本文目录一览:
- 1、抽屉原理的规律
- 2、小学数学中的抽屉原理是怎么回事
- 3、抽屉原理
- 4、什么是抽屉原理
- 5、如何利用数学原理解释生活中的小规律?
- 6、抽屉原理
- 7、抽屉原理的计算公式?
- 8、公务员考试数量关系经典题解——抽屉问题
- 9、抽屉原理是什么意思?
抽屉原理的规律
抽屉原理
日常生活中,人们只要稍加留意,就不难发现某些带有规律性的事物.比如,将10个苹果放进9个抽屉,那么肯定有一个抽屉里放进了两个或更多的苹果.这是大家都能理解的一个简单道理,该道理即被称为抽屉原理或鸽笼原理(以鸽子比做苹果,以笼子比做抽屉).抽屉原理的一般形式为:将n+1个苹果放进n个抽屉里,则至少有一个抽屉里放进了两个或两个以上的苹果.
千万别小看这个既平常又简单的原理,许多有趣的问题,都可以用抽屉原理来
解决.比如,任意13个人中,必然有2个人是在同一个月份出生的.只需要将13个人看成苹果,12个月份看成抽屉,于是由抽屉原理就得到了结论.再比如,在边长为1的正方形内,任意给定5个点,则其中必有2个点,它们之间的距离不会大于1/2
.证明这个问题只需要将正方形分为面积相等的4等分,则4个小正方形的边长都是1/2,每个小正方形内任意两点之间的距离均不会大于大正方形的对角线长1/2.
将5个点看成苹果,4个小正方形看成抽屉,由抽屉原理,必然有一个小正方形中有2个点,于是这两个点之间的距离不大于1/2.
满意请采纳。
小学数学中的抽屉原理是怎么回事
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
抽屉原则一:如果把(n+1)个物体放在n个抽屉里,那么必有一个抽屉中至少放有2个物体.
例:把4个物体放在3个抽屉里,也就是把4分解成三个整数的和,那么就有以下四种情况:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
观察上面四种放物体的方式,我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体,也就是说必有一个抽屉中至少放有2个物体.
抽屉原则二:如果把n个物体放在m个抽屉里,其中n>m,那么必有一个抽屉至少有:
①k=[nm]+1个物体:当n不能被m整除时.
②k=nm个物体:当n能被m整除时.
理解知识点:[X]表示不超过X的最大整数.
例:[4.351]=4;[0.321]=0;[2.9999]=2;
关键问题:构造物体和抽屉.也就是找到代表物体和抽屉的量,而后依据抽屉原则进行运算.
【命题方向】
经典题型:
例1:在任意的37个人中,至少有( )人属于同一种属相.
A、3 B、4 C、6
分析:把12个属相看做12个抽屉,37人看做37个元素,利用抽屉原理最差情况:要使属相相同的人数最少,只要使每个抽屉的元素数尽量平均,即可解答
解:37÷12=3…1
3+1=4(人)
答:至少有4人的属相相同.
故选:B
点评:此题考查了利用抽屉原理解决实际问题的灵活应用,关键是从最差情况考虑
例2:在一个不透明的箱子里放了大小相同的红、黄、蓝三种颜色的玻璃珠各5粒.要保证每次摸出的玻璃珠中一定有3粒是同颜色的,则每次至少要摸( )粒玻璃珠.
A、3 B、5 C、7 D、无法确定
分析:把红、黄、蓝三种颜色看做3个抽屉,考虑最差情况:每种颜色都摸出2粒,则一共摸出2×3=6粒玻璃珠,此时再任意摸出一粒,必定能出现3粒玻璃珠颜色相同,据此即可解答
解:根据题干分析可得:
2×3+1=7(粒),
答:至少摸出7粒玻璃珠,可以保证取到3粒颜色相同的玻璃珠.
故选:C
点评:此题考查了利用抽屉原理解决实际问题的灵活应用.
(参考来源:jyeoo)
抽屉原理
1,解:摸出5个的时候,至少有2个颜色相同,最极端的时候,每种颜色的小球每个都摸出了一个,一共摸出了4个,最后随便摸出一个,就能保证有2个小球的颜色相同。 5÷4=1……1,1+1=2。
摸出9个的时候,至少有3个颜色相同,最极端的时候,每种颜色的小球每个都摸出了两个,一共摸出了8个,最后随便摸出一个,就能保证有3个小球的颜色相同。9÷4=2……1, 2+1=3,。
摸出13个的时候,至少有4个颜色相同,最极端的时候,每种颜色的小球每种都摸出了3个,一共摸出了12个,最后随便摸出一个,就能保证有4个小球的颜色相同。13÷4=3…… 1,3+1=4。
规律:苹果数÷抽屉数=平均数……余数,能够保证的数目=平均数+余数。
什么是抽屉原理
抽屉原理指的是桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。又叫鸽巢原理、重叠原理。
抽屉原理的一般含义为:如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。为小学六年级课程。在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,5的手套各有两只,同号的两只是一双。
扩展资料:
第一抽屉原理
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn——1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
参考资料:百度百科-抽屉原理
抽屉原理1:把n+1个元素分成n类,不管怎么分,则一定有一类中有2个或2个以上的元素。
抽屉原理2:把m个元素任意放入n(n<m=个集合,则一定有一个集合呈至少要有k个元素。
抽屉原理3:把无穷多个元素放入有限个集合里,则一定有一个集合里含有无穷多个元素。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
扩展资料
运用:
1、教室里有5名学生正在做作业,今天只有数学、英语、语文、地理四科作业。求证这5名学生中,至少有两个人在做同一科作业。
证明:将5名学生看作5个苹果,将数学、英语、语文、地理作业各看成一个抽屉,共4个抽屉。由抽屉原理1,一定存在一个抽屉,在这个抽屉里至少有2个苹果。即至少有两名学生在做同一科的作业。
2、木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球。
把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,大于3的最小数字是4。故至少取出4个小球才能符合要求。
参考资料来源:百度百科-抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
扩展资料:
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
参考资料:抽屉原理_百度百科
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”
例子:
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
扩展资料:
第一抽屉原理:
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
参考资料:百度百科-----抽屉原理
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
扩展资料
1、抽屉原理有两条基本的原则:
(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m×x×k(x>k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有m+1个或更多个元素。
2、例题:
某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?
