本文目录一览:
- 1、今天和大家一起了解个高能知识点: P= NP问题。看到这里我
- 2、千禧年七大数学难题是什么?
- 3、千禧年大奖难题的介绍
- 4、千禧年难题指的是什么?
- 5、千禧年七大数学难题是什么?
- 6、千禧年大奖难题的NS方程解的存在性与光滑性
- 7、千禧年大奖难题的贝赫和斯维讷通-戴尔猜想
- 8、千禧年七大数学难题如今解决多少了
- 9、千禧年大奖难题的杨-米尔斯规范场存在性和质量缺口假设
- 10、世界上最难的数学题世界七大数学难题难倒了全世界
今天和大家一起了解个高能知识点: P= NP问题。看到这里我
今天和大家一起了解个高能知识点:P=NP问题。
看到这里我们可能是一头雾水,不由得发问:
P问题是什么?
NP问题又是什么?
P=NP又是什么意思?
研究并解决P=NP问题的意义是什么?
这四个问题也是我们由表及里去理解P=NP问题的重要切入点,通过本文你将了解到包括但不限于以下内容:
千禧年世纪难题
P类问题和NP类问题特征定义
P=NP的研究和NPC问题
解决P=NP问题的大方向
2 千禧年世纪难题
时间镜头拉回2000年数学界出现了一个里程碑事件: 千禧年大奖难题
千禧年大奖难题 Millennium Prize Problems 是七个由美国克雷数学研究所 Clay Mathematics Institute 于2000年5月24日公布的数学难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金100万美元。
这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。
大概意思就是2000年5月美国的一个私人非盈利机构出了7个意义重大的问题,解答任何1道会得到100w美元奖金,说到钱忽然精神起来了,不妨看下这7个多金的题目:
P/NP问题(P versus NP)
霍奇猜想(The Hodge Conjecture)
庞加莱猜想(The Poincaré Conjecture)
黎曼猜想(The Riemann Hypothesis)
杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)
纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)
贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)
黎曼猜想去年闹得沸沸扬扬,相信都有所耳闻,不过黎曼猜想是研究素数分布规律的问题,相比之下P=NP问题和计算机领域的关系更为密切,所以P=NP问题被认为是理论计算机和数学领域的综合问题,该问题的研究成果将对计算机领域和现实生活带来巨大的影响。
如克雷数学研究所的约定只要证明或者证伪P=NP问题即可赢取100w美元奖金,其实相比P=NP问题的证明或证否的影响和意义,100w奖金只是皇冠上的一粒尘埃而已。
前面铺垫了一些卖了个关子,快马加鞭一起先来看下 P和NP, 到底是个怎样的问题?
3 P类和NP类问题特征
我在克雷数学研究所官网找到了关于 P和NP问题 的简单说明:
简单意译一下:
假设你正在为400名大学生组织住宿,但是空间有限只有100名学生能在宿舍里找到位置。更复杂的是还给了你一份不相容学生的名单,并要求在你的最终选择中不要出现这份名单中的任何一对。
这是计算机科学家称之为NP问题的一个例子,因为很容易检查一个同事提出的一百个学生的给定选择是否令人满意,然而从头开始生成这样一个列表的任务似乎太难了以至于完全不切实际。
事实上从400名申请者中选择100名学生的方法总数比已知宇宙中的原子数量还要多!这类其答案可以被快速检查,但是通过任何直接的程序需要不可接受长度的时间来解决,比如300年或者更多...
斯蒂芬·库克和列昂尼德·莱文在1971年独立地提出了P(即容易找到)和NP(即容易检查)问题。
P和NP问题是斯蒂芬·库克和列昂尼德·莱文在1971年提出的,从上文的描述中大概知道了P问题和NP问题的主要特征:
P 问题(easy to find)
all problems solvable, deterministically, in polynomial time
译:多项式时间内可解决的问题(当然在多项式时间是可验证的)
NP 问题(esay to check)
non-deterministicPolynomial time
译:非确定性多项式时间可解决的问题
千禧年七大数学难题是什么?
