×

x射线衍射仪,用x射线衍射仪分析聚合物结晶结构式,对制样用什么要求

admin admin 发表于2023-12-18 18:10:00 浏览33 评论0

抢沙发发表评论

本文目录一览:

X射线衍射仪的工作原理介绍

1、x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄(M.vonLaue)提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。2、对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。3、X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域。

x射线衍射仪扫描范围有什么用?

X射线衍射仪扫描范围是指X射线衍射仪测量样品时所涉及到的角度范围。在X射线衍射实验中,当X射线照射到样品上时,会发生衍射现象,产生一系列衍射峰。这些衍射峰的出现与样品的晶体结构有关,通过分析这些衍射峰的位置、强度和形状等信息,可以确定样品的晶体结构和晶格参数等重要性质。而X射线衍射仪扫描范围的大小,则决定了可以测量到的衍射角度范围,进而影响到测量结果的准确性和精度。因此,选择合适的扫描范围对于X射线衍射实验的成功和结果的正确性都非常关键。
X射线衍射仪(XRD)扫描范围是指样品中晶体结构的扫描范围,也就是XRD仪器能够测量的角度范围。这个范围通常是根据仪器的几何和探测器的尺寸来决定的。
XRD仪器通过照射样品并测量样品散射的X射线来分析材料的晶体结构和组成。在XRD扫描过程中,样品通过旋转台旋转,X射线通过样品,同时探测器测量经过样品的散射X射线的强度和角度。这些数据可以用于确定材料中晶体的结构和组成。
因此,XRD仪器的扫描范围非常重要。如果扫描范围太小,可能会错过样品中一些重要的结构信息,从而影响分析结果的准确性。相反,如果扫描范围太大,可能会导致数据过多,分析和处理数据的时间和难度都会增加。因此,选择适当的扫描范围对于正确分析样品中的晶体结构和组成非常重要。
除了对于样品中晶体结构的分析,XRD仪器的扫描范围还可以用于确定材料的晶体结构的类型,例如是立方晶体、六方晶体、四方晶体等等。此外,不同的样品可能需要不同的扫描范围。例如,粉末样品需要较大的扫描范围以便涵盖更多的晶体结构信息,而单晶样品则需要较小的扫描范围以避免可能的背景杂散信号的影响。
在使用XRD仪器进行分析时,选择合适的扫描范围是非常重要的。通常,使用XRD仪器进行分析需要对样品和所需分析结果有足够的了解和计划,才能选择合适的扫描范围,从而获得准确的结果。

