×

胡克定律应力应变公式,胡克定律三种形式

admin admin 发表于2024-01-31 15:13:31 浏览67 评论0

抢沙发发表评论

本文目录一览:

胡克定律的应力计算公式与荷载初以面积的应力计算公式有啥区别?

一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。其计算公式为:E = σ / ε,E即为弹性模量,σ为应力,ε为应变。其具体含义如下:
应力类似于压强的定义,即单位面积所受的力,计算公式为 σ=F/A,这样就能表示出单位面所受的力的大小,而应变是指杆件变形量与总长度的比值,类似于伸长率。

胡克定律的表达式是什么?

胡克定律描述了弹簧或弹性体承受弹性形变的力与其形变量之间的关系。它的表达式如下:
F = - kx
其中,F是弹簧所受的力,k是弹簧的劲度系数,x是弹簧的形变量。
胡克定律表明,当弹簧的形变量x增大时,所受到的力F也随之增大,且二者成正比例关系。同时,当弹簧松开时,形变量x 减小,所受到的力F 也随之减小,但它们的比例关系保持不变。
胡克定律是力学中的一个重要定律,广泛应用于机械设计、物理实验和其他相关领域。
根据胡克定律在一定的比例极限范围内应力与应变成线性比例关系。对应的最大应力称为比例极限。
应力与应变的比例常数E 被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
拓展资料
胡克定律(Hooke's law),又译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。
胡克定律的表达式为F=k·x或△F=k·Δx,其中k是常数,是物体的劲度(倔强)系数。在国际单位制中,F的单位是牛,x的单位是米,它是形变量(弹性形变),k的单位是牛/米。倔强系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。

胡克定律的表达式是什么?

在线弹性阶段,广义胡克定律成立,也就是应力σ1<σp(σp为比例极限)时成立。在弹性范围内不一定成立,σp<σ1<σe(σe为弹性极限),虽然在弹性范围内,但广义胡克定律不成立。
胡克定律的内容为:在材料的线弹性范围内(见上图的材料应力应变曲线的比例极限范围内),固体的单向拉伸变形与所受的外力成正比;也可表述为:在应力低于比例极限的情况下,固体中的应力σ与应变ε成正比,即σ=Εε,式中E为常数,称为弹性模量或杨氏模量。
把胡克定律推广应用于三向应力和应变状态,则可得到广义胡克定律。胡克定律为弹性力学的发展奠定了基础。各向同性材料的广义胡克定律有两种常用的数学形式:
式中σij为应力分量;εij为应变分量(i,j=1,2,3);λ和G为拉梅常量,G又称剪切模量。这些关系也可写为:
E为弹性模量(或杨氏模量);v为泊松比。λ、G、E和v之间存在下列联系:
式(1)适用于已知应变求应力的问题,式(2)适用于已知应力求应变的问题。
扩展资料
胡克在力学方面的贡献尤为卓著。他建立了弹性体变形与力成正比的定律,即胡克定律。他还同惠更斯各自独立发现了螺旋弹簧的振动周期的等时性等。他曾协助玻意耳发现了玻意耳定律。他曾为研究开普勒学说作出了重大成绩。
在研究引力可以提供约束行星沿闭合轨道运动的向心力问题上,1662年和1666年间,胡克做了大量实验工作。他支持吉尔伯特的观点,认为引力和磁力相类似。1664年胡克曾指出彗星靠近太阳时轨道是弯曲的。他还为寻求支持物体保持沿圆周轨道的力的关系而作了大量实验。
1674年他根据修正的惯性原理,从行星受力平衡观点出发,提出了行星运动的理论,在1679年给牛顿的信中正式提出了引力与距离平方成反比的观点,但由于缺乏数学手段,还没有得出定量的表示。
参考资料来源:百度百科-虎克定律
参考资料来源:百度百科-胡克