【思路】把一年中的天数看成是抽屉,把学生人数看成是元素。把367个元素放到366个抽屉中,至少有一个抽屉中有2个元素,即至少有两个学生的生日是同一天。
平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。
参考资料来源:百度百科 _抽屉原理(名词)
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
第一抽屉原理:
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里 有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
扩展资料:一般表述:
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。
在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
用高斯函数来叙述一般形式的抽屉原理的是:将m个元素放入n个抽屉,则在其中一个抽屉里至少会有
[(m-1)/n]+1个元素。
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。
根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。
如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。
不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
表现形式:
把它推广到一般情形有以下几种表现形式。
形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
证明:(反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:
a1+a2+…+an≤1+1+…+1=n
形式二:设把nm+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于m+1。
证明:(反证法)假设结论不成立,即对每一个ai都有ai
知识扩展——高斯函数[x]定义:对任意的实数x,[x]表示“不大于x的最大整数”。例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1
形式三:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。
证明:(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:
a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n
k个[n/k] ∴ a1+a2+…+ak
为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。
证明:(用反证法)假设结论不成立,即对每一个ai都有ai
形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。(借由康托的无穷基数可将鸽巢原理推广到无穷集中。)
参考资料:百度百科-抽屉原理
如何利用数学原理解释生活中的小规律?
1、抽屉原理“任意367个人中,必有生日相同的人。” “从任意5双手套中任取6只,其中至少有2只恰为一双手套。” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。” 这里用到的是抽屉原理,抽屉原理的内容可以用形象的语言表述为: “把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。” 在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。 如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述: “把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。” 抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
2、涨跌停现象
假设你有10万元:
第一种情况:第一天涨停后是11万元,第二天跌停后剩下9.9万元。
第二种情况:第一天跌停后是9万元,第二天涨停后还是9.9万元。
3、补仓或定投现象
假设一个基金净值10元的时候,你买入了1万元。第二个月,基金净值跌到5元的时候,你又买了1万元。
请问:你的持仓成本是多少? A.7.5元 B.6.67元
正确答案:持仓成本是6.67元。
这就是基金定投的魅力,可以让你的持仓成本大幅降低。
4、蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
5、丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!
6、冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
7、保本的资产组合
以下两种投资产品:
假设你有100万元,你投资80万到资产A,投资20万到资产B。
这样你就做出了一个保本的投资组合:最差收益为零,最佳收益为12%。
8、一个带有赌博性质的游戏:主事者将4种不同颜色的球,红、黄、蓝、白每样5个,总共20个,全部放进箱子里,参与者从里面任意摸出10个球。如果4种颜色的组合是5500,就能得到一台莱卡照相机;如果是5410,就送你一条中华烟;但有两个组合是你反过来要给他钱的:一个是3322,一个是4321。
结果玩游戏的人到那儿一抓,经常是3322或4321。这是一道非常容易计算的数学题。西安电子科技大学校长梁昌洪是位数学家,他在学校里组织了几百个学生测试,又在电脑上算,结果都一样:3322和4321所占的比率最高,接近30%;而5500呢,只占十几万分之一。
9、收益率现象:如果你用10万元买了一只股票,涨了100%后是20万;但要再跌50%,就又回到10万元了。要知道,跌50%可比涨100%简单多了。
10、零与无穷大的迷思:“0”也是我感兴趣的数字。我觉得“0”从哲学上说,就是中国人所说的“无”。万物生于有、有生于无,所以无是本源。无当然是本源,因为我们每一个人都生于无。在我们被母亲怀胎之前,我们就是无。
中国人在这个“无”字上是很下功夫的。老子主张无为、无欲,“为学日益,为道日损,损之又损,以至于无为。无为而无不为。”
为什么要“无为无不为”呢?因为有生于无,无又不是都有。所以中国古人又说,无非有,无是没有;无非无,无也不是永远无;无因为能够变成有,所以无非非无,无不是把无给否定了,无本身是不否定无的。无为什么能够变成有呢?因为有了无穷大的帮忙,无和无穷大结合起来,就有可能产生出“有”来。
0和无穷大之间,有和无之间,形成了各种悖论。数学悖论里最基本的问题就是,如果你承认有,那0也是一种有的方式。如果0变成了有的方式,那就太受鼓舞了。
扩展资料:
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
参考资料:百度百科——数学
抽屉原理
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
例1:400人中至少有两个人的生日相同.
解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.
又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.
抽屉原理:
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。
一. 抽屉原理最常见的形式
原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.
