本文目录一览:
- 1、应用M/M/C排队论模型优化地铁车站大客流组织 M C
- 2、【数学建模算法】(14)排队论:基本概念
- 3、排队论方法讲解
- 4、西安电子科技大学 - 排队论作业
- 5、运筹学排队论问题~求解
- 6、求以下三种排队论的实例、服务台个数无限制。
- 7、【数学建模算法】(18)排队论:MMs等待制排队模型
- 8、排队论的组成部分
- 9、运筹学排队论问题
应用M/M/C排队论模型优化地铁车站大客流组织 M C
摘 要:随着国内各大城市轨道交通行业的快速发展,地铁运量大、速度快、安全、准点、舒适等优点已经受到广大市民的认可,越来越多的人开始选择地铁作为首要出行工具。每逢工作日早晚高峰、节假日或大型活动举办日,地铁车站的客流量都会大幅攀升,很多车站都会出现大量乘客排队购票的情况。在组织大客流时,车站一般会采用开放人工售票窗口的方式加快疏散速度,提高服务率。乘客总是希望能开放的窗口数量越多越好,车站在客流组织过程中虽然也想更好的为乘客服务,但为了提高运输组织工作效率,人工售票窗口不可能无限制的开放。
本文以运筹学中的排队论原理为基础,首先以地铁车站售票工作为研究对象,建立了地铁站购票多窗口等待制排队模型,其次依据此模型计算出了开放人工售票窗口数量的最优解,最后对计算结果进行了研究和分析,为车站大客流运输组织方案的优化提供了有力的数据论证。
关键词:客流组织;排队论模型;M/M/C模型;客流组织优化
引言
随着城市的快速发展,地铁作为一种特殊的交通运输方式,以其运量大、速度快、能耗低、安全、准点、环境舒适等优势,成为很多市民首选的出行工具。地铁承载着城市交通运输中的重要任务,在一些大型商业圈、火车站、长途汽车站、大型体育场馆、展览馆附近的地铁站,经常会出现短时间瞬间大客流和持续大客流。乘客在购票的过程中的等待时间则会因乘客的增多而变长,大量乘客长时间排队不但影响乘客的出行质量,而且会导致站厅人员聚集、拥挤,进而发生通道被排队人流及伴行等候人员堵塞,人员流动速度明显下降,甚至阻滞不前,极易引发事故。因此尽快疏导购票客流往往成为大客流组织工作的重中之重。
在运能满足条件的前提下,通常大客流组织的过程中,车站为了加快客流的疏散速度,节省乘客购票的排队时间,通常会开放人工售票窗口方便乘客购票。
由于受到人员、设备、场地的限制,人工售票窗口不可能无限制的开放。如何合理的确定开放人工售票窗口的数量,从而达到既能保证客流顺利疏导,又能最大程度节省人力的效果,成为大客流组织工作优化的重点问题。这就需要对乘客排队购票情况建立数学模型进行分析研究。
一、排队系统的组成
任何一个排队问题的基本排队过程都可以用图1-1表示。从图1-1可知,每个顾客由顾客源按一定方式到达服务系统,首先加入队列排队等待接受服务,然后服务台按一定规则从队列中选择顾客进行服务,获得服务的顾客立即离开。通常,排队系统都有输入过程、服务台、服务时间、服务规则等3个组成部分。
图1-1 排队过程示意图
1、输入过程
这是指要求服务的顾客是按怎样的规律到达排队系统的过程,有时也把它称为顾客流,一般可以从3个方面来描述-个输入过程。
(1)顾客总体数,又称顾客源、输入源。这是指顾客的来源。顾客源可以是有限的,也可以是无限的。例如,到售票处购票的顾客总数可以认为是无限的,而某个工厂因故障待修的机床数则是有限的。
(2)顾客到达方式。这是描述顾客是怎样来到系统的,他们是单个到达,还是成批到达。病人到医院看病是顾客单个到达的例子。在库存问题中如将生产器材进货或产品入库看作是顾客,那么这种顾客则是成批到达的。
(3)顾客流的概率分布,或称相继顾客到达的时间间隔的分布。这是求解排队系统有关运行指标问题时,首先需要确定的指标。这也可以理解为在一定的时间间隔内到达K个顾客(K=1、2、 )的概率是多大。顾客流的概率分布一般有定长分布、二项分布、泊松流(最简单流)、爱尔朗分布等若干种。
2、服务台
服务台可以从以下3方面来描述:
(1)服务台数量及构成形式。从数量上说,服务台有单服务台和多服务台之分。从构成形式上看,服务台有:
