×

欧拉公式,请问欧拉公式是什么?

admin admin 发表于2023-12-31 01:06:48 浏览29 评论0

抢沙发发表评论

本文目录一览:

欧拉公式是什么?

欧拉公式是:e^(ix)=cos(x)+i*sin(x)。
欧拉公式在不同的学科中有着不同的含义。复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。拓扑学中,在任何一个规则球面地图上。
用R记区域个数,V记顶点个数,E记边界个数,则R+V-E=2,这就是欧拉定理,它于1640年由笛卡尔首先给出证明,后来欧拉于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为笛卡尔定理。
第一个欧拉公式的严格证明,由20岁的柯西给出,大致如下:从多面体去掉一面,通过把去掉的面的边互相拉远,把所有剩下的面变成点和曲线的平面网络。
不失一般性,可以假设变形的边继续保持为直线段。正常的面不再是正常的多边形即使开始的时候它们是正常的。但是,点,边和面的个数保持不变,和给定多面体的一样。
柯西的证明
1、若有一个多边形面有3条边以上,我们划一个对角线。这增加一条边和一个面。继续增加边直到所有面都是三角形。
2、除掉只有一条边和外部相邻的三角形。这把边和面的个数各减一而保持顶点数不变。
3、(逐个)除去所有和网络外部共享两条边的三角形。这会减少一个顶点、两条边和一个面。

欧拉公式有哪些?

欧拉公式的三种形式为:分式、复变函数论、三角形。
1、分式里的欧拉公式:a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b),当r=0,1时式子的值为0,当r=2时值为1,当r=3时值为a+b+c。
2、复变函数论里的欧拉公式:e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将三角函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位。
将公式里的x换成-x,得到:e^-ix=cosx-isinx,然后采用两式相加减的方法得到:sinx=(e^ix-e^-ix)/(2i),cosx=(e^ix+e^-ix)/2。这两个也叫做欧拉公式。将e^ix=cosx+isinx中的x取作∏就得到:e^i∏+1=0。
这个恒等式也叫做欧拉公式,它是数学里最令人着迷的一个公式,它将数学里最重要的几个数学联系到了一起:两个超越数:自然对数的底e,圆周率∏,两个单位:虚数单位i和自然数的单位1,以及数学里常见的0。数学家们评价它是“上帝创造的公式”,我们只能看它而不能理解它。
3、三角形中的欧拉公式:设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr。

欧拉公式是什么?

事实上,欧拉公式有平面与空间两个部分:
空间中的欧拉公式
V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。
如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
X(P)叫做P的欧拉示性数,是拓扑不变量,就是无论再怎么经过拓扑变形也不会改变的量,是拓扑学研究的范围。
在多面体中的运用:
简单多面体的顶点数V、面数F及棱数E间有关系
这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
平面上的欧拉公式
,其中V是图形P的顶点个数,F是图形P内的区域数,E是图形的边数。
在非简单多面体中,欧位公式的形式为:
其中H指的是平面上不完整的个数,而C指的是独立的多面体的个数,G指的是多面体被贯穿的个数。
证明
(1) 把多面体(图中①)看成表面是薄橡皮的中空立体。
  (2) 去掉多面体的一个面,就可以完全拉开铺在平面上而得到一个平面中的直线形,像图中②的样子。假设F′,E′和V′分别表示这个平面图形的(简单)多边形、边和顶点的个数,我们只须证明F′-E′+V′=1。
  (3) 对于这个平面图形,进行三角形分割,也就是说,对于还不是三角形的多边形陆续引进对角线,一直到成为一些三角形为止,像图中③的样子。每引进一条对角线,F′和E′各增加1,而V′却不变,所以F′-E′+V′不变。因此当完全分割成三角形的时候,F′-E′+V′的值仍然没有变。有些三角形有一边或两边在平面图形的边界上。
  (4) 如果某一个三角形有一边在边界上,例如图④中的△ABC,去掉这个三角形的不属于其他三角形的边,即AC,这样也就去掉了△ABC。这样F′和E′各减去1而V′不变,所以F′-E′+V′也没有变。
  (5) 如果某一个三角形有二边在边界上,例如图⑤中的△DEF,去掉这个三角形的不属于其他三角形的边,即DF和EF,这样就去掉△DEF。这样F′减去1,E′减去2,V′减去1,因此F′-E′+V′仍没有变。
  (6) 这样继续进行,直到只剩下一个三角形为止,像图中⑥的样子。这时F′=1,E′=3,V′=3,因此F′-E′+V′=1-3+3=1。
  (7) 因为原来图形是连在一起的,中间引进的各种变化也不破坏这事实,因此最后图形还是连在一起的,所以最后不会是分散在向外的几个三角形,像图中⑦那样。
  (8) 如果最后是像图中⑧的样子,我们可以去掉其中的一个三角形,也就是去掉1个三角形,3个边和2个顶点。因此F′-E′+V′仍然没有变。
  即
  成立,于是欧拉公式:
  得证。[2]

