×

三阶行列式计算方法,三阶行列式如何计算?

admin admin 发表于2023-12-01 03:58:17 浏览36 评论0

抢沙发发表评论

本文目录一览:

三阶行列式计算方法是什么?

想要学会《线性代数》中的三阶行列式求解方法,我们需要顺序渐进,切勿操之过急,学习需要由易到难,我们这次的学习将按照下面的步骤进行:
(1) 讨论三元线性方程组;
(2) 熟记三元线性方程组对应的对角线法则;
(3) 结合例题,熟练运用三元线性方程组的对角线法则;
(4) 利用三阶行列式求解三元线性方程组;
2
/8
讨论三元线性方程组,如下图:
3
/8
引出三阶行列式的定义,如下图:
4
/8
熟记三元线性方程组的对角线法则,如下图:
5
/8
结合例题,熟练运用三元线性方程组的对角线法则,如下图:
6
/8
三元线性方程组与三阶行列式的关系,如下图:
7
/8
三元线性方程组利用三阶行列式求出的解
三阶行列式的计算方法如下:
三阶行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是数字。
1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH
2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF
3、行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF)
三阶行列式的计算方法如下: 三阶行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是数字。 1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH 2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+
三阶行列式的计算方法如下:
三阶行列式{(A,B,C),(D,E,F),(G,H,I)},A、B、C、D、E、F、G、H、I都是数字。
1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH
2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF
3、行列式的值就为(AEI+BFG+CDH)-(CEG+DBI+AHF)
扩展资料:
三阶行列式性质
性质1:行列式与它的转置行列式相等。
性质2:互换行列式的两行(列),行列式变号。
推论:如果行列式有两行(列)完全相同,则此行列式为零。
性质3:行列式的某一行(列)中所有的元素都乘以同一数k,等于用数k乘此行列式。
推论:行列式中某一行(列)的所有元素的公因子可以提到行列式符号的外面。
性质4:行列式中如果有两行(列)元素成比例,则此行列式等于零。
性质5:把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变。

三阶行列式如何计算?


1、标准方法是在已给行列式的右边添加已给行列式的第一列、第二列。我们把行列式的左上角到右下角的对角线称为主对角线,把右上角到左下角的对角线称为次对角线。这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的对角线上的三个数的积的和减去次对角线的三个数的积与和次对角线平行的对角线上三个数的积的和的差。2、行列式某元素的余子式:行列式划去该元素所在的行与列的各元素,剩下的元素按原样排列,得到的新行列式.3、行列式某元素的代数余子式:行列式某元素的余子式与该元素对应的正负符号的乘积.4、三阶行列式运算:即行列式可以按某一行或某一列展开成元素与其对应的代数余子式的乘积之和

如何计算三阶行列式

根据行列式的性质可以如下计算:
基本方法是加到同一行或同一列,之后提取出来,再利用降阶或者是性质计算。
各列加到第一列上,再把第一行乘-1加到各行上,就化成了上三角行列式。
扩展资料n阶行列式的性质
性质1:行列式和它的转置行列式的值相同。
性质2:交换一个行列式的两行(或两列)行列式值改变符号。
性质3:如果一个行列式的两行(或两列)完全相同,那么这个行列式的值等于零。
性质4:把一个行列式的某一行(或某一列)的所有元素同乘以某一个常数k的结果等于用这个常数k乘这个行列式。
推论1:一个行列式的某一行(或某一列)的所有元素的公因式可以提到行列式符号的前面。
推论2:如果一个行列式的某一行(或某一列)的所有元素都为零,那么行列式值等于零。
推论3:如果一个行列式的某二行(或某二列)的对应元素成比例,那么行列式值等于零。
性质5:如果行列式D的某一行(或某一列)的所有元素都可以表成两项的和,那么行列式D等于两个行列式D1和D2的和。
性质6:把行列式的某一行(或某一列)的元素乘同一个数后,加到另一行(或另一列)的对应元素上,行列式值不变。

三阶行列式的计算方法是什么?

三阶行列式可用对角线法则:
D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。
a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式):
某个数的余子式是指删去那个数所在的行和列后剩下的行列式。
行列式的每一项要求:不同行不同列的数字相乘。
如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2 b3 c2c3中找)。
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。
以上内容参考:百度百科-三阶行列式

怎么算三阶行列式?