X射线衍射仪法

X射线主要被原子中紧束缚的外层电子所散射。X射线的散射可以是相干的(波长不变)或非相干的(波长变)。相干散射的光子可以再进行相互干涉并依次产生一些衍射现象。衍射出现的角度(θ)可以与晶体点阵中原子面间距(d)联系起来,因此X射线衍射花样可以研究宝玉石的晶体结构和进行物相鉴定。
一、X射线的产生及其性质
X射线是波长约0.01~100 ?的电磁波。用于测定晶体结构的X射线,波长为0.50~2.50?,这个波长范围与晶体点阵面的间距大致相当。波长太长(>2.50?),样品对X射线吸收太大;波长太短(<0.50?),衍射线过分集中在低角度区,不易分辨。晶体衍射所用的X射线,通常是在真空度约为10-4Pa的X射线管内,由高电压加速的一束高速运动的电子,冲击阳极金属靶面时产生。由X射线管产生的X射线包含两部分:一部分是具有连续波长的“白色”X射线,另一部分是由阳极金属材料成分决定的、波长一定的特征X射线,如Cu靶的X射线波长λCuKαl=1.5418 ?。
二、X射线衍射的原理—布拉格(Bragg)方程
晶体的空间点阵可划分为一族平行而等间距的平面点阵(hkl)。同一晶体不同指标的晶面在空间的取向不同,晶面间距d(hkl)也不同。X射线入射到晶体上,对于一族( hkl)平面中的一个点阵面1来说,若要求面上各点的散射线同相,互相加强,则要求入射角θ和衍射角θ′相等,入射线、衍射线和平面法线三者在同一平面内,才能保证光程一样,如图13-1-1所示。平面1,2,3,相邻两个平面的间距为d(hkl),射到面1 上的X射线和射到面2上的X射线的光程差为MB+BN,而MB=BN=d(hkl)sinθ光程差为2d(hkl)sinθ。根据衍射条件,只有光程差为波长的整数倍时,它们才能互相加强而产生衍射。由此得布拉格方程:
图13-1-1 晶体晶面产生X射线衍射图解
2d(hkl)sinθn=nλ
式中:n称为衍射级数,可取1,2,3,…整数;θ为衍射角。晶面指标为(hkl)的一组晶面,由于它和入射X射线取向不同,光程差不同,可产生衍射指标为 hkl,2h2k2l,3h3k3l,…一级,二级,三级,…级衍射。例如晶面指标为(110)这组面,在不同衍射角上可能出现衍射指标为110,220,330,…的衍射线。由于 | sinθn | ≤1,使得 nλ≤2d(hkl),所以n是数目有限的几个整数,n大者θ也大。
三、多晶X射线衍射法
多晶样品,如翡翠、石英岩、汉白玉等,它们杂乱无章、取向随机地聚集在一起。当单色X射线照到多晶样品上,产生的衍射花样和单晶不同。单晶中一族平面点阵的取向若和入射X射线的夹角为θ,满足衍射条件,则在衍射角2θ处产生衍射,可使胶片感光出一个衍射点,如果X射线照到这种晶体的粉末上,因晶粒有各种取向,同族平面点阵,可形成分布在张角为4θ的圆锥方向上的衍射线,该衍射线是由无数个符合同样衍射条件的晶粒产生的衍射点形成的,如晶体中有许多平面点阵族,相应地形成许多张角不同的衍射圆锥线,共同以入射的X射线为中心轴(如图13-1-2 所示)。多晶X衍射法分为多晶照相法和多晶X射线衍射仪法。
图13-1-2 单晶与粉晶衍射示意图
1.多晶照相法
若放一平板感光胶片于多晶样品前方,衍射线在胶片上感光出一系列同心圆,但只能收集θ值小的部分衍射线。若将感光胶片围成圆筒形,样品位置和圆筒中心线重合,圆筒半径为R。经感光后得粉末衍射图,若某一对粉末衍射线的间距为2L,则4θ=2L/R(弧度)=180×2 L/πR(度),由此通过测量L值,算出每一衍射的衍射角θ。根据θ值即可按布拉格方程求出d值。
2.多晶衍射仪法
多晶衍射仪法是利用计数管和一套计数放大测量系统,把接收到的衍射光转换成一个大小与衍射光强成正比的讯号记录下来,如图13-1-3。待测样品放在衍射仪圆的中心,计数管始终对准中心,绕中心旋转。样品每转θ,计数管转2θ,记录仪同步转动,逐一地把各衍射线的强度记录下来。多晶衍射所得的基本数据是“d-I”值(衍射面间距和衍射强度),利用这个数据可进行物相分析;将各个衍射线指标化,可求得晶胞参数;根据系统消光可得点阵型式。对于简单的晶体,还可用多晶衍射法测定晶体结构。它也是鉴定各种宝玉石的重要方法,下面简要介绍多晶衍射仪图的特点及其应用。
图13-1-3 多晶衍射仪原理
各种物相的粉末图都有其特点,纯化合物的粉末图各不相同,正如人的指纹一样,每一种晶体都有它自己的一套特征的“d-I”数据。照相法和衍射仪法各有优缺点,前者需要的样品少,一般为 5~10mg,后者一般需要0.5g 以上的样品。但它简便快速,灵敏度和精确度都高,因此是宝玉石鉴定的好方法。晶体的X光衍射图的横坐标衍射角为2θ,对应衍射角θ可求d值,纵坐标表示强度I。根据特征的“d-I”数据可以查手册或X射线衍射数据库。例如送来鉴定的绿色透明的玉石戒面,利用X 射线多晶衍射仪法鉴定获得衍射图13-1-4,d(I)为:4.30(70),2.92(100),2.83(90),2.49(70)和2.42(60)?。根据此数据查矿物X射线粉晶手册(中科院贵阳地球化学研究所,1978年)可知该玉石戒面是翡翠。
图13-1-4 翡翠戒面的X射线衍射图
四、X射线衍射仪法在宝玉石鉴定中的应用
X射线衍射仪是鉴定玉石的好方法,它可以不破坏样品,如翡翠、角闪石玉、石英岩玉等做的戒面,耳环和小的挂件等玉石都可以用X射线衍射仪法进行非破坏性的物相鉴定。对于大的玉石雕刻件或宝石则只能破坏样品,碾成粉晶样品(大约0.5克),再用X射线衍射仪法或照相法进行物相鉴定。

X射线衍射仪工作原理是什么?