①单队——单服务台式;(开放一个服务窗口,一列等候服务的队伍。实例:公交汽车排队刷卡服务。)
②单队——多服务台并联式;(开放多个服务窗口,不同服务窗口同时开展同类或类似业务,一列等候服务的队伍,按既定顺序随机到各窗口实施有关业务。实例:银行取号排队等候服务。)
③多队——多服务台并联式;(开放多个服务窗口,同时开展同类或类似业务,多列等候服务的队伍,按各窗口排定序列实施有关业务。实例:食堂窗口排队领餐服务。)
④单队——多服务台串联式;(开放多个服务窗口,顺序开展不同类业务。实例:政务超市办理跨部门审批有关业务。)
⑤单队——多服务台并串联混合式,以及多队--多服务台并串联混合式等等。
(2)服务方式。取决于在某一特定时刻接受服务的顾客数,它有单个服务和成批服务两种。如公共汽车一次就可装载一批乘客就属于成批服务。
(3)服务时间的分布。一般来说,在多数情况下,对每一个顾客的服务时间是一随机变量,其概率分布有定长分布、负指数分布、K级爱尔良分布、一般分布(所有顾客的服务时间都是独立同分布的)等等。
3、服务时间
服务时间是指顾客接收服务的时间规律。顾客接受服务的时间规律往往也通过概率分布描述。一般来说,简单的排队系统的服务时间往往服从负指数分布,即每位顾客接受服务的时间是独立同分布的,其分布函数为B(t)=1-e-mt(t≥0),其中m>0为一常数,代表单位时间的平均服务率,而1/m则是平均服务时间。
4、服务规则。这是指服务台从队列中选取顾客进行服务的顺序。一般可以分为损失制、等待制和混合制等3大类。
(1)损失制。这是指如果顾客到达排队系统时,所有服务台都已被先来的顾客占用,那么他们就自动离开系统永不再来。典型例子是,如电话拔号后出现忙音,顾客不愿等待而自动挂断电话,如要再打,就需重新拔号,这种服务规则即为损失制。
(2)等待制。这是指当顾客来到系统时,所有服务台都不空,顾客加入排队行列等待服务。例如,排队等待售票,故障设备等待维修等。等待制中,服务台在选择顾客进行服务时,常有如下四种规则:
【数学建模算法】(14)排队论:基本概念
排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。
排队论 又称**随机服务系统理论,就是为解决上述问题而发展的一门学科,它研究的内容主要有以下三部分:
下面将对排队论的基本知识进行介绍:
下图是排队论的一般模型:
图中虚线所包含的部分为排队系统。各个顾客从顾客源出发,随机地来到服务机构,按一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。
一般的排队过程都由 输入过程,排队规则,服务过程 三部分组成,现分述如下:
输入过程 是指顾客到来时间的规律性,可能有下列不同情况:
排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为 损失制,等待制和混合制 三种。
举例:小张去银行取钱,发现前面一个顾客身边摆了4个麻袋的硬币要存钱,于是悻悻地换了一个窗口。
举例:小张去银行取钱,发现前面有一条队的人很少,于是赶紧挤上前去排队。
举例:小张发现柜台前面有一条排队等待线,排队队伍长度不能够超过这条线,于是换到了还没有达到排队限度的队伍里。
1.服务机构 单服务台 , 多服务台并联 (每个服务台同时为不同顾客服务); 多服务台串联 (多服务台依次为同一顾客服务); 混合制 。 2.服务规则 (1)先到先服务 (2)后到先服务 (3)随机服务,在队列中随机选人进行服务 (4)特殊优先服务,对病情危急的病人优先治疗。
:顾客到达流或顾客到达时间的分布。 :服务时间的分布。 :服务台数目。 :系统容量限制。 :顾客源数目。 :服务规则。(先到先服务FCFS,后到先服务LCFS)
