一个命题就是前一个命题的推论。
哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。1937年苏联数学家维诺格拉多夫(и.M.Bиногралов,1891-1983),用他创造的"三角和"方法,证明了"任何大奇数都可表示为三个素数之和"。不过,维诺格拉多夫的所谓大奇数要求大得出奇,与哥德巴赫猜想的要求仍相距甚远。
直接证明哥德巴赫猜想不行,人们采取了迂回战术,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。从20世纪20年代起,外国和中国的一些数学家先后证明了"9+9""2十3""1+5""l+4"等命题。
1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠"仅一步之遥,在世界数学界引起了轰动。"1+2"也被誉为陈氏定理。
哥德巴赫猜想
这东西要了人们几十年的心血,但对世界的改变没起到任何作用,哥德巴赫猜想一提出,美国人管都不管,只有中国那些有兴趣的人才去做,结果研究出来中国还是没变,靠做难题出名,差不多就是这样,因为这是毫无意义的,美国人才不会去做,顶多增加了中国的声誉
任何数学问题都是和实际有关联的,只不过你不知道或是将来它的作用才会显现出来
关于哥德巴赫猜想的一切,看了这个科普视频就清楚了。
哥德巴赫猜想分为两个猜想:1每个不小于6的偶数可以表示为两个奇素数的和.2每个不小于9的奇数都可以表示为三个奇素数的和。
从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:
6
=
3
+
3,
8
=
3
+
5,
10
=
5
+
5
=
3
+
7,
12
=
5
+
7,
14
=
7
+
7
=
3
+
11,16
=
5
+
11,
18
=
5
+
13,
……等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(1)都成立。但严格的数学证明尚待数学家的努力。
哥德巴赫的几个猜想
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。也没有任何实质性进展。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
人们对哥德巴赫猜想难题的热情,历经两百多年而不衰。世界上许许多多的数学工作者,殚精竭虑,费尽心机,然而至今仍不得其解。