本文目录一览:
- 1、牛顿莱布尼茨公式是什么啊?谢谢~~
- 2、牛顿-莱布尼茨公式是什么?
- 3、牛顿莱布尼茨公式
- 4、牛顿莱布尼茨公式是什么?
- 5、牛顿莱布尼茨公式是什么?
- 6、牛顿莱布尼茨公式是什么?
- 7、牛顿莱布尼茨公式是什么?
- 8、牛顿莱布尼茨公式计算举例
- 9、定积分中的牛顿莱布尼茨公式是什么?
牛顿莱布尼茨公式是什么啊?谢谢~~
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
b(上限)∫a(下限)f(x)dx=F(b)-F(a)
这即为牛顿—莱布尼茨公式。
牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:
编辑本段对函数f(x)于区间[a,b]上的定积分表达为:
b∫a*f(x)dx
现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:
Φ(x)=
x∫a*f(x)dx
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:
Φ(x)=
x∫a*f(t)dt
编辑本段研究这个函数Φ(x)的性质:
1、定义函数Φ(x)=
x(上限)∫a(下限)f(t)dt,则Φ
与格林公式和高斯公式的联系
’(x)=f(x)。
证明:让函数Φ(x)获得增量Δx,则对应的函数增量
ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt
显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt
而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)?Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得,
也可自己画个图,几何意义是非常清楚的。)
当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim
Δx→0
ΔΦ/Δx=f(x)
可见这也是导数的定义,所以最后得出Φ’(x)=f(x)。
2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数。
证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x)
但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C
于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a),
而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a)
把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。
例子:求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx
求1,∫(下限为-1,上限为1)(x-1)^3dx
2,
求由∫(下限为0,上限为5)|1-x|dx
3,求由∫(下限为-2,上限为2)x√x^2dx
解答:
e^(y)-e^(2)+sin(x)=0,y=ln(e^(2)-sin(x)),dy/dx=-cos(x)/(e^(2)-sin(x).
1).(x-1)^4/4|(-1,1)=(1-1))^4/4-(-1-1))^4/4=-4;
2).∫(下限为0,上限为5)|1-x|dx=-∫(下限为0,上限为1)x-1dx+
∫(下限为1,上限为5)x-1dx=-(x-1)^2/2|(0,1)+(x-1)^2/2|(1,5)=17/2;
x√x^2是奇函数,所以∫(下限为-2,上限为2)x√x^2dx=0
简单分析一下,详情如图所示
莱布尼茨法则,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。
一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有
莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。
拓展资料:
微积分的创立者是牛顿和莱布尼茨,之所以说牛顿和莱布尼茨的创立者,事实上是因为他们把定积分与不定积分联系起来,从而建立了微分和积分相互联系的桥梁。
牛顿莱布尼茨公式,经常也被称为“微积分学基本定理”。
牛顿-莱布尼茨公式是什么?
牛顿-莱布尼茨公式:∫x^αdx=x^(α+1)/(α+1)+C(α≠-1)。定积分一般定理:定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。牛顿-莱布尼茨公式的内容是一个连续函数在区间[a,b]上的定积分等于它的任意一个原函数在区间[a,b]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿莱布尼茨公式
牛顿莱布尼茨公式若函数f(x)在(a,b)上连续,且存在原函数F(x),则f(x)在(a,b)上可积。
理解:
比如路程公式:距离s=速度v×时间t,即s=v×t,那么如果t是从时间a开始计算到时间b为止,t=b-a,而如果v不能在这个时间段内保持均速,那么上面的这个公式(s=v×t,t=b-a)就不能和谐的得到正确结果,于是引出了定积分的概念。
公式的应用:
对函数f(x)于区间(a,b)上的定积分表达为:b∫a×f(x)dx现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:Φ(x)=x∫a×f(x)dx。
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:Φ(x)=x∫a×f(t)dt。
研究这个函数Φ(x)的性质:1、定义函数Φ(x)=x(上限)∫a(下限)f(t)dt,则Φ与格林公式和高斯公式的联系’(x)=f(x)。
牛顿简介、哲学思想及主要成就:
牛顿:
艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”。
哲学思想:
牛顿的哲学思想基本属于自发的唯物主义,他承认时间、空间的客观存在。如同历史上一切伟大人物一样,牛顿虽然对人类作出了巨大的贡献,但他也不能不受时代的限制。他把时间、空间看作是同运动着的物质相脱离的东西,提出了所谓绝对时间和绝对空间的概念。
主要成就:
他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。在力学上,牛顿阐明了动量和角动量守恒的原理,提出牛顿运动定律。在光学上,他发明了反射望远镜,并基于对三棱镜将白光发散成可见光谱的观察,发展出了颜色理论。
他还系统地表述了冷却定律,并研究了音速。在数学上,牛顿与戈特弗里德·威廉·莱布尼茨分享了发展出微积分学的荣誉。他也证明了广义二项式定理,提出了“牛顿法”以趋近函数的零点,并为幂级数的研究做出了贡献。
牛顿莱布尼茨公式是什么?