1.平均队长 : 正在被服务和正在等待服务 的顾客数之和的数学期望。 2.平均排队长 :指系统内 等待服务 的顾客数的数学期望。 3.平均逗留时间 :顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)。 4.平均等待时间 :指一个顾客在排队系统中排队等待时间。 5.平均忙期 :指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲止的时间)长度的数学期望。
还有由于顾客被拒绝而使企业受到损失的 损失率以及以后经常遇到的 服务强度等,这些都是很重要的指标。
计算这些指标的基础是表达系统状态的概率。所谓 系统的状态即指系统中顾客数,如果系统中有 n 个顾客就说系统的状态是 n ,它的可能值是: 1.队长没有限制时: 2.队长有限制,最大数为 时, 3.损失制,服务台个数是 时, 这些状态的概率一般是随时刻 而变化,所以在时刻 ,系统状态为 的概率用 表示。稳态时系统状态为 的概率用 表示。
排队论方法讲解
排队论方法讲解如下:
排队论是运筹学的一个新分支。
排队论是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,市内电话占线等现象。排队论的基本思想是1909年丹麦数学家、科学家,工程师 A. K. 埃尔朗在解决自动电话设计问题时开始形成的,当时称为话务理论。
他在热力学统计平衡理论的启发下,成功地建立了电话统计平衡模型,并由此得到一组递推状态方程,从而导出著名的埃尔朗电话损失率公式。
排队规则:
排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务。
如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
自20世纪初以来,电话系统的设计一直在应用这个公式。30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流。瑞典数学家巴尔姆又引入有限后效流等概念和定义。他们用数学方法深入地分析了电话呼叫的本征特性,促进了排队论的研究。
50年代初,美国数学家关于生灭过程的研究、英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法,为排队论奠定了理论基础。在这以后,L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。70年代以来,人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。
西安电子科技大学 - 排队论作业
**排队论在食堂系统中的应用
每次下课的时候,同学们都争相跑向食堂去买饭,卖饭窗口前没一会儿便排成了长长的队伍,食堂也立即变得拥挤不堪。
学生食堂的卖饭窗口个数和同学们吃饭的方便程度有关。窗口太少,吃饭高峰期同学排队等待时间很长,经常引发学生的不满情绪。而窗口太多,又会造成资源浪费,增加食堂成本。为此,我选择了学生食堂二楼作为研究对象来分析这个问题,看能否为食堂合理设置服务窗口提出建议,在这两者之间进行权衡,找到最佳的窗口数量。
1.1 排队过程的一般模型:
一般的排队系统都有三个基本组成部分:输入过程;排队规则;服务机构。
一 输入过程
输入过程考察的是顾客到达服务系统的规律。可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。对于随机型的情形,要知道单位时间内的顾客到达数或到达的间隔时间的概率分布。
排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务。如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
可以是一个或多个服务台。服务时间一般也分成确定型和随机型两种。但大多数情形服务时间是随机型的。对于随机型的服务时间,需要知道它的概率分布。
二模型理论分析
1.2.1模型分类
排队模型的表示:
X/Y/Z/A/B/C
X—顾客相继到达的间隔时间的分布;
