本文目录一览:
- 1、线粒体(mitochondrion)
- 2、什么是线粒体
- 3、线粒体遗传-细胞生物学
- 4、线粒体来源
- 5、是粒线体还是叫线粒体?
- 6、线粒体的5个功能
- 7、线粒体是什么,为什么线粒体是抗衰的源头?
- 8、线粒体的定义
- 9、线粒体是什么
- 10、线粒体的功能
线粒体(mitochondrion)
【答案】:线粒体(mitochondrion):存在于细胞质内,由内、外两层单位膜围成的囊状结构,内膜内凹陷形成线粒体嵴。嵴膜上有许多有柄小球体,即基粒,也称ATP酶复合体。内外膜之间的空隙称膜间隙,内膜以内的空隙为基质腔,充满着基质。主要功能是产生ATP,提供生命活动所需要的能量。
什么是线粒体
线粒体是人体能量来源的工厂~存在于细胞中,目前提到线粒体更多的是身体机能代谢,以及抗衰老相关。有研究证明线粒体的产能提升,逆转线粒体的衰老能有效帮助身体延缓衰老,并且增强机体能力,最近发现一款专门针对线粒体的产品,叫派络维PRO。能靶向增强线粒体的产能、数量、提高其活性,效果非常好,准备试一下。 加速了解下
线粒体在人体细胞内是非常重要的存在,承担着为细胞提供能量的作用,是人体的能量工厂,所以如果线粒体质量下降会使人体老化,出现各种问题?建议可以使用一些可以改善线粒体功能的补剂,之前用过一款日本的派络维pro,主打的功效就是强化线粒体功能,增强线粒体数量。感觉效果还是很不错的,推荐可以试一下
线粒体是人体「能量工厂」,是细胞和生存的能量来源,线粒体质量的下降是造成老化的重要原因。所以增强线粒体的产能增强线粒体的功能是抗衰老一定要做的事情,我爸之前做过手术之后身体就比较虚弱?后来给他买了博奥真的派络维PRO用了三个月之后感觉体质好了一些,而且走路也不会经常喘了,整个人感觉年轻了一些
线粒体的体积非常非常小,一粒沙子中能容纳10亿个这样的细胞内小器官。
我们的体内有着如同天文数字般多的线粒体,约占体重的10%,提供着生存所需的90%以上的能量。它如同生命的「发电站」,而需要消耗大量能量的大脑和心脏以及卵细胞则是线粒体的集聚地。
如果激发纤维芽细胞(与玻尿酸?骨胶原?弹力蛋白的产生有关)中线粒体的活性,皮肤就会变得更加润泽、紧致有弹性。如果通过激活线粒体使整个身体的能量提高的话,运动持久力就会相应提高,身体恢复力变强,甚至加速体内脂肪的燃烧。
血管内的线粒体激发了活性,产生的一氧化氮(NO),能够改善血流循环。
一旦增加了肝脏、肾脏中的线粒体活性,解毒作用会加快。如果增加了骨芽细胞中线粒体活性的话,不用说产生骨钙蛋白使骨再生、甚至还能作用于如增加胰岛素使过高的血糖下降、促进癌细胞的死亡、免疫的增强、细胞遗传基因的修复以及抗老化等其他许多无法一一表述全的人体生理活性。
线粒体在医学界被称作「一个正刚被打开的秘密箱子」,线粒体的好处还在等待人类医学研究界的逐步探索。
不过现在可以确定的事实是,当线粒体激发了活性时,在维持青春健康和运动机能中发挥的作用是最大的。
即不需要进行外部的细胞移植仅仅使用自我再生促进因子(作用于体内细胞使组织、机能自我再生)的先发性自我再生医疗(即使是使用别的自我再生促进因子也)是人身体内在细胞中线粒体产生活性的重要基石。
线粒体是细胞的发动机,它存在于大多数细胞中,是细胞中制造能量的结构
线粒体(mitochondrion)是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"power house"。 其直径在0.5到1.0微米左右。 除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。 线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。
形态特征
大小
线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为0.5-1.0μm,长1-2μm,在光学显微镜下,需用特殊的染色,才能加以辨别。在动物细胞中,线粒体大小受细胞代谢水平限制。不同组织在不同条件下可能产生体积异常膨大的线粒体,称为“巨线粒体”(megamitochondria):胰脏外分泌细胞中可长达10-20μm;神经元胞体中的线粒体尺寸差异很大,有的也可能长达10μm;人类成纤维细胞的线粒体则更长,可达40μm。有研究表明在低氧气分压的环境中,某些如烟草的植物的线粒体能可逆地变为巨线粒体,长度可达80μm,并形成网络。