牛顿莱布尼茨公式适用范围是若函数fx在ab上连续。且存在原函数Fx,则fx在ab上可积,且∫a到bfxdx等于Fb减Fa,牛顿在1666年写的流数简论中利用运动学描述了这一公式,1677年莱布尼茨在一篇手稿中正式提出了这一公式。
牛顿莱布尼茨公式特点
牛顿莱布尼茨公式NewtonLeibnizformula,通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系,牛顿莱布尼茨公式的内容是一个连续函数在区间ab上的定积分等于它的任意一个原函数在区间ab上的增量。
牛顿-莱布尼茨公式的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法,它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值,牛顿莱布尼茨公式是联系微分学与积分学的桥梁。
牛顿莱布尼茨公式是什么?
莱布尼茨公式:(uv)?=∑(n,k=0) C(k,n) · u^(n-k) · v^(k)
符号含义:
C(n,k)组合符号即n取k的组合,u^(n-k)即u的n-k阶导数, v^(k)即v的k阶导数。
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。
莱布尼茨公式给出了含参变量常义积分在积分符号下的求导法则。莱布尼茨是德国自然科学家,客观唯心主义哲学家,启蒙思想家。生于莱比锡,死于汉诺威。早年就读于莱比锡大学,于1663年获得学士学位。1667年又获阿尔特多夫大学法学博士学位。曾任美因茨选帝侯的外交官、宫廷顾问、图书馆长等职。1770年当选为英国皇家学会会员。
莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。
推导过程
如果存在函数u=u(x)与v=v(x),且它们在点x处都具有n阶导数,那么显而易见的,
u(x) ± v(x) 在x处也具有n阶导数,且 (u±v)(n) = u(n)± v(n)
至于u(x) × v(x) 的n阶导数则较为复杂,按照基本求导法则和公式,可以得到:
(uv)' = u'v + uv'
(uv)'' = u''v + 2u'v' + uv''
(uv)''' = u'''v + 3u''v' + 3u'v'' + uv'''
…………
上式便称为莱布尼茨公式(Leibniz公式)
由于名称相似,不少人将牛顿-莱布尼茨公式与莱布尼茨公式相混淆,事实上他们是两个完全不同的公式。
牛顿-莱布尼茨公式是微积分学中的一个重要公式,它把不定积分与定积分相联系了起来,也让定积分的运算有了一个完善、令人满意的方法。而莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。
二者存在本质上的区别。
牛顿莱布尼茨公式是什么?
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且
b(上限)∫a(下限)f(x)dx=F(b)-F(a)
这即为牛顿—莱布尼茨公式。
牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:
编辑本段对函数f(x)于区间[a,b]上的定积分表达为:
b∫a*f(x)dx
现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数:
Φ(x)=
x∫a*f(x)dx
但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了:
Φ(x)=
x∫a*f(t)dt
编辑本段研究这个函数Φ(x)的性质:
1、定义函数Φ(x)=
x(上限)∫a(下限)f(t)dt,则Φ
与格林公式和高斯公式的联系
’(x)=f(x)。
证明:让函数Φ(x)获得增量Δx,则对应的函数增量
ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt
显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt
而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)?Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得,
也可自己画个图,几何意义是非常清楚的。)
当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim
Δx→0
ΔΦ/Δx=f(x)
可见这也是导数的定义,所以最后得出Φ’(x)=f(x)。
2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数。
证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x)
但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C
于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a),
而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a)
把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。
例子:求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx
求1,∫(下限为-1,上限为1)(x-1)^3dx
2,
求由∫(下限为0,上限为5)|1-x|dx
3,求由∫(下限为-2,上限为2)x√x^2dx
解答:
e^(y)-e^(2)+sin(x)=0,y=ln(e^(2)-sin(x)),dy/dx=-cos(x)/(e^(2)-sin(x).
1).(x-1)^4/4|(-1,1)=(1-1))^4/4-(-1-1))^4/4=-4;
2).∫(下限为0,上限为5)|1-x|dx=-∫(下限为0,上限为1)x-1dx+
∫(下限为1,上限为5)x-1dx=-(x-1)^2/2|(0,1)+(x-1)^2/2|(1,5)=17/2;
x√x^2是奇函数,所以∫(下限为-2,上限为2)x√x^2dx=0
牛顿莱布尼茨公式是什么?