欧拉公式有哪些?

欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0
的多面体叫第零类多面体
p=1
的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式

请问欧拉公式是什么?

多面体的欧拉公式是:V+F–E=2。
若用F表示一个正多面体的面数,E表示棱数,V表示顶点数,则有F+V-E=2,即“表面数+顶点数-棱长数=2”。F+V-E=2,这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。
V+F-E=X(P),V是多面体P的顶点个数,F是多面体P的面数,E是多面体P的棱的条数,X(P)是多面体P的欧拉示性数。如果P可以同胚于一个球面(可以通俗地理解为能吹胀而绷在一个球面上),那么X(P)=2,如果P同胚于一个接有h个环柄的球面,那么X(P)=2-2h。
定义
由若干个平面多边形围成的几何体叫做多面体。围成多面体的多边形叫做多面体的面。两个面的公共边叫做多面体的棱。若干条棱的公共顶点叫做多面体的顶点。把多面体的任何一个面伸展,如果其他各面都在这个平面的同侧,就称这个多面体为凸多面体。
多面体至少有4个面。多面体依面数分别叫做四面体、五面体、六面体等等。把一个多面体的面数记作F,顶点数记作V,棱数记作E,则F、E、V满足如下关系:F+V=E+2。
这就是关于多面体面数、顶点数和棱数的欧拉定理,每个面都是全等的正多边形的多面体叫做正多面体。每面都是正三角形的正多面体有正四面体、正八面体和正二十面体。
每面都是正方形的多面体只有正六面体即正方体,每面都是正五边形的只有正十二面体。由欧拉定理可知一共只有这5种正多面体。
特征
面与面之间仅在棱处有公共点,且没有任何两个面在同一平面上。一个多面体至少有四个面。通常情况下,只有当多面体的所有面均为平面且单联通,并且其所包围的内部空间单联通时,才为经典多面体。
注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为多面体。圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。

什么是欧拉公式

欧拉公式是欧哈德·欧拉在十八世纪创造的,是数学界最着名、最美丽的公式之一。之所以如此,是因为它涉及到各种显然非常不同的元素,比如无理数e、虚数和三角函数。复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。
欧拉公式有4条,分别是:
1、分式
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0;当r=2时值为1;当r=3时值为a+b+c。
2、复数
由e^iθ=cosθ+isinθ,得到:sinθ=(e^iθ-e^-iθ)/2i;cosθ=(e^iθ+e^-iθ)/2此函数将两种截然不同的函数---指数函数与三角函数联系起来,被誉为数学中的“天桥”。
当θ=π时,成为e^iπ+1=0 它把数学中最重要的e、i、π、1、0联系起来了。
3、三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:d^2=R^2-2Rr。
4、多面体
设v为顶点数,e为棱数,f是面数,则v-e+f=2-2p。
p为亏格,2-2p为欧拉示性数,例如p=0 的多面体叫第零类多面体; p=1 的多面体叫第一类多面体。

欧拉公式是什么?