原理1 2都是第一抽屉原理的表述
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能
二.应用抽屉原理解题
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
例1:400人中至少有两个人的生日相同.
解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.
又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.
上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.)
抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。
(一) 整除问题
把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。
分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。
例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.
证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:
[0],[1],[2]
①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除.
②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数.
③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.
例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.
证明:设这11个整数为:a1,a2,a3……a11 又6=2×3
①先考虑被3整除的情形
由例2知,在11个任意整数中,必存在:
3|a1+a2+a3,不妨设a1+a2+a3=b1;
同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2;
同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3
②再考虑b1、b2、b3被2整除.
依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2
则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6
∴任意11个整数,其中必有6个数的和是6的倍数.
例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.
分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.
(二)面积问题
例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点.
证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.
(三)染色问题
例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.
证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.
例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?
解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。
例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。
解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。
若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。
若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。
三.制造抽屉是运用原则的一大关键
例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答 我们用题目中的15个偶数制造8个抽屉:
凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。
例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。
例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。
分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):
{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。
从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。
例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。
分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。
抽屉原理
把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。
形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:
a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。
形式二:设把n?m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有:
a1+a2+…+an≤m+m+…+m=n?m<n?m+1
n个m 这与题设相矛盾。所以,至少有存在一个ai≥m+1
高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”.
例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1
形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:
a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n
k个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k]
形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。
所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi
形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。
例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同.
解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同.
例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.
证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数.
若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确.
例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同.
证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里.
(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有:
4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同.
练习:1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点.
2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于 .
3.求证:任意四个整数中,至少有两个整数的差能够被3整除.
4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多.
5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同.
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
... ...
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.
原理1 2都是第一抽屉原理的表述
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能
这是高中的排列组合问题
其实用红黄蓝绿四种颜色排成一排一共有4*3*2*1=24种排法
所以通讯员只能打出24种不同的信号,然而他打出50次信号,所以答案应该是至少有2中信号是重复的,这时,重复的信号出现了3次。
32班买了一些4角一张的画片,共花去35元.已知8角一张的画片比4角一张的画片多20张,这两种画片各买了多少张?
有蜘蛛、蜻蜓和蝉3种动物共18只,他们共有腿118条,翅膀20对,三种动物各有多少只?(其中蜘蛛有8条腿,蜻蜓有6条退和2对翅膀,蝉有6条腿和1对翅膀)
我六年级, 请用假设法或者1元1次方程解答.或者用算式`
谢谢, 我给150分`
回答好我再+分`
详细,点`
问题补充:... 32班就是三年级2班- -`
我都说了我不会`
也不想看到
一元二次方程`
不要有Y`
解:设4角的画片张数为X张,8角的画片张数为(X+20)张。
35元=350角
4X+8(X+20)=350
4X+8X+160=350
4X+8X=350-160
12X=190
X=95/6
X=15又5/6
X+20=(15又5/6)+20=(35又5/6)张
答:4角的画片张数为(15又5/6)张,8角的画片张数为(35又5/6)张。
2、
解:设蜻蜓有X只,蝉有[(20-2X)/1]只,蜘蛛有[18-X-(20-2X)/1]只。
6X+6[(20-2X)/1]+8[18-X-(20-2X)/1]=118
6X+120-12X+8[18-X-20+2X]=118
6X+120-12X+144-8X-160+16X=118
6X-12X-8X+16X=118-120-144+160
2X=14
X=7
(20-2X)/1=(20-2*7)/1=(20-14)/1=6/1=6只
18-X-(20-2X)/1=18-7-(20-2*7)/1=18-7-6=5只
答:蜻蜓有7只,蝉有6只,蜘蛛有5只。
抽屉问题,又叫狄利克雷原则,原则一:把多于n个的元素,按任一确定的方式分成n个集合,那么一定至少有一个集合中,含有至少两个元素。原则二:把多于m×n个元素放入n个抽屉中,那么,一定有一个抽屉里有m+1个或者m+1个以上的元素。抽屉原则是证明符合某种条件的对象存在性问题有力工具。应用抽屉原则解决问题的关键是如何构造抽屉。
例1:在一个大口袋中装着红、黄、绿三种玻璃球各有很多个。如果每次随意拿3个球,拿11次,至少有两次玻璃球颜色状况完全相同,请说明理由。
分析:所谓两次玻璃球颜色状况完全相同,是指如果有一次拿的是1黄2绿,另一次也拿的是1黄2绿,它们的颜色状况就是完全相同。怎么说明呢?这就需要造抽屉,用抽屉原则来说明。随意拿出3个球,会有不同的状况,我们把它找全,每一种颜色状况就是一个抽屉,有多少种不同的颜色状况,就有多少个抽屉。
解:每次拿3个球,有10种不同的颜色状况,把这10种不同的颜色状况看成10个抽屉,拿的11次看成11个物体,根据抽屉原则一,把11个物体放入10个抽屉中,一定有两个或两个以上的物体。也就是说拿11次,一定至少有两次玻璃球的颜色状况完全相同。
例2:求证1997年1月出生的任意32个孩子中,至少有两个人是同一天出生的。
分析:1997年1月份共31天,为了回答上述问题,我们不妨假设1月份这31天为31个抽屉,而将1月份出生的任意32个孩子看作32个元素。根据抽屉原理一知,有一只抽屉里至少放入了两个元素。
解:答:1月份出生的任意32个孩子中,至少有两个人是同一天出生的。
练习:
1、求证:任意互异的8个整数中,一定存在6个整数x1、x2、x3、x4、x5、x6使得(x1-x2)·(x3-x4)·(x5-x6)恰是105的倍数。
分析:由于105=3×5×7,而3、5、7两两互质,所以只要能找到两个数,比如x1、x2,使得x1-x2是7的倍数,同理x3-x4是5的倍数,x5-x6是3的倍数,题目即得证。
解:根据抽屉原理一,在所给的任意8个整数中,必有两个整数被7除的余数相同,不妨设这两个数为x1、x2,则有7|(x1-x2),或表示为:x1-x2=7k1(其中k1为不等于零的整数)。在余下的6个数中,必有两个数被5除的余数相同,不妨设这两个数为x3、x4,使得x3、x4满足:x3-x4=5k2(k2为非零整数)。在余下的4个数中,必有两个整数被3除所得余数相同,不妨设这两个数为x5、x6,使得x5-x6=3k3(k3为非零整数)。
(x1-x2)·(x3-x4)·(x5-x6)
=7k1·5k2·3k3
=105×整数
即:从任意给定的互异的8个整数中,一定可以找到6个数x1、x2、x3、x4、x5、x6使得(x1-x2)·(x3-x4)·(x5-x6)是105的倍数。
2、一个袋里有四种不同颜色的小球,每次摸出两个,要保证有10次所摸的结果是一样的,至少要摸多少次?