Y—服务时间的分布;
M—负指数分布、D—确定型、Ek —k阶爱尔朗分布。
Z—服务台个数;
A—系统容量限制(默认为∞);
B—顾客源数目(默认为∞);
C—服务规则 (默认为先到先服务FCFS)。
1.2.2 模型求解
一个实际问题作为排队问题求解时,只有顾客到达的间隔时间分布和服务时间的分布须要实测的数据来确定,其他的因素都是在问题提出时给定的。并且必须确定用以判断系统运行优劣的基本数量指标,解排队问题就是首先求出这些数量指标的概率分布或特征值。这些指标通常是:
[系统中顾客数]=[在队列中等待服务的顾客数]+[正被服务的顾客数]
(2)逗留时间:一个顾客在系统中停留时间,包括等待时间和服务时间,其
(3)忙期:从顾客到达空闲服务机构起到服务机构再次为空闲这段时间长度;
系统状态:即指系统中的顾客数;
表示,即在t时刻系统中有n个顾客的概率;
要解决排队问题,首先要确定排队系统的到达间隔时间分布与服务时间分布。要研究到达间隔时间分布与服务时间分布需要首先根据现有系统原始资料统计出它们的经验分布,然后与理论分布拟合,若能对应,我们就可以得出上述的分布情况。
1、经验分布
经验分布是对排队系统的某些时间参数根据经验数据进行的统计分析,并依据统计分析结果假设其统计样本的总体分布,选择合适的检验方法进行检验,当通过检验时,我们认为时间参数的经验数据服从该假设分布。
2、泊松分布
下面我们在一定的假设条件下,推出顾客的到达过程就是一个泊松过程。
(t2>t1,n≥0)
符合于下述三个条件时,我们说顾客到达过程就是泊松过程。
(1)再不相重叠的的时间区间内顾客到达数是相互独立的。
(2)对于足够小的Δt,在时间区间[t,t+Dt)内有1个顾客到达的概率为
(λ>0 是常数,称为概率强度)。
(3)对充分小的Δt,在时间区间[t,t+Δt)内有2个或2个以上顾客到达的概率是Δt一高阶无穷小,即
t>0,n=0,1,2,…
负指数分布
由前知,λ表示单位时间内顾客平均到达数,这里1/λ表示顾客到达的平均间隔时间,两者是吻合的。
下面我们再谈一下服务时间的分布:
其中:m表示单位时间内能被服务完成的顾客数,即平均服务率。1/m表示一个顾客的平均服务时间。令[图片上传失败...(image-66c5ad-1602761504886)] 则ρ称为服务强度。
食堂窗口与就餐人员之间是服务机构与顾客的关系,可以用服务系统模型来表示,就餐人员打饭的过程,即为顾客接受服务机构服务的过程。
故可以用排队论模型中有关服务系统的理论来分析和解决该问题。
学生到食堂就餐的时刻可以认为是随机的,若用N(t)表示[0,t)时间内到达该服务系统的顾客数,则对于任意一个给定的时刻t,N(t)的值都是随机的,即随机变量族{N(t)|t∈[0,A)}是一个随机过程.同样,打饭需要的时间长短因人而异,也认为是随机的,若用V(n)表示第n位顾客所需的服务时间,则有随机变量族{Vn,n=1,2,…}。
我们将学生就餐的过程看作是泊松过程进行讨论。
为了使模型便于求解,假定每个工作人员的打饭效率相同,每个窗口的饭菜相同,即不会出现某个窗口“扎堆”排长队或无人问津的现象。由于每个窗口独立排队、服务,这里把m个窗口服务X位顾客的情况等同为1个窗口服务情况来讨论.又假定食堂服务系统的容量无限,来到食堂就餐的学生不会在未打好饭之前离去.这样,得到一个输入过程为最简单流,服务时间为负指数分布,1个服务台,系统容量无限,顾客源数无限的等待制排队模型.
这里,对有关符号的数量指标加以说明:
λ ——单位时间内平均到达的顾客数,即平均到达率;
μ ——单位时间内受到服务的顾客数,即平均服务率;
t ——每位顾客的平均服务时间;
Lq ——等待队长的期望值;
Wq ——等待时间的期望值.
现对食堂二楼的4个服务窗口进行讨论:
在11:40至12:20之间的40分钟为大家用餐的高峰,每4分钟为1个时段,统计到达人数,如下表.
求得平均到达率为:
λ= 5.94 (人/分钟)
相应地,对其中50名顾客接受服务的时间进行统计,得到下表.