x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。
对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域。
X射线衍射法是一种研究晶体结构的分析方法,而不是直接研究试样内含有元素的种类及含量的方法。当X射线照射晶态结构时,将受到晶体点阵排列的不同原子或分子所衍射。X射线照射两个晶面距为d的晶面时,受到晶面的反射,两束反射X光程差2dsinθ使入射波长的整数倍时,即2dsinθ=nλ(n为整数),两束光的相位一致,发生相长干涉,这种干涉现象称为衍射,晶体对X射线的这种折射规则称为布拉格规则。θ称为衍射角(入射或衍射X射线与晶面间夹角)。n相当于相干波之间的位相差,n=1,2?时各称0级、1级、2级??衍射线。反射级次不清楚时,均以n=1求d。晶面间距一般为物质的特有参数,对一个物质若能测定数个d及与其相对应的衍射线的相对强度,则能对物质进行鉴定。

X射线单晶体衍射仪的介绍

X射线单晶体衍射仪(X-ray single crystal diffractometer)。本仪器分析的对象是一粒单晶体,如一粒砂糖或一粒盐。在一粒单晶体中原子或原子团均是周期排列的。将X射线(如Cu的Kα辐射)射到一粒单晶体上会发生衍射,由对衍射线的分析可以解析出原子在晶体中的排列规律,也即解出晶体的结构。物质或由其构成的材料的性能是与晶体的结构密切相关的,如金刚石和石墨都是由纯的碳构成的,由于它们的晶体结构不同就有着截然不同的性质。

X射线衍射仪的维护和保养

11.3.4.1 X射线衍射仪的工作环境
1)建议温度:15~25℃,温度变化小于1℃/30min。
2)相对湿度:20%~80%。
3)环境整洁:定期清洁仪器内部,以免灰尘聚集在某些重要部件的表面上,影响仪器的正常工作。
4)其他环境条件:实验室附近不应有剧烈振动和产生强磁场的装置。
11.3.4.2 为了延长X射线管的使用寿命,在使用中应注意以下问题
1)待机功率,尤其是电流不能太高,会消耗X射线管寿命。
2)当超过1h不用仪器时,将X射线管设定至待机状态。待机时至少设定为40kV/10mA,对于陶瓷X射线管请设定至45kV/20mA。
3)当超过两星期不用仪器时,须将X射线管高压关掉。
4)当超过十个星期不用仪器时,须将X射线管拆下。
5)对新的X射线管,超过100h未曾使用和曾经从仪器上拆下的X射线管,必须进行正常老化。对超过24h但小于100h未曾使用的X射线管须进行自动快速老化。
6)在升高压时先升电压后升电流。
7)在降高压时先降电流后降电压。
8)在关闭高压后1~2min后再完全关闭水冷系统。
9)千万不要通过关闭冷却水去关闭X射线管高压。
11.3.4.3 X射线管水冷系统的维护
1)最佳的冷却水温度是20~25℃。
2)干净和不间断的冷却水流量与冷却水本身是同样重要的。
3)光管水路需要定期检查和清洁。
4)千万不要使用纯的去离子水,因为具有酸性和易侵蚀性。
11.3.4.4 有关安全的注意事项
1)X射线管和探测器的窗口都是铍制造的,铍窗口易碎且有毒。在任何情况下,请不要触摸铍窗口,包括清洁时。同时,更不要像普通垃圾一样丢弃X射线管和探测器。
2)如果快门无法打开,通常情况是某个安全回路工作不正常所致,千万不要试图跳过安全回路。
3)如果防护罩上的铅玻璃损坏,请立即停用仪器。
4)请在关门时,尽量避免过度用力,以免影响安全系统。

x射线衍射、x荧光、直读光谱3种仪器,都有哪些区别,原理是什么?检测领域?