分析:当摸出的两个球的颜色相同时,可以有四种不同的结果。当摸出的两个球的颜色不同时,最多可以有3+2+1种不同的结果。将上述10种不同的结果作为10个抽屉。
解:要求10次摸出的结果相同,依抽屉原理二,至少要摸9×10+1=91(次)。
3、 一个圆上有40条直径,在每条直径两端各填上一个数,所填数字可以从1到20中任意选。一定存在两条直径,两端点数字之和相等。
分析:我们做抽屉的方向一定是当每条直径的两端从1到20中任选数字填在上面时,会有多少种不同的和。把这些不同的和分别作为抽屉。再去与直径的条数做比较,就可以得出结论。
解:直径两端和最小的是2,最大的是40。因此,共有39种不同的和,把39种不同的和看成39个抽屉,直径的条数是40,大于39,所以一定存在着两条直径,两端数字之和相等。
4、能否在8行8列的方格表的每一个空格中分别填上1、2、3这三个数字中的任意一个,使得每一行、每一列及对角线AC、BD上的各个数字的和各不相同?对你的结论加以说明。
分析与解答:8行8列及两条对角线,共有18条“线”,每条“线”上都填有8个数字,要使各条“线”上的数字和均不相同,那么各条“线”上的数字和的取值情况应不少于18种。下面我们来分析一下各条“线”上取不同和的情况有多少种。如果某一条“线”上的8个数字都填上最小的数1,则可得到数字和的最小值8;如果某一条“线”上的8个空格中都填上最大的数3,那么可得到数字和的最大值24。由于数字及数字和均为整数,所以从8到24共有17种不同的值。我们将数字和的17种不同的值看作17个抽屉,而将18条“线”看作18个元素。根据抽屉原理一,将18个元素放入17个抽屉中,一定有一只抽屉中放入了至少两个元素。即18条“线”上的数字和至少有两个相同,所以不可能使18条“线”上的各数字和互不相同。
5、由6个队参加的单循环比赛(每两个队都要比赛一场),无论比赛进行到什么时候,一定存在两个队,这两个队比赛过的场次数相同。
分析:无论比赛进行到什么时候,所有比赛过的比赛过的场次从0场到5场都有可能出现。因此,就会有5个不同的抽屉。
解:参赛的队有6个,有5个抽屉,根据抽屉原则一,无论比赛进行到什么时候,一定有两个队比赛过的场次相同。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
运用抽屉原理解题时,要从最不利的情况去考虑,所以,抽屉原理也叫最不利原理
抽屉原理 桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。这一现象就是我们所说的抽屉原理。
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理。它是组合数学中一个重要的原理。
一. 抽屉原理最常见的形式
原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.
原理1 2都是第一抽屉原理的表述
第二抽屉原理:
把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能
二.应用抽屉原理解题
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
例1:400人中至少有两个人的生日相同.
解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.
又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
例2: 幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.
解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.
上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少.)
抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。下面我们来研究有关的一些问题。
(一) 整除问题
把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数。
例1 证明:任取8个自然数,必有两个数的差是7的倍数。
分析与解答 在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数。
例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.
证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:
[0],[1],[2]
①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除.
②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数.
③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.
例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.
证明:设这11个整数为:a1,a2,a3……a11 又6=2×3
①先考虑被3整除的情形
由例2知,在11个任意整数中,必存在:
3|a1+a2+a3,不妨设a1+a2+a3=b1;
同理,剩下的8个任意整数中,由例2,必存在:3 | a4+a5+a6.设a4+a5+a6=b2;
同理,其余的5个任意整数中,有:3|a7+a8+a9,设:a7+a8+a9=b3
②再考虑b1、b2、b3被2整除.
依据抽屉原理,b1、b2、b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2|b1+b2
则:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6
∴任意11个整数,其中必有6个数的和是6的倍数.
例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.
分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.
(二)面积问题
例:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点.