1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。
2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。
3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。
4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。
5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。
6、Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。
7、Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。
扩展资料:
千年数学会议在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。
每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得一百万美元的大奖。
参考资料来源:百度百科-世界七大数学难题
千禧年大奖难题的介绍
千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。拟定这7个问题的数学家之一是怀尔斯,费马大定理这个有300多年历史的难题没被选入的唯一理由就是已经被他解决了。其他的专家,除了克磊促进会会长贾菲(Arthur Jaffe),还有阿蒂亚和在巴黎演讲的泰特,以及法国的孔涅(Alain Connes)和美国的威滕(Edward Witten)。根据克雷数学研究所订定的规则,任何一个猜想的解答,只要发表在数学期刊上,并经过两年的验证期,解决者就会被颁发一百万美元奖金。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个数学问题。
千禧年难题指的是什么?
千禧年大奖难题(Millennium Prize Problems), 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金1,000,000美元。 这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。 大奖题目 P对NP问题 (-P versus NP-) 霍奇猜想 (-The Hodge Conjecture-) 庞加莱猜想 (-The Poincaré Conjecture-) 黎曼假设 (-The Riemann Hypothesis-) 杨-米尔斯理论 (-Yang-Mills Existence and Mass Gap-) 斯托克斯方程 (-Navier-Stokes Existence and Smoothness-) 戴尔猜想 (-The Birch and Swinnerton-Dyer Conjecture-)
千禧年七大数学难题是什么?
千禧年大奖难题(Millennium Prize Problems), 又称世界七大数学难题, 是七个由美国克雷数学研究所(Clay Mathematics Institute,CMI) 于2000年5月24日公布的数学猜想。具体如下:
1、P=NP?
主条目:P/NP问题
尽管计算机极大地提高了人类的计算能力,仍有各种复杂的组合类或其它问题随规模的增大其复杂度也快速增大,通常我们认为计算机可以解决的问题只限于多项式时间内,即所需时间最多是问题规模的多项式函数.
有大量的问题,可以在确定型图灵机上用多项式时间求解;还有一些问题,虽然暂时没有能在确定型图灵机上用多项式时间求解的算法,但对于给定的可疑解可以在多项式时间内验证,那么,后者能否归并到前者内呢?
设想在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。
然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你他可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。
更经典的例子是流动推销员问题,假设你要去3个城市去推销,要使走过的路程最短,需要对这3个城市进行排序。很简单,这一共有6种路线,对比一下就可以找到最短的路线了。但很明显只有3个城市不现实,假设10个城市呢,这一共有10!=3628800种路线!
假设你要算出每一条路线的长度,而计算一条路线花费1分钟,如果每天工作8小时,中间不休息,一星期工作5天,一年工作52个星期,这将要花费20多年!显然,这类计算会使用计算机。但由于阶乘数增长太快,连最先进的计算机也不堪重负。
P是否等于NP的问题,即能用多项式时间验证解的问题是否能在多项式时间内找出解,是计算机与算法方面的重大问题,它是斯蒂文·考克(StephenCook)于1971年陈述的。
2、霍奇猜想
主条目:霍奇猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广。
最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
3、庞加莱猜想
主条目:庞加莱猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
俄罗斯数学家佩雷尔曼最终解决了三维庞加莱猜想。Clay数学研究所在2010年为此召开特别会议,为此猜想盖棺定论。
4、黎曼假设
主条目:黎曼假设