胡克定律三种形式

胡克定律三种形式如下:
胡克定律,曾译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。
从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。
许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量(应变)在常系数E(称为弹性模量)下,与拉(或压)应力σ成正比例。
即:弹簧给予物体的力F与长度变化量x成线性关系(F=-k·x或△F=-k·Δx)其中Δx为总伸长(或缩减)量。胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。
胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。两年后他公布了谜底是:uttensiosicvis,意思是“力如伸长(那样变化)”,这正是胡克定律的中心内容。
发展简史
起初,胡克在做实验的过程中,发现“弹簧上所加重量的大小与弹簧的伸长量成正比”,他又通过多次实验验证自己的猜想。1678年,胡克写了一篇《弹簧》论文,向人们介绍了对弹性物体实验的结果,为材料力学和弹性力学的发展奠定了基础。
19世纪初,在前者做了不少实验工作的前提下,英国科学家托马斯·杨总结了胡克等人的研究成果,指出:如果弹性体的伸长量超过一定限度,材料就会断裂,弹性力定律就不再适用了,明确地指出弹性力定律的适用范围。(超出该适用范围的形变就叫做范性形变)。
至此,经过许多科学家的辛勤劳动,终于准确地确立了物体的弹性力定律。后人为纪念胡克的开创性工作和取得的成果,便把这个定律叫做胡克定律。胡克定律的另一称法——郑玄-胡克定律。
胡克定律是由英国力学家R.胡克(RobertHooke,1635-1703)于1678年发现的,胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。
两年后他公布了谜底是:uttensiosicvis,意思是“力如伸长(那样变化)”,这正是胡克定律的中心内容。
实际上早于他1500年前,东汉的经学家和教育家郑玄(公元127-200)为《周礼·冬官考工记·弓人》一文中的“量其力,有三钧”一句作注解时。
在《周礼注疏·卷四十二》中写到:“假令弓力胜三石,引之中三尺,驰其弦,以绳缓擐之,每加物一石,则张一尺。”正确地提示了力与形变成正比的关系,而郑玄的发现要比胡克要早一千五百年。因此有物理学家认为胡克定律应称之为“郑玄-胡克定律”。

胡可定律公式是什么??

F=KX
f=kx(k为常数)
胡克定律 :在弹性极限内,弹性物体的应力与应变成正比(中学物理中解释为受力伸长量与所受外力成正比
胡克定律的内容是:在弹性限度内,弹簧所受的拉力与形变量成正比。F=k△x,其中k为劲度系数,△x为形变量,F为所受的拉力。给出一个弹簧,k是固定不变的。如果一个弹簧在自然状态下(不受外力)的长度是10厘米,现在用5牛的拉力拉弹簧,弹簧伸长5厘米,求劲度系数k。则用k=F/△x,其中F的单位是牛,△x的单位是米。则k=F/△x=5N/0.05m=100N/m胡克证明了弹簧震动是等时的,还把弹簧应用于钟表制造。在物理学中主要用于研究与弹黄有关的问题。测力计(有时叫弹黄称): 利用金属的弹性体制成标有刻度用以测量力的大小的仪器,谓之“测力计”。测力计有各种不同的构造形式,但它们的主要部分都是弯曲有弹性的钢片或螺旋形弹簧。当外力使弹性钢片或弹簧簧发生形变时,通过杠杆等传动机构带动指针转动,指针停在刻度盘上的位置,即为外力的数值。有握力计等种类,而弹簧秤则是测力计的最简单的一种。

胡克定律与轴向拉压正应力公式的意义相同

正确。胡克定律横截面上的应力AFN=σ该式为横截面上的正应力σ计算公式。正应力σ和轴力FN同号。即拉应力为正,压应力为负,与轴向拉压正应力公式和扭转剪应力公式的推导相同,需要综合运用变形关系、物理关系和静力平衡关系。