公式简介:
牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式给定积分提供了一个有效而简便的计算方法,大大简化了定积分的计算过程。
定积分一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
扩展资料
定积分的正式名称是黎曼积分。就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b。
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距是相等的。但是必须指出,即使不相等,积分值仍然相同。
参考资料来源:百度百科-牛顿-莱布尼茨公式
参考资料来源:百度百科-定积分
公式简介:
牛顿-莱布尼茨公式的内容是一个连续函数在区间 [ a,b ] 上的定积分等于它的任意一个原函数在区间[ a,b ]上的增量。牛顿在1666年写的《流数简论》中利用运动学描述了这一公式,1677年,莱布尼茨在一篇手稿中正式提出了这一公式。因为二者最早发现了这一公式,于是命名为牛顿-莱布尼茨公式。
牛顿-莱布尼茨公式(Newton-Leibniz formula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。
扩展资料:性质
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
又由于性质2,若f(x)在区间D上可积,区间D中任意c(可以不在区间[a,b]上)满足条件。
6、如果在区间[a,b]上,f(x)≥0,则
7、积分中值定理:设f(x)在[a,b]上连续,则至少存在一点ε在[a,b]内使
参考资料来源:百度百科—定积分
牛顿莱布尼茨公式计算举例
牛顿莱布尼茨公式计算:
对于积分∫[x1→x2]f(x)dx。
假设存在F(x),使得F'(x)=f(x),即有dF(x)=f(x)dx。
于是原积分化为∫[x1→x2]dF(x),按照积分的定义,∫[x1→x2]dF(x)=F(x2)-F(x1)。
于是就得到了牛莱公式,∫[x1→x2]f(x)dx=F(x2)-F(x1),其中F'(x)=f(x)。
对于∫(0~1)x^2dx,f(x)=x^2,根据求导规则可知,可以选择F(x)=x^3/3,因为此时F'(x)=f(x)。
于是根据牛莱公式∫(0~1)x^2dx=F(1)-F(0)=1/3。
定积分中的牛顿莱布尼茨公式是什么?
若函数f(x)在[a,b]上连续,且存在原函数F(x),则f(x)在[a,b]上可积,且 b(上限)∫a(下限)f(x)dx=F(b)-F(a) 这即为牛顿—莱布尼茨公式。 牛顿-莱布尼茨公式的意义就在于把不定积分与定积分联系了起来,也让定积分的运算有了一个完善、令人满意的方法。下面就是该公式的证明全过程:
编辑本段对函数f(x)于区间[a,b]上的定积分表达为:
b∫a*f(x)dx 现在我们把积分区间的上限作为一个变量,这样我们就定义了一个新的函数: Φ(x)= x∫a*f(x)dx 但是这里x出现了两种意义,一是表示积分上限,二是表示被积函数的自变量,但定积分中被积函数的自变量取一个定值是没意义的。为了只表示积分上限的变动,我们把被积函数的自变量改成别的字母如t,这样意义就非常清楚了: Φ(x)= x∫a*f(t)dt
编辑本段研究这个函数Φ(x)的性质:
1、定义函数Φ(x)= x(上限)∫a(下限)f(t)dt,则Φ 与格林公式和高斯公式的联系
’(x)=f(x)。 证明:让函数Φ(x)获得增量Δx,则对应的函数增量 ΔΦ=Φ(x+Δx)-Φ(x)=x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt 显然,x+Δx(上限)∫a(下限)f(t)dt-x(上限)∫a(下限)f(t)dt=x+Δx(上限)∫x(下限)f(t)dt 而ΔΦ=x+Δx(上限)∫x(下限)f(t)dt=f(ξ)?Δx(ξ在x与x+Δx之间,可由定积分中的中值定理推得, 也可自己画个图,几何意义是非常清楚的。) 当Δx趋向于0也就是ΔΦ趋向于0时,ξ趋向于x,f(ξ)趋向于f(x),故有lim Δx→0 ΔΦ/Δx=f(x) 可见这也是导数的定义,所以最后得出Φ’(x)=f(x)。 2、b(上限)∫a(下限)f(x)dx=F(b)-F(a),F(x)是f(x)的原函数。 证明:我们已证得Φ’(x)=f(x),故Φ(x)+C=F(x) 但Φ(a)=0(积分区间变为[a,a],故面积为0),所以F(a)=C 于是有Φ(x)+F(a)=F(x),当x=b时,Φ(b)=F(b)-F(a), 而Φ(b)=b(上限)∫a(下限)f(t)dt,所以b(上限)∫a(下限)f(t)dt=F(b)-F(a) 把t再写成x,就变成了开头的公式,该公式就是牛顿-莱布尼茨公式。
例子:求由∫(下限为2,上限为y)e^tdt+∫(下限为o,上限为x)costdt=0所确定的隐函数y对x的导数dy/dx
求1,∫(下限为-1,上限为1)(x-1)^3dx 2, 求由∫(下限为0,上限为5)|1-x|dx 3,求由∫(下限为-2,上限为2)x√x^2dx
解答:
e^(y)-e^(2)+sin(x)=0,y=ln(e^(2)-sin(x)),dy/dx=-cos(x)/(e^(2)-sin(x).
1).(x-1)^4/4|(-1,1)=(1-1))^4/4-(-1-1))^4/4=-4;
2).∫(下限为0,上限为5)|1-x|dx=-∫(下限为0,上限为1)x-1dx+
∫(下限为1,上限为5)x-1dx=-(x-1)^2/2|(0,1)+(x-1)^2/2|(1,5)=17/2;
x√x^2是奇函数,所以∫(下限为-2,上限为2)x√x^2dx=0
课本里应该有吧,建议好好看下书