证明:如图,设直线EF将正方形分成两个梯形,作中位线MN。由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即|MH|:|NH| 。于是点H有确定的位置(它在正方形一对对边中点的连线上,且|MH|:|NH|=2:3). 由几何上的对称性,这种点共有四个(即图中的H、J、I、K).已知的九条适合条件的分割直线中的每一条必须经过H、J、I、K这四点中的一点.把H、J、I、K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.
(三)染色问题
例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.
证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2×2+2,根据原理二,至少有三个面涂上相同的颜色.
例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
分析与解答 首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?
解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线。这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形。因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形。
例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
例3”:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题。证明:至少有三个科学家通信时讨论的是同一个问题。
解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题。设这6位科学家为B,C,D,E,F,G,讨论的是甲问题。
若这6位中有两位之间也讨论甲问题,则结论成立。否则他们6位只讨论乙、丙两问题。这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题。
若C,D,E中有两人也讨论乙问题,则结论也就成立了。否则,他们间只讨论丙问题,这样结论也成立。
三.制造抽屉是运用原则的一大关键
例1 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。
分析与解答 我们用题目中的15个偶数制造8个抽屉:
凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34。现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34。
例2:从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12。
分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。
例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数。
分析与解答 根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):
{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}。
从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数。
例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多。
分析与解答 共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0、1、2、…、n-2,还是后一种状态1、2、3、…、n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的“抽屉”,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多。
在有些问题中,“抽屉”和“物体”不是很明显的,需要精心制造“抽屉”和“物体”.如何制造“抽屉”和“物体”可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验。
抽屉原理
把八个苹果任意地放进七个抽屉里,不论怎样放,至少有一个抽屉放有两个或两个以上的苹果。抽屉原则有时也被称为鸽巢原理,它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原则。它是组合数学中一个重要的原理。把它推广到一般情形有以下几种表现形式。
形式一:证明:设把n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于2(用反证法)假设结论不成立,即对每一个ai都有ai<2,则因为ai是整数,应有ai≤1,于是有:
a1+a2+…+an≤1+1+…+1=n<n+1这与题设矛盾。所以,至少有一个ai≥2,即必有一个集合中含有两个或两个以上的元素。
形式二:设把n?m+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个ai大于或等于m+1。用反证法)假设结论不成立,即对每一个ai都有ai<m+1,则因为ai是整数,应有ai≤m,于是有:
a1+a2+…+an≤m+m+…+m=n?m<n?m+1
n个m 这与题设相矛盾。所以,至少有存在一个ai≥m+1
高斯函数:对任意的实数x,[x]表示“不大于x的最大整数”.
例如:[3.5]=3,[2.9]=2,[-2.5]=-3,[7]=7,……一般地,我们有:[x]≤x<[x]+1
形式三:证明:设把n个元素分为k个集合A1,A2,…,Ak,用a1,a2,…,ak表示这k个集合里相应的元素个数,需要证明至少存在某个ai大于或等于[n/k]。(用反证法)假设结论不成立,即对每一个ai都有ai<[n/k],于是有:
a1+a2+…+ak<[n/k]+[n/k]+…+[n/k] =k?[n/k]≤k?(n/k)=n
k个[n/k] ∴ a1+a2+…+ak<n 这与题设相矛盾。所以,必有一个集合中元素个数大于或等于[n/k]
形式四:证明:设把q1+q2+…+qn-n+1个元素分为n个集合A1,A2,…,An,用a1,a2,…,an表示这n个集合里相应的元素个数,需要证明至少存在某个i,使得ai大于或等于qi。(用反证法)假设结论不成立,即对每一个ai都有ai<qi,因为ai为整数,应有ai≤qi-1,于是有:a1+a2+…+an≤q1+q2+…+qn-n <q1+q2+…+qn-n+1这与题设矛盾。
所以,假设不成立,故必有一个i,在第i个集合中元素个数ai≥qi
形式五:证明:(用反证法)将无穷多个元素分为有限个集合,假设这有限个集合中的元素的个数都是有限个,则有限个有限数相加,所得的数必是有限数,这就与题设产生矛盾,所以,假设不成立,故必有一个集合含有无穷多个元素。
例题1:400人中至少有两个人的生日相同.分析:生日从1月1日排到12月31日,共有366个不相同的生日,我们把366个不同的生日看作366个抽屉,400人视为400个苹果,由表现形式1可知,至少有两人在同一个抽屉里,所以这400人中有两人的生日相同.
解:将一年中的366天视为366个抽屉,400个人看作400个苹果,由抽屉原理的表现形式1可以得知:至少有两人的生日相同.
例题2:任取5个整数,必然能够从中选出三个,使它们的和能够被3整除.
证明:任意给一个整数,它被3除,余数可能为0,1,2,我们把被3除余数为0,1,2的整数各归入类r0,r1,r2.至少有一类包含所给5个数中的至少两个.因此可能出现两种情况:1°.某一类至少包含三个数;2°.某两类各含两个数,第三类包含一个数.
若是第一种情况,就在至少包含三个数的那一类中任取三数,其和一定能被3整除;若是第二种情况,在三类中各取一个数,其和也能被3整除..综上所述,原命题正确.
例题3:某校派出学生204人上山植树15301株,其中最少一人植树50株,最多一人植树100株,则至少有5人植树的株数相同.
证明:按植树的多少,从50到100株可以构造51个抽屉,则个问题就转化为至少有5人植树的株数在同一个抽屉里.
