本文目录一览:
- 1、如图所示为磁流体发电机的示意图,将气体加热到很高的温度,使它成为等离子体(含有大量正、负离子),让
- 2、磁流体发电它的原理是什么?
- 3、磁流体发电的工作原理是什么?
- 4、磁流体发电机的工作原理是什么?
- 5、磁流体发电机工作原理
- 6、磁流体发电的磁流体发电的原理
- 7、磁流体发电机工作原理
- 8、有一种新型的发电机叫磁流体发电机,它可以把气体的内能转化为电能。试说明它的工作原理
如图所示为磁流体发电机的示意图,将气体加热到很高的温度,使它成为等离子体(含有大量正、负离子),让
(1)等离子体以一定速度进入磁场后,受到洛伦兹力作用,导致正负离子偏向极板,从而引起极板间存在电势差,进而给电阻供电;(2)根据左手定则知,正电荷向下偏,负电荷向上偏,则b板带正电,即为正极.(3)由左手定则知正电荷运动的方向向里,掌心向左,所以正离子向下偏转,两板间电压稳定时满足:qvB=qUd;解得:E=Bdv答:(1)磁流体发电机的原理:等离子体以一定速度进入磁场后,受到洛伦兹力作用,导致正负离子偏向极板,从而引起极板间存在电势差.(2)b电极为正极;(3)电极板间的电势差为Bdv.
磁流体发电它的原理是什么?
磁流体发电是一种用热能直接发电的发电方式。它的基本原理,是使高温导电流体高速通过磁场,切割磁力线,于是出现电磁感应现象而使得导体中出现感应电动势。当在闭合回路中接有负载时,就会有电流输出。磁流体发电不像传统的火力发电那样,要先将热能转换成机械能,然后再将机械能转换成电能。而是直接将热能转换为电能。
在磁流体发电装置中,找不到高速旋转的机械部件。当导电流体高速通过磁场时,流体中的带电质点便受到电磁力的作用,正、负电荷便分别朝着与流体运动方向及磁力线方向相互垂直的两侧偏转。在此两侧分别安置着电极,并且它们都与负载相连,这时导电流体中自由电子的定向运动,就形成了电流。
高速通过磁场的导电流体可以是气体(如燃气或惰性气体)。常温下的气体通常是不是导电的,必须将气体的温度提高到6000℃以上,才能使气体电离而形成导电的等离子体。所谓等离子体,就是由热电离而产生的电离气体。
气体的导电性能是与由气体电离而产生的自由电子数量直接相关的。在高温条件下,气体的分子或原子最外层的电子由于热激发而脱离分子或原子,分离成自由电子和正离子。自由电子的数量越多,则气体的导电性能越好。
用一般的燃烧使气体达到这样高的温度十分难,并且现有的电极材料和绝缘材料也难以承受这么高的温度。所以,通常是在温度不超过3000℃的燃气或氩、氦等惰性气体中,掺入少量的电离电位较低的碱金属元素(如铯、铷、镓、钾、钠等)作为添加剂。这些元素的原子在不超过3000℃的较高温度下就能产生电离,使气体达到磁流体发电所需的电导率。
磁流体发电机由三个主要部件组成:一是高温导电流体发生器,在以燃气为高温导电流体的磁流体发电机中,高温导电流体发生器就是燃烧室;二是发电和电能输出部分,即发电通道;三是产生磁场的磁体。
磁流体发电机也许多优点:结构紧凑,体积小,发电启停迅速,对环境的污染小等等。可作为短时间大功率特种电源,用于国防、高科技研究、地质勘探和地震预报等领域。目前世界上研制成功的磁流体发电试验机组的热效率虽然只有6%~15%,但它可作为前置级而与现有蒸汽发电厂组成磁流体-蒸汽联合循环发电站,这样就从理论上使热效率提高到50%以上。随着核电的发展,还可以利用核反应堆产生的热能来实现原子能-磁流体发电,以提高核电站的发电效率。
很多国家都十分重视磁流体发电的开发和研究。前苏联利用天然气作为燃料,于20世纪70年代建造了第一座工业性磁流体-蒸汽试验电站,最高输出功率达2万千瓦;80年又建成了总输出功率为58.2万千瓦的天然气磁流体-蒸汽联合循环示范商业电站。美国从1959年开始,就大力开发磁流体发电。日本、澳大利亚和印度等国也在磁流体发电的研究方面也有了长足的发展。
我国的这项研究起步较早,在20世纪60年代初就开始燃煤磁流体发电的研究。从1987年开始,磁流体发电正式列入国家“863”高技术研究发展计划,由中国科学院电工研究所、电子工业部上海成套研究所、东南大学热能研究所等有关单位分工合作,对燃煤燃烧室、发电通道、超导磁体、逆变器、特种锅炉、添加剂回收与再生、中试电站的系统分析与概念设计以及电极与绝缘材料进行研究,并已取得了较大进展。中科院电工所2号磁流体发电试验机组的发电功率达到了世界先进水平。
磁流体发电是建立在高技术基础之上的一项综合性技术,对于这项新技术的研究和实施,必须以强大的工业生产和先进的工艺技术为基础。才能克服在其技术上的种种困难,使它能进行实际应用。相信不久的将来,磁流体发电的普遍开发利用能给人们的生活带来很大的改善。
磁流体发电的工作原理是什么?