X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域.   X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业。   基本构造 X射线衍射仪的形式多种多样, 用途各异, 但其基本构成很相似, 图4为X射线衍射仪的基本构造原理图, 主要部件包括4部分。   (1) 高稳定度X射线源 提供测量所需的X射线, 改变X射线管阳极靶材质可改变X射线的波长, 调节阳极电压可控制X射线源的强度。   (2) 样品及样品位置取向的调整机构系统 样品须是单晶、粉末、多晶或微晶的固体块。   (3) 射线检测器 检测衍射强度或同时检测衍射方向, 通过仪器测量记录系统或计算机处理系统可以得到多晶衍射图谱数据。   (4) 衍射图的处理分析系统 现代X射线衍射仪都附带安装有专用衍射图处理分析软件的计算机系统, 它们的特点是自动化和智能化。 X射线荧光
  X ray fluorescence   物质受原级X射线或其他光子源照射,受激产生次级X射线的现象。   它只包含特征X射线,没有连续X射线。分别以原级、一级、二级X射线激发,可产生一级、二级、三级X射线荧光。 直读光谱仪直读光谱仪,适合于户外名种应用,不管是用于压力容器内部分析、管道原位分析还是工场分析都没有任何问题。因为它是密封在一个温度稳定的恒温机箱里,设备的般运和操作只要一个人就能完成。该光谱仪设计达到最高的分析精度,新的双光谱室能应用最理想的谱线,36个测量信道使这台仪器能分析Fe、Ni、Cu、A1、Ti等多种基体。该光谱仪装备了超高灵敏度的光电倍增管,在全量程范围内使检测器的动态范围能鉴别出成分的最微小的差别。曲面的第二个窄缝能清楚地分离出相邻的谱线,这一点对包括高含量的合金成分分析在内进行高精度分析特别。品种分类   直读光谱仪品种分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪,直读光谱仪分为台式机和立式机。   直读光谱仪广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。   根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型   光谱仪.经典光谱仪器是建立在空间色散原理上的仪器;新型光谱仪器是建立在 调制原理上的仪器.经典光谱仪器都是狭缝光谱仪器.调制光谱仪是非空间分光 的,它采用圆孔进光.根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪, 衍射光栅光谱仪和干涉光谱仪.   光学多道分析仪OMA (Optical Multi-channel Analyzer)是近十几年出现的采 用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理, 存储诸功能于一体.由于OMA不再使用感光乳胶,避免和省去了暗室处理以及   之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大   改善了工作条件,提高了工作效率;使用OMA分析光谱,测盆准确迅速,方便, 且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由 打印机,绘图仪输出.目前,它己被广泛使用于几乎所有的光谱测量,分析及研 究工作中,特别适应于对微弱信号,瞬变信号的检测. 光谱仪色散组件的选择和光学参数的确定  光谱分析仪色散组件的选择   在成像光谱仪设计中,选择色散组件是关键问题,应全面的权衡棱镜和光棚 色散组件的优缺点[140-al)   直读光谱分析仪是“汉化”了的光谱分析仪,操作更加简便明了。 [编辑本段]直读光谱仪的正规名字叫原子发射光谱仪   管他叫直读的原因是相对于摄谱仪和早期的发射光谱仪而言,由于在70年代以前还没有计算机采用,所有的光电转换出来的电流信号都用数码管读数,然后在对数转换纸上绘出曲线并求出含量值,计算机技术在光谱仪应用后,所有的数据处理全部由计算机完成,可以直接换算出含量,所以比较形象的管它叫直接可以读出结果,简称就叫直读了,在国外没有这个概念。   直读光谱仪和ICP都属于发射光谱分析仪器,区别在于他们的激发方式不同,ICP中文名字是电感耦合等离子体,是通过线圈磁场达到高温使样品的状态呈等离子态然后进行测量的,而普通的直读光谱仪一般采用电火花,电弧或者辉光放电的方式把样品打成蒸汽进行激发的,在效果上ICP要比普通直读光谱仪器的检出限小,精度高,但是在进样系统上要求非常严格,没有好的进样系统就只能做溶液样品.国外先进ICP可以做固体样品. 希望能对你有所帮助,望采纳,谢谢~!!

用x射线衍射仪分析聚合物结晶结构式,对制样用什么要求

X射线衍射仪是利用X射线衍射原理研究物质内部微观结构的一种大型分析仪器,广泛应用于各大、专院校,科研院所及厂矿企业。作为X射线衍射仪(XRD)家族中一款颠覆性的产品,与传统台式XRD相比较,X射线衍射仪(XRD)具有以下优势:
1.便携式机体小,2.自动化使用样品振动装置,使用简单3.集成性使用透射几何衍射技术及高灵敏度CCD探测器4. 微量化检测检测样品只需15mg,尤其适合刑侦、环境、炸药、管道腐蚀等难于收集样品的检测分析。5.无线传输采用WIFI无线连接,可远程操控及传输采集的数据,实现数据采集的现场性和数据处理的及时性。
衍射仪法以其方便、快捷、准确和可以自动进行数据处理等特点在许多领域中取代了照相法,现在已成为晶体结构分析等工作的主要方法。