(用反证法)假设无5人或5人以上植树的株数在同一个抽屉里,那只有5人以下植树的株数在同一个抽屉里,而参加植树的人数为204人,所以,每个抽屉最多有4人,故植树的总株数最多有:
4(50+51+…+100)=4× =15300<15301得出矛盾.因此,至少有5人植树的株数相同.
练习:1.边长为1的等边三角形内有5个点,那么这5个点中一定有距离小于0.5的两点.
2.边长为1的等边三角形内,若有n2+1个点,则至少存在2点距离小于 .
3.求证:任意四个整数中,至少有两个整数的差能够被3整除.
4.某校高一某班有50名新生,试说明其中一定有二人的熟人一样多.
5.某个年级有202人参加考试,满分为100分,且得分都为整数,总得分为10101分,则至少有3人得分相同.
“任意367个人中,必有生日相同的人。”
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。”
“从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。”
... ...
大家都会认为上面所述结论是正确的。这些结论是依据什么原理得出的呢?这个原理叫做抽屉原理。它的内容可以用形象的语言表述为:
“把m个东西任意分放进n个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个东西。”
在上面的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入 366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,...,5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。
抽屉原理的一种更一般的表述为:
“把多于kn个东西任意分放进n个空抽屉(k是正整数),那么一定有一个抽屉中放进了至少k+1个东西。”
利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”因为任一整数除以3时余数只有0、1、2三种可能,所以7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。
如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:
“把无限多个东西任意分放进n个空抽屉(n是自然数),那么一定有一个抽屉中放进了无限多个东西。”
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。许多有关存在性的证明都可用它来解决。
1958年6/7月号的《美国数学月刊》上有这样一道题目:
“证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识。”
这个问题可以用如下方法简单明了地证出:
在平面上用6个点A、B、C、D、E、F分别代表参加集会的任意6个人。如果两人以前彼此认识,那么就在代表他们的两点间连成一条红线;否则连一条蓝线。考虑A点与其余各点间的5条连线AB,AC,...,AF,它们的颜色不超过2种。根据抽屉原理可知其中至少有3条连线同色,不妨设AB,AC,AD同为红色。如果BC,BD ,CD 3条连线中有一条(不妨设为BC)也为红色,那么三角形ABC即一个红色三角形,A、B、C代表的3个人以前彼此相识:如果BC、BD、CD 3条连线全为蓝色,那么三角形BCD即一个蓝色三角形,B、C、D代表的3个人以前彼此不相识。不论哪种情形发生,都符合问题的结论。
六人集会问题是组合数学中著名的拉姆塞定理的一个最简单的特例,这个简单问题的证明思想可用来得出另外一些深入的结论。这些结论构成了组合数学中的重要内容-----拉姆塞理论。从六人集会问题的证明中,我们又一次看到了抽屉原理的应用。
抽屉原理的计算公式?
知道抽屉数和至少数(同类),求物体时:物体数=(至少数-1)×抽屉数+1。当至少数为2时,物体数=抽屉数+1。
抽屉原理,主要由以下三条所组成:
原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
原理2 :把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
扩展资料
把它推广到一般情形有以下几种表现形式。
形式一:设把n+1个元素划分至n个集合中(A1,A2,…,An),用a1,a2,…,an分别表示这n个集合对应包含的元素个数,则:至少存在某个集合Ai,其包含元素个数值ai大于或等于2。
证明:(反证法)假设结论不成立,即对每一个ai都有ai
抽屉原理可以解释为任意个自然数,其中至少有两个数的差是的倍数。首先我们要弄清这样一条规律:如果两个自然数除以的余数相同,那么这两个自然数的差是的倍数。而任何一个自然数被除的余数,根据这种情况,可以把自然数分成类,这种类型就是我们要制造的个“抽屉”。我们把个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有个数。换句话说,个自然数分成类,至少有两个是同一类。既然是同一类,那么这两个数被除的余数就一定相同。所以,任意个自然数,至少有个自然数的差是的倍数。
公务员考试数量关系经典题解——抽屉问题
《行政职业能力测验》中数量关系部分,有一类比较典型的题——抽屉问题。对许多公考学生来说,这个题型有一定的难度,因为很难通过算式的方式来将其量化。我们知道,公务员考试是测试一个人作为公务员应该具备的最基础的交流、沟通、判断、推理和计算能力。同样,数量关系测试的也不全是个人的运算能力,它更倾向于考察考生的理解和推理能力。抽屉问题就更为显著地贯彻了这一命题思路。
我们先来看三个例子:
(1)3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。
(2)5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了2块手帕。
(3)6只鸽子飞进5个鸽笼,那么一定有1个鸽笼至少飞进2只鸽子。
我们用列表法来证明例题(1):
放 法
抽 屉 ①种 ②种 ③种 ④种
第1个抽屉 3个 2个 1个 0个
第2个抽屉 0个 1个 2个 3个
从上表可以看出,将3个苹果放在2个抽屉里,共有4种不同的放法。
第①、②两种放法使得在第1个抽屉里,至少有2个苹果;第③、④两种放法使得在第2个抽屉里,至少有2个苹果。
即:可以肯定地说,3个苹果放到2个抽屉里,一定有1个抽屉里至少有2个苹果。
由上可以得出:
题 号 物 体 数 量 抽屉数 结 果
(1) 苹 果 3个 放入2个抽屉 有一个抽屉至少有2个苹果
(2) 手 帕 5块 分给4个人 有一人至少拿了2块手帕
(3) 鸽 子 6只 飞进5个笼子 有一个笼子至少飞进2只鸽
上面三个例子的共同特点是:物体个数比抽屉个数多一个,那么有一个抽屉至少有2个这样的物体。从而得出:
抽屉原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
再看下面的两个例子:
(4)把30个苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?