利用磁流体发电是一种将热能转换成电能的新型发电方式。它的工作原理与传统的旋转发电机一样,都是基于法拉第电磁感应定律,即利用导体切割磁力线产生感应电动势。但是磁流体发电机中所用的导体是高温导电气体,而不是普通电机中所用的固体金属导线。从能量转换的角度看,普通火力发电是把燃料中贮藏的化学能经过燃烧或反应变为热能,热能在蒸汽透平机中再变成机械能,最后由透平机带动发电机旋转使机械能转化为电能。而磁流体发电则是将燃料燃烧或原子核反应所产生的热能在发电通道中直接转换成电能。磁流体发电可以分为许多种类。若以一次能源为标准,大致可分为化学燃料磁流体发电和核燃料磁流体发电两大类。此外,太阳能也有希望成为磁流体发电的一次能源。
磁流体发电机的工作原理是什么?
磁流体发电机是一项新兴技术,它可以直接把物体内能转化成为电能,主体构造是一对平行金属板A和B,两板之间存在有强磁场,将一束等离子体(高温下气体发生电离,产生的大量正、负带电粒子就叫做等离子体)喷入两板之间,由于磁场对运动电荷有洛仑兹力的作用,正负电荷分别偏向不同的极板,并在极板A和B上积聚,使AB两板间产生电场,当电场足够强时,等离子体受到的电场力与洛仑兹力平衡,AB板电势差趋于稳定,若把这两极板与外电路相连,就可对外供电,两极板相当于电源的正负两极。
磁流体发电机工作原理
在高温状态下,气体会发生电离,原子的外层电子会从原子上剥离,形成带正电的原子与电子的混合体,称为等离子体,当等离子体在磁场中运动时,由于洛伦茨力的作用,带电粒子就会发生偏转而发生分离,带正电的粒子和带负电的粒子就会分别偏向磁场的两端,在图中就是分别偏向了c,d两极,这样就在c,d两极出现了电位差,就产生的电压,这就是磁流体发电的原理。图中,a线圈画错了。
磁流体发电机,又叫等离子发电机,是根据电磁感应原理,用导电流体,例如空气或液体,与磁场相对运动而发电的一种设备。
最简单的开式磁流体发电机由燃烧室、发电通道和磁体组成。工作过程是在化石燃料燃烧后产生的高温气体中,加入易电离的钾盐或钠盐,使起部分电离后,经喷管加速产生高达摄氏3000度、速度达到1000米/秒的高温高速导电气体,最后产生电流。
磁流体发电的磁流体发电的原理
根据电磁感应原理,用导电流体(气体或液体)与磁场相对运动而发电。导电流体在通道中横越磁场B流过时,由于电磁感应而在垂直于磁场和流速的方向上感生出一个电场E,如把导电流体与外负载相接,导电流体中的能量就可直接转换成电能,向外输出(图1)。这样能省去普通发电机组中某些能量转换的中间过程,因此这种发电又称磁流体直接发电,在这种发电装置中主要部件是发电通道、电极和磁场。 装置类型 按照电流由导电流体中引出的方式,发 电装置可分为传导式和感应式两种。在传导式发电器中,电流是通过发电通道两侧的电极引出的;在感应式发电器中,没有电极,电流直接由磁场绕组输出。按照输出 电流的类别,发电装置可分为交流和直流两种。根据工作介质在装置中是一次使用还是在系统中循环使用,发电装置可分为开式和闭式两种。根据发电通道几何形状的不同,发电装置可分为直线型、涡旋型和径向外流型等几种。下面介绍两种装置:①开式循环直线型磁流体发电装置这种发电装置中的工作介质是温度2500~3500开的高温电离气体,即等离子体。在连续电极的直线型发电装置中(图2a),如果平均电子碰撞频率比电子在磁场中的回旋频率大得多,则当等离子体横越磁场时,就感生出一个同磁场和流速相垂宜的电场,但当等离子体密度较低,电子在磁场中的回旋频率相当于或甚至大于平均电子碰撞频率时,电子在磁场中就沿曲线运动。这一现象称为霍耳效应,由此产生的垂直于电场的电流称为霍耳电流。电子回旋频率ω与平均电子碰撞频率1/t之比ωt称为霍耳系数,它表征霍耳效应的大小,在物理意义上相当于存在磁场时一个电子在两次碰撞间转过的弧度,也相当于沿等离子体流动方向的霍耳电流与平行于电场方向的电流之比。在连续电极发电装置中,由于出现霍耳电流(损耗电流),平行于电场的电流要降低为原值的。