三阶行列式可用对角线法则:
D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
|a11 a12 a13|=a11a22a33-a11a23a32+a12a23a31-a12a21a33+a13a32a21-a13a22a31,a21 a22 a23。
a31 a32 a33,=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31。
实对称矩阵的行列式计算方法:
1、降阶法
根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
2、利用范德蒙行列式
根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去,把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。
3、综合法
计算行列式的方法很多,也比较灵活,总的原则是:充分利用所求行列式的特点,运用行列式性质及常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值。

三阶行列式的计算方法有哪些?

三阶行列式计算方法有:
1、降价法(公式法)
2、三角形法,利用行列式的基本性质,将行列式一般的形式转换成上三角(或下三角)的形式
3、例如:

3阶行列式的计算方法三阶行列式的计算方法总结

三阶行列式的计算方法如下:三阶行列式{,,},A、B、C、D、E、F、G、H、I都是数字。1、按斜线计算A*E*I,B*F*G,C*D*H,求和AEI+BFG+CDH。2、再按斜线计算C*E*G,D*B*I,A*H*F,求和CEG+DBI+AHF。3、行列式的值就为-。三阶行列式的性质:性质1:行列式与它的转置行列式相等。性质2:互换行列式的两行,行列式变号。推论:如果行列式有两行完全相同,则此行列式为零。性质3:行列式的某一行中所有的元素都乘以同一数k,等于用数k乘此行列式。推论:行列式中某一行的所有元素的公因子可以提到行列式符号的外面。性质4:行列式中如果有两行元素成比例,则此行列式等于零。性质5:把行列式的某一列的各元素乘以同一数然后加到另一列对应的元素上去,行列式不变。行列式:行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det或|A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在n维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。

三阶行列式怎么算?

任何一行或一列展开代数余子式的方法进行计算,具体如下:
行列式某元素的余子式:行列式划去该元素所在的行与列的各元素,剩下的元素按原样排列,得到的新行列式。
行列式某元素的代数余子式:行列式某元素的余子式与该元素对应的正负符号的乘积.
三阶行列式运算
即行列式可以按某一行或某一列展开成元素与其对应的代数余子式的乘积之和。
举例
如上面的三阶矩阵结果为 a1·b2·c3+b1·c2·a3+c1·a2·b3-a3·b2·c1-b3·c2·a1-c3·a2·b1(注意对角线就容易记住了)
这里一共是六项相加减,整理下可以这么记:
a1(b2·c3-b3·c2) - a2(b1·c3-b3·c1) + a3(b1·c2-b2·c1)=
a1(b2·c3-b3·c2) - b1(a2·c3 - a3·c2) + c1(a2·b3 - a3·b2)
此时可以记住为:
a1*(a1的余子式)-a2*(a2的余子式)+a3*(a3的余子式)=
a1*(a1的余子式)-b1*(b1的余子式)+c1*(c1的余子式)
某个数的余子式是指删去那个数所在的行和列后剩下的行列式。
行列式的每一项要求:不同行不同列的数字相乘
如选了a1则与其相乘的数只能在2,3行2,3列中找,(即在 b2 b3 c2c3中找)
而a1(b2·c3-b3·c2) - a2(b1c3-b3·c1) + a3(b1·c2-b2·c1)是用了行列式展开运算:即行列式等于它第一行的每一个数乘以它的余子式,或等于第一列的每一个数乘以它的余子式,然后按照 + - + - + -......的规律给每一项添加符号之后再做求和计算。
参考资料来源:百度百科-三阶行列式

三阶行列式的计算方法 三阶行列式的计算方法详解

三阶行列式的计算可用对角线法则:
1、D = a11a22a33 + a12a23a31 + a13a21a32- a13a22a31 - a12a21a33 - a11a23a32。
2、矩阵A乘矩阵B,得矩阵C,方法是A的第一行元素分别对应乘以B的第一列元素各元素,相加得C11,A的第一行元素对应乘以B的第二行各元素,相加得C12,C的第二行元素为A的第二行元素按上面方法与B相乘所得结果,N阶矩阵都是这样乘,A的列数要与B的行数相等。