利用“欧拉公式”
1+1/2+1/3+……+1/n=ln(n)+C,(C为欧拉常数)
Sn=1+1/2+1/3+…+1/n>ln(1+1)+ln(1+1/2)+ln(1+1/3)+…+ln(1+1/n)=ln[2*3/2*4/3*…*(n+1)/n]
=ln(n+1)
扩展资料:
欧拉常数(Euler-Mascheroni constant)
欧拉-马歇罗尼常数(Euler-Mascheroni constant)是一个主要应用于数论的数学常数。它的定义是调和级数与自然对数的差值的极限。欧拉常数最先由瑞士数学家莱昂哈德·欧拉(Leonhard Euler)在1735年发表的文章 De Progressionibus harmonicus observationes 中定义。欧拉曾经使用C作为它的符号,并计算出了它的前6位小数。
1761年他又将该值计算到了16位小数。1790年,意大利数学家马歇罗尼(Lorenzo Mascheroni)引入了γ作为这个常数的符号,并将该常数计算到小数点后32位。但后来的计算显示他在第20位的时候出现了错误。
欧拉数以世界著名数学家欧拉名字命名;还有一个鲜为人知的名字纳皮尔常数,用来纪念苏格兰数学家约翰·纳皮尔 (John Napier) 引进对数。
参考资料:百度百科-欧拉常数

欧拉公式是什么?

R+ V- E= 2。
在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则R+ V- E= 2,这就是欧拉定理 ,它于1640年由Descartes首先给出证明,后来Euler(欧拉)于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为Descartes定理。
R+ V- E= 2就是欧拉公式。
欧拉公式是欧哈德·欧拉在十八世纪创造的,是数学界最著名、最美丽的公式之一。之所以如此,是因为它涉及到各种显然非常不同的元素,比如无理数e、虚数和三角函数。
欧拉公式的历史
1714年,英国物理学家和数学家罗杰·柯茨在一个公式中建立了对数、三角函数和虚数之间的关系。
二十年后,莱昂哈德·欧拉用指数函数代替对数得到了同样的公式。
以上内容参考:百度百科-欧拉公式

欧拉公式具体是什么?

欧拉公式有4条
(1)分式:
a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)
当r=0,1时式子的值为0
当r=2时值为1
当r=3时值为a+b+c
(2)复数
由e^iθ=cosθ+isinθ,得到:
sinθ=(e^iθ-e^-iθ)/2i
cosθ=(e^iθ+e^-iθ)/2
(3)三角形
设R为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:
d^2=R^2-2Rr
(4)多面体
设v为顶点数,e为棱数,是面数,则
v-e+f=2-2p
p为欧拉示性数,例如
p=0 的多面体叫第零类多面体
p=1 的多面体叫第一类多面体
等等
其实欧拉公式是有4个的,上面说的都是多面体的公式
R+ V- E= 2就是欧拉公式。
在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理 ,它于 1640年由 Descartes首先给出证明。
后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。
扩展资料:
数学归纳法证明:
1、当 R= 2时 ,由说明 1,这两个区域可想象为 以赤道为边界的两个半球面 ,赤道上有两个“顶点” 将赤道分成两条“边界”,即 R= 2,V= 2,E= 2;于是 R+ V- E= 2,欧拉定理成立.。
2、设 R= m(m≥ 2)时欧拉定理成立 ,下面证明 R= m+ 1时欧拉定理也成立 。
由说明 2,我们在 R= m+ 1的地图上任选一个 区域 X ,则 X 必有与它如此相邻的区域 Y ,使得在 去掉 X 和 Y 之间的唯一一条边界后 ,地图上只有 m 个区域了。
在去掉 X 和 Y 之间的边界后 ,若原该边界两端 的顶点现在都还是 3条或 3条以上边界的顶点。
则该顶点保留 ,同时其他的边界数不变;若原该边界一 端或两端的顶点现在成为 2条边界的顶点 ,则去掉 该顶点 ,该顶点两边的两条边界便成为一条边界 。于 是 ,在去掉 X 和 Y之间的唯一一条边界时只有三种 情况:
1、减少一个区域和一条边界。
2、减少一个区 域、一个顶点和两条边界。
3、减少一个区域、两个顶 点和三条边界。
参考资料来源:百度百科——欧拉公式