为了减小霍耳电流,通常采用分段电极(图2b),也可直接利用霍耳电流来代替平行于电场的电流,从而成为霍耳发电装置(图2c)。近年来又在此基础上发展出斜框式通道的发电装置。使用开式循环磁流体发电装置可减少环境污染,特别对含硫较高的矿物燃料,由于在燃烧室中“种子” 碳酸钾几乎完全离解,在发电装置的通道下游,通过化学反应复合成硫酸钾,从而显著降低二氧化硫的排放量。 ②闭式循环磁流体发电装置采取封闭回路,工作介质可反复使用。通常选用惰性气体(如氦)作为介质,以铯作种子物质,利用非平衡电离效应来提高电导率,或用液态金属及其蒸气的混合物作为介质。这类装置通常以裂变反应堆作热源,其工作原理与开式循环装置相同。磁流体发电机没有运动部件,结构紧凑,起动迅速,环境污染小,有很多优点。特别是它的排气温度高达2000℃,可通入锅炉产生蒸汽,推动汽轮发电机组发电。这种磁流体-蒸汽动力联合循环电站,一次燃烧两级发电,比现有火力发电站的热效率高10-20%,节省燃料30%,是火力发电技术改造的重要方向。磁流体发电的研究始于20世纪50年代末,被认为是最现实可行、最有竞争力的直接发电方式。它涉及到磁流体动力学、等离子物理、高温技术及材料、低温超导技术和热物理等领域,是一项大型工程性课题。许多先进国家都把它列为国家重点科研项目,有的建立国际间协作关系,以期早日突破。从发电的机理上看,磁流体发电与普通发电一样,都是根据法拉第电磁感应定律获得电能。所不同的是,磁流体发电是以高温的导电流体(在工程技术上常用等离子体)高速通过磁场,以导电的流体切割磁感线产生电动势。这时,导电的流体起到了金属导线的作用。磁流体发电中所采用的导电流体一般是导电的气体,也可以是液态金属。我们知道,常温下的气体是绝缘体,只有在很高的温度下,例如6000K以上,才能电离,才有较大的导电率。而磁流体发电一般是采用煤、石油或天然气作燃料,燃料在空气中燃烧时,即使把空气预热到1400K,也只能使空气达到3000K的温度,这时气体的导电率还不能达到所需的值,而且即使再提高温度,导电率也提高不了多少,却给工程带来很大困难。那么如何使气体在较低的温度下就能导电,并有较高的导电率。实际中采用的办法是在高温燃烧的气体中添加一定比例的、容易电离的低电离电位的物质,如钾、铯等碱金属化合物。这种碱金属化合物被称为“种子”。在气体中加入这种低电离电位物质的量一般以气体重量的1%为佳。这样气体温度在3000K左右时,就能达到所要求的导电率。当这种气体以约1000m/S的速度通过磁场时,就可以实现具有工业应用价值的磁流体发电。 磁流体发电是一种新型的发电方法。它把燃料的热能直接转化为电能,省略了由热能转化为机械能的过程,因此,这种发电方法效率较高,可达到60%以上。同样烧一吨煤,它能发电4500千瓦时,而汽轮发电机只能发出3000千瓦时电。对环境的污染也小磁流体发电中,导电流体单位体积的输出功率We为We=σv 2B 2k(1-k)式中σ为导电流体的电导率,v为流体的运动速度,B为磁场的磁通密度,k为电负载系数。典型的数据是σ=10~20西/米,B=5~6特,v=600~1000米/秒,k=0.7~0.8, We在25~150兆瓦/米3。80年代后期,世界上技术最先进的磁流体发电装置是莫斯科北郊U-25装置。它是以天然气作燃料的开环装置,额定功率为20.5兆瓦。
磁流体发电机工作原理
磁流体发电机,又叫等离子发电机,是根据电磁感应原理,用导电流体,例如空气或液体,与磁场相对运动而发电的一种设备。
最简单的开式磁流体发电机由燃烧室、发电通道和磁体组成。工作过程是在化石燃料燃烧后产生的高温气体中,加入易电离的钾盐或钠盐,使起部分电离后,经喷管加速产生高达摄氏3000度、速度达到1000米/秒的高温高速导电气体,最后产生电流。
有一种新型的发电机叫磁流体发电机,它可以把气体的内能转化为电能。试说明它的工作原理
带正电的微粒受洛伦磁力向外偏,带负点的向里偏,在a,b金属板上形成电势差,形成电流。微粒原有的动能和势能转变成电能。