有些数具有不能表示为两个更小的整数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到。
素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态。著名的黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线z=1/2+ib上,其中b为实数,这条直线通常称为临界线。这点已经对于开始的1,500,000,000个解验证过。
证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明,
弗里曼·戴森(Freeman Dyson)在《数学世纪-过去100年间30个重大问题》的前言里写道他钟爱的培根式的梦想,寻找一维拟晶理论以及黎曼ζ函数之间的可能联系。如果黎曼假设成立,则在临界线上的ζ函数的零点按照定义是一个拟晶。
假如假设成立,ζ函数的零点具有一个傅里叶变换,它由在所有素数幂的对数处的质点构成,而不含别处的质点。这就提供了证明黎曼假设的一个可能方法。
法国数学家孔涅从美国数学家蒙哥马利(Montgomery)描述临界线上ζ函数零点之间间距的公式中得到启发,用量子物理学的思想证明黎曼假设。他写出一组方程,规定一个假设的量子混沌系统,把所有的素数作为它的组成部分。
他还证明,这个系统有着对应于临界线上所有ζ函数零点的能级。如果能证明这些与能级对应的零点外没有其他零点,也就证明了黎曼假设。
5、杨-米尔斯规范场存在性和质量间隔假设
主条目:杨-米尔斯存在性和质量间隔(规范场理论)
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。
特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量间隔”(mass gap)假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
6、NS方程解的存在性与光滑性
主条目:navier stokes(纳维叶-斯托克斯存在性与光滑性)
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。
虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
7、BSD猜想(贝赫和斯维讷通-戴尔猜想)
主条目:BSD猜想(贝赫和斯维讷通-戴尔猜想)
数学家总是被诸如那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。
事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。
当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z⑴等于0,那么存在无限多个有理点(解),相反,如果z⑴不等于0,那么只存在有限多个这样的点。
以上内容参考 百度百科-千禧年大奖难题
是NP完全问题、霍奇猜想、庞加莱猜想、黎曼假设、杨-米尔斯存在性和质量缺口、纳卫尔-斯托可方程、BSD猜想。其中庞加莱猜想已被解决。
数学难题可以是指那些历经长时间而仍未有解答/完全解答的数学问题。
古今以来,一些特意提出的数学难题有:平面几何三大难题、希尔伯特的23个问题、世界三大数学猜想、千禧年大奖难题等。
费尔马大定理起源于三百多年前,挑战人类3个世纪,多次震惊全世界,耗尽人类众多最杰出大脑的精力,也让千千万万业余者痴迷。终于在1994年被安德鲁·怀尔斯攻克。
古希腊数学家丢番图写过一本著名的《算术》(Arithmetica),经历中世纪的愚昧黑暗到文艺复兴的时候,《算术》的残本重新被发现研究。
1637年,法国业余大数学家费尔马(Pierre de Fremat)在《算术》的关于勾股数问题的页边上,写下猜想:xn+ yn =zn 是不可能的(这里n大于2;x,y,z,n都是非零整数)。
此猜想后来就称为费尔马大定理。费尔马还写道“我对此有绝妙的证明,但此页边太窄写不下”。一般公认,他当时不可能有正确的证明。猜想提出后,经欧拉等数代天才努力,200年间只解决了n=3,4,5,7四种情形。
1847年,库默尔创立“代数数论”这一现代重要学科。他还证明了当n﹤100时,除却n=37、59、67这些不规则质数的情况,费尔马大定理都成立,是一次大飞跃。
历史上费尔马大定理高潮迭起,传奇不断。其惊人的魅力,曾在最后时刻挽救自杀青年于不死。他就是德国的沃尔夫斯克勒,他于1908年为费尔马大定理设悬赏10万马克(相当于现时的160万美元多),期限1908-2007年。
无数人耗尽心力,空留浩叹。最现代的电脑加数学技巧,验证了400万以内的n,但这对最终证明无济于事。1983年德国的法尔廷斯证明了:对任一固定的n,最多只有有限多个x,y,z,振动了世界,获得菲尔兹奖(数学界最高奖)。
千禧年大奖难题的NS方程解的存在性与光滑性
主条目:navier stokes(纳维叶-斯托克斯存在性与光滑性)起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
千禧年大奖难题的贝赫和斯维讷通-戴尔猜想
主条目:贝赫和斯维讷通-戴尔猜想数学家总是被诸如 那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z⑴等于0,那么存在无限多个有理点(解),相反,如果z⑴不等于0,那么只存在有限多个这样的点。
千禧年七大数学难题如今解决多少了
都已解决。