(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?
解答:(4)存在这样的放法。即:每个抽屉中都放5个苹果;(5)不存在这样的放法。即:无论怎么放,都会找到一个抽屉,它里面至少有6个苹果。
从上述两例中我们还可以得到如下规律:
抽屉原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。
可以看出,“原理1”和“原理2”的区别是:“原理1”物体多,抽屉少,数量比较接近;“原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多几。
以上两个原理,就是我们解决抽屉问题的重要依据。抽屉问题可以简单归结为一句话:有多少个苹果,多少个抽屉,苹果和抽屉之间的关系。解此类问题的重点就是要找准“抽屉”,只有“抽屉”找准了,“苹果”才好放。
我们先从简单的问题入手:
(1)3只鸽子飞进了2个鸟巢,则总有1个鸟巢中至少有几只鸽子?(答案:2只)
(2)把3本书放进2个书架,则总有1个书架上至少放着几本书?(答案:2本)
(3)把3封信投进2个邮筒,则总有1个邮筒投进了不止几封信?(答案:1封)
(4)1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有几只鸽子?(答案:1000÷50=20,所以答案为20只)
(5)从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了几个苹果?(答案:17÷8=2……1,2+1=3,所以答案为3)
(6)从几个抽屉中(填数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果?(答案:25÷□=6……□,可见除数为4,余数为1,抽屉数为4,所以答案为4个)
抽屉问题又称为鸟巢问题、书架问题或邮筒问题。如上面(1)、(2)、(3)题,讲的就是这些原理。上面(4)、(5)、(6)题的规律是:物体数比抽屉数的几倍还多几的情况,可用“苹果数”除以“抽屉数”,若余数不为零,则“答案”为商加1;若余数为零,则“答案”为商。其中第(6)题是已知“苹果数”和“答案”来求“抽屉数”。
抽屉问题的用处很广,如果能灵活运用,可以解决一些看上去相当复杂、觉得无从下手,实际上却是相当有趣的数学问题。
例1:某班共有13个同学,那么至少有几人是同月出生?( )
A. 13 B. 12 C. 6 D. 2
解1:找准题中两个量,一个是人数,一个是月份,把人数当作“苹果”,把月份当作“抽屉”,那么问题就变成:13个苹果放12个抽屉里,那么至少有一个抽屉里放两个苹果。【已知苹果和抽屉,用“抽屉原理1”】
例2:某班参加一次数学竞赛,试卷满分是30分。为保证有2人的得分一样,该班至少得有几人参赛?( )
A. 30 B. 31 C. 32 D. 33
解2:毫无疑问,参赛总人数可作“苹果”,这里需要找“抽屉”,使找到的“抽屉”满足:总人数放进去之后,保证有1个“抽屉”里,有2人。仔细分析题目,“抽屉”当然是得分,满分是30分,则一个人可能的得分有31种情况(从0分到30分),所以“苹果”数应该是31+1=32。【已知苹果和抽屉,用“抽屉原理2”】
例3. 在某校数学乐园中,五年级学生共有400人,年龄的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这400个学生中至少有两个是同年同月同日出生的,你知道为什么吗?
解3:因为年龄的与年龄最小的相差不到1岁,所以这400名学生出生的日期总数不会超过366天,把400名学生看作400个苹果,366天看作是366个抽屉,(若两名学生是同一天出生的,则让他们进入同一个抽屉,否则进入不同的抽屉)由“抽屉原则2”知“无论怎么放这400个苹果,一定能找到一个抽屉,它里面至少有2(400÷366=1……1,1+1=2)个苹果”。即:一定能找到2个学生,他们是同年同月同日出生的。
例4:有红色、白色、黑色的筷子各10根混放在一起。如果让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证至少有两根筷子是同色的?为什么?(2)至少拿几根,才能保证有两双同色的筷子,为什么?
解4:把3种颜色的筷子当作3个抽屉。则:
(1)根据“抽屉原理1”,至少拿4根筷子,才能保证有2根同色筷子;(2)从最特殊的情况想起,假定3种颜色的筷子各拿了3根,也就是在3个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出3×3+1=10(根)筷子,就能保证有4根筷子同色。
例5. 证明在任意的37人中,至少有4人的属相相同。
解5:将37人看作37个苹果,12个属相看作是12个抽屉,由“抽屉原理2”知,“无论怎么放一定能找到一个抽屉,它里面至少有4个苹果”。即在任意的37人中,至少有4(37÷12=3……1,3+1=4)人属相相同。
例6:某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有1个同学能借到2本或2本以上的书?