求得平均服务时间为:
t = 0.157(分钟)
平均服务率为:
μ =1/t= 6.37 (顾客/分钟)
等待队长的期望值为:
Lq = 12.88(顾客)
等待时间的期望值为:
Wq =Lq /λ= 2.17(分钟)
由上述模型求出的平均服务时间为9.4秒,这与实际情况大体吻合;等待队长的期望值为12.88人,明显偏长,但实际上,高峰期往往排队会更长些,这主要是因为在高峰期,用餐人数比闲时明显增多,且持续时间较长;相应地,现实中高峰期的等待时间也比求得的平均等待时间(2.17分钟)要久.另外,实际上并不是每个窗口的饭菜都一样的,存在个别窗口很受欢迎或不受欢迎的情况,造成该窗口前的排队明显过长.就餐人员排队时间过长,自然会产生不满情绪。[图片上传失败...(image-44f3e3-1602761504888)]
相应地,在就餐人数较少时,单位时间到达的顾客数明显少于单位时间工作人员所能服务的人数,造成资源浪费,增加了食堂的成本.[图片上传失败...(image-6b2218-1602761504888)]
因此,该食堂的窗口设置尚不够合理.现从就餐人员排队时间过长引起不满和食堂资源浪费增加成本两个方面来考虑改进窗口设置.
11:40前, 3个窗口即可; 11:45应开放4个窗口;11:55应开放5个窗口,以防止出现排队过长的现象;直到12:15再减少为4个窗口,至此时,5、6、7时段排队的就餐人员已经服务完毕;12:20后只需2个窗口即可.调整后,各时段能够服务人数和需要排队等待人数如下表.(该表显示了不同时段的窗口数以及服务情况)
这里做出说明,大约到11:58,到就餐人数的才达到5个窗口能够服务的人数,按平均服务时间来算,11:45至11:48之间的3分钟时间内,5个窗口的服务能力有剩余,完全能够完成之前排队人员的服务.
窗口调整后的等待时间(和部分取最大值)仅为调整前(2.17分钟)的一半:(6.6+19.6+8.6)/5×0.157=1.09(分钟),改进的效果十分明显.
对于食堂的运营成本, 其它因素不变的情况下,这里只讨论人力部分.该食堂11:30至12:20之间营业,每个窗口有1名工作人员,总的人力成本为:50×4=200(人·分钟).调整窗口设置后,11:30至11:40只需最多2个窗口,12:20至12:30也只需最多2个窗口,总的人力成本最多为:2×10+3×5+4×10+5×20+4×5+2×10=190(人·分钟).
可以看出,窗口设置按照该方案调整后,食堂的运营成本也会相应减少。食堂可以根据这个结论进行参考并相应调整窗口数量,得到最优方案。
心得体会:
以上就是我在学习了排队论这门课程后对食堂窗口问题的分析,过程中结合了网上查找的相关文献以及资料来帮助自己完成。通过这次作业,我尽量认真分析了网上相关文献内容并将课上学习的内容相结合,对排队论的理解更加深刻。
在此也十分感谢魏老师在课上的认真讲解,并能将理论与实际生活相结合,让我学到很多知识并激发了我对这门学科的学习兴趣。
【参考文献】
运筹学排队论问题~求解
运筹学是现代管理学的一门重要专业基础课。它是20世纪30年代初发展起来的一门新兴学科,其主要目的是在决策时为管理人员提供科学依据,是实现有效管理、正确决策和现代化管理的重要方法之一。该学科是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学、经济管理等专业密切相关。
排队论又叫随机服务系统理论。最初是在二十世纪初由丹麦工程师艾尔郎关于电话交换机的效率研究开始的,在第二次世界大战中为了对飞机场跑道的容纳量进行估算,它得到了进一步的发展,其相应的学科更新论、可靠性理论等也都发展起来。
这是一个MM1排队模型,顾客到达服从参数为4的泊松分布,服务时间服从参数为60/10=6的负指数分布,则p=4/6=2/3,即系统忙时概率为2/3,则
1、空闲时间概率为1-2/3=1/3
2、在店内顾客平均数LS=4/(6-4)=2人
3、逗留时间WS=1/(6-4)=0.5小时
4、等待时间2/3/(6-4)=1/3小时
理发时间为0.5-1/3=1/6小时
求以下三种排队论的实例、服务台个数无限制。
1.顾客相继到达的间隔时间的分布为随机;服务时间的分布为随机。
例如:餐馆就餐。就餐人数和时间不定,订餐质量决定服务准备时间。