X射线衍射仪的工作原理

X射线衍射仪工作原理
x射线的波长和晶体内部原子面之间的间距相近,晶体可以作为X射线的空间衍射光栅,即一束X射线照射到物体上时,受到物体中原子的散射,每个原子都产生散射波,这些波互相干涉,结果就产生衍射。衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析衍射结果,便可获得晶体结构。以上是1912年德国物理学家劳厄(M.von Laue)提出的一个重要科学预见,随即被实验所证实。1913年,英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功的测定了NaCl,KCl等晶体结构,还提出了作为晶体衍射基础的著名公式——布拉格方程:2dsinθ=nλ。
对于晶体材料,当待测晶体与入射束呈不同角度时,那些满足布拉格衍射的晶面就会被检测出来,体现在XRD图谱上就是具有不同的衍射强度的衍射峰。对于非晶体材料,由于其结构不存在晶体结构中原子排列的长程有序,只是在几个原子范围内存在着短程有序,故非晶体材料的XRD图谱为一些漫散射馒头峰。
X射线衍射仪是利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析。广泛应用于冶金,石油,化工,科研,航空航天,教学,材料生产等领域。
x射线衍射仪:利用X射线轰击样品,测量所产生的衍射X射线强的的空间分布,以确定样品的微观结构。
http://www.bandwise.com.cn/serve/index.asp?aid=14
  X射线衍射仪工作原理
  X射线是利用衍射原理,精确测定物质的晶体结构,织构及应力。对物质进行物相分析、定性分析、定量分析。广泛应用于冶金、石油、化工、科研、航空航天、教学、材料生产等领域。
  特征X射线是一种波长很短(约为20~0.06nm)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用电子束轰击金属“靶”产生的X射线中,包含与靶中各种元素对应的具有特定波长的X射线,称为特征(或标识)X射线。考虑到X射线的波长和晶体内部原子间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光,即当一束X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。1913年英国物理学家布拉格父子(W. H. Bragg, W. .L Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格定律:
  2dsinθ=nλ
  式中λ为X射线的波长,n为任何正整数。当X射线以掠角θ(入射角的余角,又称为布拉格角)入射到某一点阵晶格间距为d的晶面面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。
  X射线衍射的应用
  1、当X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格条件的反射面得到反射。测出θ后,利用布拉格公式即可确定点阵平面间距d、晶胞大小和晶胞类型;
  2、利用X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础,测定衍射线的强度,就可进一步确定晶胞内原子的排布。
  3、而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射线束的波长λ作为变量来保证晶体中一切晶面都满足布拉格条件,故选用连续X射线束。再把结构已知晶体(称为分析晶体)用来作测定,则在获得其衍射线方向θ后,便可计算X射线的波长λ,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分
  4、X射线衍射在金属学中的应用:
  X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。
(1)物相分析是X射线衍射在金属中用得最多的方面,又分为定性分析和定量分析。定性分析是把对待测材料测得的点阵平面间距及衍射强度与标准物相的衍射数据进行比较,以确定材料中存在的物相;定量分析则根据衍射花样的强度,确定待测材料中各相的比例含量。
(2)精密测定点阵参数常用于相图的固态溶解度曲线的绘制。溶解度的变化往往引起点阵常数的变化;当达到溶解限后,溶质的继续增加引起新相的析出,不再引起点阵常数的变化。这个转折点即为溶解限。另外点阵常数的精密测定可获得单位晶胞原子数,从而可确定固溶体类型;还可以计算出密度、膨胀系数等有用的物理常数。
(3)取向分析包括测定单晶取向和多晶的结构(如择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
(4)晶粒(嵌镶块)大小和微观应力的测定由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
(5)宏观应力的测定宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测定点阵平面在不同方向上的间距的改变,可计算出残留应力的大小和方向。
(6)对晶体结构不完整性的研究包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
(7)合金相变包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
(8)结构分析对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
(9)液态金属和非晶态金属研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
(10)特殊状态下的分析在高温、低温和瞬时的动态分析。

X射线粉末衍射仪的介绍

XRD即X射线衍射,通常应用于晶体结构的分析。X射线是一种电磁波,入射到晶体时在晶体中产生周期性变化的电磁场。引起原子中的电子和原子核振动,因原子核的质量很大振动忽略不计。振动着的电子是次生X射线的波源,其波长、周相与入射光相同。基于晶体结构的周期性,晶体中各个电子的散射波相互干涉相互叠加,称之为衍射。散射波周相一致相互加强的方向称衍射方向,产生衍射线。X射线对于晶体的衍射强度是由晶体晶胞中原子的元素种类、数目及其排列方式决定的。X射线衍射仪是利用X射线衍射法对物质进行非破坏性分析的仪器,由X射线发生器、测角仪、X射线强度测量系统以及衍射仪控制与衍射数据采集、处理系统四大部分组成。