胡克定律公式

胡克定律(Hooke's
law),又译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量
(应变)在常系数E(称为弹性模量)下,与拉(或压)应力
σ
成正比例,即:或其中为总伸长(或缩减)量。胡克定律用17世纪英国物理学家罗伯特·胡克的名字命名。胡克提出该定律的过程颇有趣味,他于1676年发表了一句拉丁语字谜,谜面是:ceiiinosssttuv。两年后他公布了谜底是:ut
tensio
sic
vis,意思是“力如伸长(那样变化)”(见参考文献[1]),这正是胡克定律的中心内容。胡克定律仅适用于特定加载条件下的部分材料。钢材在多数工程应用中都可视为线弹性材料,在其弹性范围内(即应力低于屈服强度时)胡克定律都适用。另外一些材料(如铝材)则只在弹性范围内的一部分区域行为符合胡克定律。对于这些材料需要定义一个应力线性极限,在应力低于该极限时线性描述带来的误差可以忽略不计。还有一些材料在任何情况下都不满足胡克定律(如橡胶),这种材料称为“非胡克型”(non-hookean)材料。橡胶的刚度不仅和应力水平相关,还对温度和加载速率十分敏感。胡克定律在磅秤制造、应力分析和材料模拟等方面有广泛的应用。
  胡克定律
在弹性限度内,弹簧的弹力和弹簧的形变量(伸长或压缩值)成正比。写作:
F=k·x
其中:“F”,表示弹簧的弹力,弹力是弹簧发生形变时对施力物的作用力。
“x”,是弹簧伸长或缩短的长度,注意“x”是以弹簧无形变时的长度为基准,即x=x'-x0或x=x0-x'。
“k”,叫弹簧的劲度系数,它描述单位形变量时所产生弹力的大小,k值大,说明形变单位长时需要的力大,或者说弹簧“硬”。k跟弹簧材料、长短、粗细等都有关系。k的国际单位是牛/米。
  -------------------------------------------------------------------
  亲~你好! 很高兴回答你的问题, 如有不懂可继续追问
  如果您满意,请点击下面的【采纳为满意回答】
  手机提问的朋友可以在右上角点击【评价】
  谢谢!
  -----------------------------------------------------------------
  胡克定律的表达式为 F=k·x或 △F=k·Δx,其中 k是 常数,是物体的
劲度(倔强)系数。在国际单位制中, F的单位是 牛,x的单位是 米,它是形变量(弹性形变), k的单位是牛/米。劲度系数在数值上等于弹簧伸长(或缩短)单位长度时的弹力。
F=KX 其中k是定值,是物体劲度系数一般做题时会给你。x是弹性形变值 通俗说就是弹簧伸长或缩短的长度。
表达式:F=-k·x或△F=-k·Δx
从物理的角度看,胡克定律源于多数固体(或孤立分子)内部的原子在无外载作用下处于稳定平衡的状态。
许多实际材料,如一根长度为L、横截面积A的棱柱形棒,在力学上都可以用胡克定律来模拟——其单位伸长(或缩减)量(应变)在常系数E(称为弹性模量)下,与拉(或压)应力 σ 成正比例,即:F=-k·x或△F=-k·Δx
扩展资料:
胡克的弹性定律指出:弹簧在发生弹性形变时,弹簧的弹力F和弹簧的伸长量(或压缩量)x成正比,即F= k·x 。k是物质的弹性系数,它只由材料的性质所决定,与其他因素无关。负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反。
在线弹性阶段,广义胡克定律成立,也就是应力σ1<σp(σp为比例极限)时成立。在弹性范围内不一定成立,σp<σ1<σe(σe为弹性极限),虽然在弹性范围内,但广义胡克定律不成立。
胡克定律能精确地描述普通弹簧在变形不太大时的力学行为。
胡克定律应用的一个常见例子是弹簧,在弹性限度内,弹簧的弹力f和弹簧的长度变化量x成线性关系。即: f=.kx。
式中k是弹簧的劲度系数(或称为倔强系数),它由弹簧材料的性质和几何外形所决定,负号表示弹簧所产生的弹力与其伸长(或压缩)的方向相反,这种弹力称为回复力,表示它有使系统回复平衡的趋势,满足上式的弹簧称为线性弹簧。
参考资料来源:百度百科——胡克定律

复合材料的应力应变怎么求?

由于σ=εE和F=σA,所以:
纤维截面积:A1=A*V1
基体截面积:A2=A*V2
设应变为ε,则复合材料拉力:ε*E1*A1+ε*E2*A2=ε*E*(A1+A2)=F
解得:E=(E1*V1+E2*V2)/(V1+V2)
材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量的单位是达因每平方厘米。“弹性模量”是描述物质弹性的一个物理量,是一个统称,表示方法可以是“杨氏模量”、“体积模量”等。
扩展资料各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。
1兆帕(MPa)=145磅/英寸2(psi)=10.2千克力/平方厘米(kgf/cm2)=10巴(bar)=9.8大气压(atm)
1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克力/平方厘米(kgf/cm2)=0.0689巴(bar)=0.068大气压(atm)
1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克力/平方厘米(kgf/cm2)=0.987大气压(atm)
1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克力/平方厘米kgf/cm2)=1.0133巴(bar)
参考资料来源:百度百科-弹性模量

拉压胡克定律公式

拉压胡克定律公式:F/A=t+273K。胡克定律,曾译为虎克定律,是力学弹性理论中的一条基本定律,表述为:固体材料受力之后,材料中的应力与应变(单位变形量)之间成线性关系。满足胡克定律的材料称为线弹性或胡克型(英文Hookean)材料。
物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并试图使物体从变形后的位置恢复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。