1、P与NP问题:一个问题称为是P的,如果它可以通过运行多项式次(即运行时间至多是输入量大小的多项式函数)的一种算法获得解决。一个问题成为是NP的,如果所提出的解答可以用多项式次算法来检验。
2、黎曼假设/黎曼猜想:黎曼ζ函数的每一个非平凡零点都有等于1/2的实部。
3、庞加莱猜想:任何单连通闭3维流形同胚于3维球。
4、Hodge猜想:任何Hodge类关于一个非奇异复射影代数簇都是某些代数闭链类的有理线形组合。
5、Birch及Swinnerton-Dyer猜想:对于建立在有理数域上的每一条椭圆曲线,它在一处的L函数变为零的阶都等于该曲线上有理点的阿贝尔群的秩。
6、Navier-Stokers方程组:(在适当的边界及初始条件下)对3维Navier-Stokers方程组证明或反证其光滑解的存在性。
7、Yang-Mills理论:证明量子Yang-Mills场存在,并存在一个质量间隙。
千年数学会议:
在著名的法兰西学院举行。会上,97年菲尔兹奖获得者伽沃斯以“数学的重要性”为题作了演讲,其后,塔特和阿啼亚公布和介绍了这七个“千年大奖问题”。克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的详述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。
每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得一百万美元的大奖。
以上内容参考:百度百科——世界七大数学难题
世界七大数学难题——千禧年难题
20世纪是数学大发展的世纪。数学的许多重大难题得到完满解决, 如费尔玛大定理的证明,有限单群分类工作的完成等, 从而使数学的基本理论得到空前发展。
计算机的出现是20世纪数学发展的重大成就,同时极大推动了数学理论的深化和数学在社会和生产力第一线的直接应用。回首20世纪数学的发展, 数学家们深切感谢20世纪最伟大的数学大师大卫. 希尔伯特。希尔伯特在1900年8月8日于巴黎召开的第二届世界数学家大会上的著名演讲中提出了23个数学难题。希尔伯特问题在过去百年中激发数学家的智慧,指引数学前进的方向, 其对数学发展的影响和推动是巨大的,无法估量的。
效法希尔伯特, 许多当代世界著名的数学家在过去几年中整理和提出新的数学难题, 希冀为新世纪数学的发展指明方向。 这些数学家知名度是高的, 但他们的这项行动并没有引起世界数学界的共同关注。
2000年初美国克雷数学研究所的科学顾问委员会选定了七个“千年大奖问题”, 克雷数学研究所的董事会决定建立七百万美元的大奖基金,每个“千年大奖问题”的解决都可获得百万美元的奖励。克雷数学所“千年大奖问题”的选定,其目的不是为了形成新世纪数学发展的新方向, 而是集中在对数学发展具有中心意义、数学家们梦寐以求而期待解决的重大难题。
2000年5月24日, 千年数学会议在著名的法兰西学院举行。 会上,98年费尔兹奖获得者伽沃斯(Gowers)以“数学的重要性”为题作了演讲, 其后,塔特( Tate)和阿啼亚 (Atiyah) 公布和介绍了这七个“千年大奖问题”。 克雷数学研究所还邀请有关研究领域的专家对每一个问题进行了较详细的阐述。克雷数学研究所对“千年大奖问题”的解决与获奖作了严格规定。 每一个“千年大奖问题”获得解决并不能立即得奖。任何解决答案必须在具有世界声誉的数学杂志上发表两年后且得到数学界的认可,才有可能由克雷数学研究所的科学顾问委员会审查决定是否值得获得百万美元大奖。
这七个“千年大奖问题”是: NP 完全问题, 郝治(Hodge) 猜想, 庞加莱(Poincare) 猜想, 黎曼(Rieman )假设,杨-米尔斯 (Yang-Mills) 理论, 纳卫尔-斯托可(Navier-Stokes)方程, BSD(Birch and Swinnerton-Dyer)猜想。
“千年大奖问题”公布以来, 在世界数学界产生了强烈反响。这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动。认识和研究“千年大奖问题”已成为世界数学界的热点。不少国家的数学家正在组织联合攻关。 可以预期, “千年大奖问题” 将会改变新世纪数学发展的历史进程。
以下是这七个难题的简单介绍。
"千僖难题"之一:P(多项式算法)问题对NP(非多项式算法)问题
在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文·考克(StephenCook)于1971年陈述的。
"千僖难题"之二:霍奇(Hodge)猜想
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
"千僖难题"之三:庞加莱(Poincare)猜想
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是"单连通的",而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
"千僖难题"之四:黎曼(Riemann)假设
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。
"千僖难题"之五:杨-米尔斯(Yang-Mills)存在性和质量缺口
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于"夸克"的不可见性的解释中应用的"质量缺口"假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
"千僖难题"之六:纳维叶-斯托克斯(Navier-Stokes)方程的存在性与光滑性