2.顾客相继到达的间隔时间的分布为定数;服务时间的分布为随机。
例如:学生放学,校车(非法校车,时间不定)接送。
3.顾客相继到达的间隔时间的分布为随机;服务时间的分布为定数。
例如:公交车站的黑出租。乘客人数和密度不定,黑出租数量和忙闲不定。
1.去餐馆吃饭
2.大学生上课占用教室
3.去银行办业务
【数学建模算法】(18)排队论:MMs等待制排队模型
单服务台等待制模型 是指:顾客的相机到达时间服从参数为 的负指数分布,服务台个数为1,服务时间 服从参数为 的负指数分布,系统空间无限,允许无限排队,这是一类最简单的排队系统。
记 为系统到达平衡状态后队长 的概率分布,则由(17)中关于指数分布的分析,并注意到 和 。记
并设 (否则队列将排至无限远),则:
所以:
其中
因此
上面两个公式废除了在平衡条件下系统中顾客数为 的概率。由上式可以看出, 是系统中至少有一个顾客的概率,也就是服务台处于忙的状态的概率,因此,因此也成 为服务强度,它反映了系统繁忙的程度。此外,上述式子的推导前提是 即要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。
已经得到概率分布,可以求得期望,期望即为平均队长:
平均排队长是:
关于顾客在系统中的逗留时间 ,可说明它服从参数为 的负指数分布,即
可直接得到平均逗留时间:
因此,顾客在系统中的逗留时间为等待时间 和接受服务时间 之和,即:
故由:
可得等待时间 为:
与平均逗留时间 具有关系:
同理,平均排队长 与平均等待时间 具有关系
上面两个公式称为Littile公式,是排队论中一个非常重要的公式。
在平衡状态下,忙期 和闲期 一般为随机变量,求取它们的分布是比较麻烦的。因此,我们来求一下平均忙期 和平均闲期 。由于忙期和闲期出现的概率分别为 和 ,所以在一段时间内可以认为忙期和闲期的总长度之比为 。又因为忙期和闲期是交替出现的,所以在充分长的时间里,它们出现的平均次数应是相同的。于是,忙期的平均长度 和闲期的平均长度 之比也应是 ,即
又因为在到达为 Poisson 流时,根据负指数分布的无记忆性和到达与服务相互独立的假设,容易证明从系统空闲时刻起到下一个顾客到达时刻止(即闲期)的时间间隔仍服从参数为 的负指数分布,且与到达时间间隔相互独立。因此,平均闲期应为 ,这样,便求得平均忙期为:
可发现,平均逗留时间 =平均忙期 。
从直观上看,顾客在系统中逗留的时间越长,服务员连续繁忙的时间也就越长。
排队论的组成部分
排队系统又称服务系统。服务系统由服务机构和服务对象(顾客)构成。服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。图1为一最简单的排队系统模型。排队系统包括三个组成部分:输入过程、排队规则和服务机构。 输入过程考察的是顾客到达服务系统的规律。它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。随机型的输入是指在时间t内顾客到达数 n(t)服从一定的随机分布。如服从泊松分布,则在时间t内到达n个顾客的概率为或相继到达的顾客的间隔时间T 服从负指数分布,即式中λ为单位时间顾客期望到达数,称为平均到达率;1/λ为平均间隔时间。在排队论中,讨论的输入过程主要是随机型的。 可以是一个或多个服务台。多个服务台可以是平行排列的,也可以是串连排列的。服务时间一般也分成确定型和随机型两种。例如,自动冲洗汽车的装置对每辆汽车冲洗(服务)时间是相同的,因而是确定型的。而随机型服务时间v 则服从一定的随机分布。如果服从负指数分布,则其分布函数是式中μ为平均服务率,1/μ为平均服务时间。
运筹学排队论问题
(1)这是(M/M/1/N/)模型,即是(M/M/1)模型中系统容量有限的排队论模型,N=100。
(2)状态概率Pn表示系统处于繁忙状态时的概率,即有车辆进入停车场的概率。
队长表示停车场内的车辆数。
排队长表示排队进入停车场的车辆数。
逗留时间指的是车辆从等待进入停车场的时间和在停车场内的时间之和。
等待时间则就是车辆等待进入停车场所用的时间。
(3)这就要看P101的概率,这就是指当有100个车辆在停车场内时,第101个车辆离开的概率。这个概率也叫做是停车场的损失率。损失率过大的话就必须要考虑扩大停车场的容量了,否则将因此失去很多顾客。