分析:从问题“有1个同学能借到2本或2本以上的书”我们想到,此话对应于“有一个抽屉里面有2个或2个以上的苹果”。所以我们应将40个同学看作40个抽屉,将书本看作苹果,如某个同学借到了书,就相当于将这个苹果放到了他的抽屉中。
解6:将40个同学看作40个抽屉,书看作是苹果,由“抽屉原理1”知:要保证有一个抽屉中至少有2个苹果,苹果数应至少为40+1=41(个)。即:小书架上至少要有41本书。
下面我们来看两道国考真题:
例7:(国家公务员考试2004年B类第48题的珠子问题):
有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两颗颜色
相同,应至少摸出几粒?( )
A.3 B.4 C.5 D.6
解7:把珠子当成“苹果”,一共有10个,则珠子的颜色可以当作“抽屉”,为保证
摸出的珠子有2颗颜色一样,我们假设每次摸出的分别都放在不同的“抽屉”里,摸了4
个颜色不同的珠子之后,所有“抽屉”里都各有一个,这时候再任意摸1个,则一定有
一个“抽屉”有2颗,也就是有2颗珠子颜色一样。答案选C。
例8:(国家公务员考试2007年第49题的扑克牌问题):
从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同?
A.21 B.22 C.23 D.24
解8:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。答案选C。
归纳小结:解抽屉问题,最关键的是要找到谁为“苹果”,谁为“抽屉”,再结合两个原理进行相应分析。可以看出来,并不是每一个类似问题的“抽屉”都很明显,有时候“抽屉”需要我们构造,这个“抽屉”可以是日期、扑克牌、考试分数、年龄、书架等等变化的量,但是整体的出题模式不会超出这个范围。
抽屉原理是什么意思?
抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素。”
抽屉原理又叫鸽笼原理、狄里克雷(P.G.Dirchlet,1805~1895,德国)原理、重叠原理、鞋盒原理。这一最简单的思维方式在解题过程中却可以演变出很多奇妙的变化和颇具匠心的运用。抽屉原理常常结合几何、整除、数列和染色等问题出现,从小学奥数、中学奥数、IMO到Putnam都可以见到它的身影。因此,希望大家深刻理解和熟练掌握它。
在国外一般称抽屉原理为鸽笼原理(The
Pigeon-Hole
Principle),简称PHP。用通俗的话来说就是,把6个苹果放到5个抽屉里,必定有一个抽屉里至少有2个苹果。
通常有下列几种表达形式:
1。把n+1个元素分为n个集合,那么必定有一集合含有两个或两个以上的元素;
2。把nm+1个元素分为n个集合,那么必定有一集合含有m+1或m+1个以上元素;
3。把n个元素分为k个集合,那么必定有一个集合中元素的个数大于等于[n/k],也必然有一个集合中元素的个数小于等于[n/k];
4。把无穷多个元素分为有限个集合,那么必有一个集合含有无穷多个元素。
应用抽屉原理解题的基本思想是,利用抽屉原理把范围缩小,使之能在一个特定的小范围内考虑问题,使问题变得简单而明确。根据不同问题的自身特点,洞察问题本质,先要弄清楚对那些元素分类,在找出分类的规律,即进行所谓的构造抽屉。构造抽屉是用抽屉原理解题的关键,也是难点。一般情况是,把图形分成小区域;把集合化成子集组。
在使用抽屉原理时,一般是先确定‘苹果’的数目,再构造出小于‘苹果’数目的抽屉;当构造出来的抽屉不能满足题设要求时,就要挖掘题目的的隐藏条件,使之能顺利运用抽屉原理来解题。余数问题运用抽屉原理的特点是,任意一个整除n被p除时余数有p种情况,从而确定出‘抽屉’.
桌上了桌上有三个苹果,要把这三个苹果放到两个抽屉里。无论怎么放有的抽屉可以放一个有的可以放两个也有的可以把三个苹果五桌上有三个苹果,要把这三个苹果放到两个抽屉里。无论怎么放,有的抽屉可以放一个,有的可以放两个,也有的可以把三个苹果放在一个抽屉里。但最终我们会发现至少有一个抽屉,里面至少放两个苹果。桌上有三个苹果,要把这三个苹果放到两个抽屉里。无论怎么放,有的抽屉可以放一个,有的可以放两个,也有的可以把三个苹果放在一个抽屉里。但最终我们会发现至少有一个抽屉,里面至少放两个苹果。这一现象就是我们所说的抽屉原理。
根据题目中的条件设想出“抽屉”并确定抽屉是准确数量,当然抽屉的种类有很多,需要我们具体问题具体分析,要把题目中的另一个条件当做“苹果”,从而结合抽屉原理求出最终结果。
举一个关于抽屉问题的小例子:一堆苹果放在四个抽屉里,若每个抽屉都不空,问至少几个苹果?答案:四个。这是一个简单的抽屉问题。还有再举个例子:
1994年出生的366个人,至少几对同年同月同日生?答:一对。
我们可以想象一下:365天想象为365个抽屉,1天1个。则至少有1个抽屉里有2个人,所以是一对。
明白了吗?
抽屉原理是什么?近几年多次考察的最值问题你们都掌握了么?公考滨哥带你重温抽屉原理,带你学习公考常考的最值问题
抽屉原理:桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放不少于两个苹果。这一现象就是我们所说的“抽屉原理”。 抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。
扩展资料:
运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。例如,属相是有12个,那么任意37个人中,至少有一个属相是不少于4个人。这时将属相看成12个抽屉,则一个抽屉中有 37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,但这里需要注意的是,前面的余数1和这里加上的1是不一样的。
因此,在问题中,较多的一方就是物件,较少的一方就是抽屉,比如上述问题中的属相12个,就是对应抽屉,37个人就是对应物件,因为37相对12多。
参考资料来源:百度百科-抽屉原理
参考资料来源:百度百科-狄利克雷