起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶-斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶-斯托克斯方程中的奥秘。
"千僖难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton-Dyer)猜想
数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(Yu.V.Matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
对于第一个难题,你可以想象:问题的答案就像一条鱼,鱼总是在水里的,如果我们不知道鱼在哪里,只能用一个大网去捞,或是用很多网去捞,如果知道鱼在哪片水域,我们可以用尽量少的网去捞。所以对于这类问题,目前的办法是,用各种算法织就的网去捞,看哪种算法能最快捞到鱼。
千禧年大奖难题的杨-米尔斯规范场存在性和质量缺口假设
主条目:杨-米尔斯存在性和质量缺口(规范场理论)量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。
世界上最难的数学题世界七大数学难题难倒了全世界
今天我们来和大家说说世界七大数学难题,这些可都是世界上最难的数学题哦。 说到数学难题你会想到什么,我最先想到的是哥德巴赫猜想,但其实哥德巴赫猜想并不是这七大数学难题之一,下面就让我们来一起看看当今科技如此发达的情况下还有哪些数学难题。
世界七大数学难题:
1、P/NP问题(P versus NP)
2、霍奇猜想(The Hodge Conjecture)
3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。
4、黎曼猜想(The Riemann Hypothesis)
5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)
6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)
7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)
所谓的世界七大数学难题其实是于2000年5月24日由由美国克雷数学研究所公布的七个数学难题。也被称为千禧年大奖难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金100万美元。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。
一:P/NP问题
P/NP问题是世界上最难的数学题之一。在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。 复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。很可能,计算理论最大的未解决问题就是关于这两类的关系的: P和NP相等吗? 在2002年对于100研究者的调查,61人相信答案是否定的,9个相信答案是肯定的,22个不确定,而8个相信该问题可能和现在所接受的公理独立,所以不可能证明或证否。对于正确的解答,有一个1百万美元的奖励。 NP-完全问题(或者叫NPC)的集合在这个讨论中有重大作用,它们可以大致的被描述为那些在NP中最不像在P中的(确切定义细节请参看NP-完全理论)。计算机科学家现在相信P, NP,和NPC类之间的关系如图中所示,其中P和NPC类不交。
假设P ≠ NP的复杂度类的图解。如P = NP则三个类相同。 简单来说,P = NP问题问道:如果是/不是问题的正面答案可以很快验证,其答案是否也可以很快计算?这里有一个给你找点这个问题的感觉的例子。给定一个大数Y,我们可以问Y是否是复合数。例如,我们可能问53308290611是否有非平凡的因数。答案是肯定的,虽然手工找出一个因数很麻烦。从另一个方面讲,如果有人声称答案是"对,因为224737可以整除53308290611",则我们可以很快用一个除法来验证。验证一个数是除数比找出一个明显除数来简单得多。用于验证一个正面答案所需的信息也称为证明。所以我们的结论是,给定正确的证明,问题的正面答案可以很快地(也就是,在多项式时间内)验证,而这就是这个问题属于NP的原因。虽然这个特定的问题,最近被证明为也在P类中(参看下面的关于"质数在P中"的参考),这一点也不明显,而且有很多类似的问题相信不属于类P。 像上面这样,把问题限制到“是/不是”问题并没有改变原问题(即没有降低难度);即使我们允许更复杂的答案,最后的问题(是否FP = FNP)是等价的。
关于证明的难度的结果
虽然百万美元的奖金和投入巨大却没有实质性结果的大量研究足以显示该问题是困难的,但是还有一些形式化的结果证明为什么该问题可能很难解决。 最常被引用的结果之一是设计神谕。假想你有一个魔法机器可以解决单个问题,例如判定一个给定的数是否为质数,可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论带来的后果是,任何可以通过修改神谕来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。 如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类定理得到证明,该定理的可能证明方法有越来越多的陷阱要规避。 这实际上也是为什么NP完全问题有用的原因:若对于NP完全问题存在有一个多项式时间算法,或者没有一个这样的算法,这将能用一种相信不被上述结果排除在外的方法来解决P = NP问题