形状
线粒体一般呈短棒状或圆球状,但因生物种类和生理状态而异,还可呈环状、线状、哑铃状、分杈状、扁盘状或其它形状。成型蛋白(shape-forming protein)介导线粒体以不同方式与周围的细胞骨架接触或在线粒体的两层膜间形成不同的连接可能是线粒体在不同细胞中呈现出不同形态的原因。
数量
不同生物的不同组织中线粒体数量的差异是巨大的。有许多细胞拥有多达数千个的线粒体(如肝脏细胞中有1000-2000个线粒体),而一些细胞则只有一个线粒体(如酵母菌细胞的大型分支线粒体)。大多数哺乳动物的成熟红细胞不具有线粒体。一般来说,细胞中线粒体数量取决于该细胞的代谢水平,代谢活动越旺盛的细胞线粒体越多。
分布
线粒体分布方向与微管一致,通常分布在细胞功能旺盛的区域:如在肾脏细胞中靠近微血管,呈平行或栅状排列;在肠表皮细胞中呈两极分布,集中在顶端和基部;在精子中分布在鞭毛中区。在卵母细胞体外培养中,随着细胞逐渐成熟,线粒体会由在细胞周边分布发展成均匀分布。线粒体在细胞质中能以微管为导轨、由马达蛋白提供动力向功能旺盛的区域迁移。
组成
线粒体的化学组分主要包括水、蛋白质和脂质,此外还含有少量的辅酶等小分子及核酸。蛋白质占线粒体干重的65-70%。线粒体中的蛋白质既有可溶的也有不溶的。可溶的蛋白质主要是位于线粒体基质的酶和膜的外周蛋白;不溶的蛋白质构成膜的本体,其中一部分是镶嵌蛋白,也有一些是酶。线粒体中脂类主要分布在两层膜中,占干重的20-30%。在线粒体中的磷脂占总脂质的3/4以上。同种生物不同组织线粒体膜中磷脂的量相对稳定。含丰富的心磷脂和较少的胆固醇是线粒体在组成上与细胞其他膜结构的明显差别。
线粒体遗传-细胞生物学
线粒体的遗传、增殖和起源
线粒体遗传
线粒体是一种半自主性的细胞器,它除了有自己的遗传物质——线粒体DNA外,还有蛋白质合成系统(mRNA、rRNA、tRNA)和线粒体核糖体等。线粒体中的蛋白质只有少数几种是线粒体基因编码的,大多数线粒体蛋白质还是由核基因编码。所以线粒体的生物合成涉及两个彼此分开的遗传系统。
■ 线粒体的基因组
线粒体DNA(mt DNA)是双链环状分子,基因组的大小变化很大,动物细胞线粒体基因组较小,约~16.5kb,每个细胞中有几百个线粒体,每个线粒体有多个DNA拷贝, mtDNA通常与线粒体内膜结合在一起。
人的线粒体基因没有发现内含子,但在酵母线粒体至少两个基因中发现有内含子,如细胞色素氧化酶复合物亚基Ⅰ蛋白基因中就有9个内含子。
■ 线粒体基因及线粒体DNA的复制和转录
● 线粒体基因
在人的线粒体DNA中有两个线粒体rRNA基因: 12S rRNA和16S rRNA 基因、22种线粒体合成蛋白质所需的tRNA基因和13种编码蛋白质的基因。
线粒体来源
线粒体存在于我们细胞中,是供给人体日常所需能量的主要来源。如果你是平时感觉精力不行,那可能相对就是年龄提高后,线粒体衰老?产能下降所导致的。这种就需要通过外在服用膳食补充剂,去调整改善线粒体,像派络维这款产品是改善线粒体的,可以提高产能和增加线粒体数量。
线粒体的起源有两种假说,分别为内共生学说与非内共生学说,线粒体是我们人体内细胞中非常重要的细胞器,是我们功能产所,我们可以通过改善线粒体来帮助改善自身身体的不同问题,也可以吃派络维来通过线粒体抗衰来帮助我们自身延缓衰老 ,终身满意
线粒体是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所。通常参与氧化还原反应ATP生成,也就是我们人体日常能量的来源。并且随着年龄的增长,线粒体的能量生产会随之下降?可以通过补充膳食补充剂来提高,从而提高线粒体产能。像市面上这类型的补充剂,派络维比较好的选择。
线粒体是一种普遍存在于真核细胞中的细胞器
大多数科学家认为,线粒体起源于内共生体。称为“内共生学说”。
该学说认为,线粒体起源于被另一个细胞吞噬的线粒体祖先——原线粒体——一种能进行三羧酸循环和电子传递的革兰氏阴性菌。原线粒体被吞噬后,并没有被消化,而是与宿主细胞形成了共生关系——寄主可以从宿主处获得更多营养,而宿主则可使用寄主产生的能量——这种关系增强了细胞的竞争力,使其可以适应更多的生存环境。
在长期对寄主和宿主都有利的互利共生中,原线粒体逐渐演变形成了线粒体,使宿主细胞中进行的糖酵解和原线粒体中进行的三羧酸循环和氧化磷酸化成功耦合。有研究认为,这种共生关系大约发生在17亿年以前,与进化趋异产生真核生物和古细菌的时期几乎相同。
该学说的依据主要有:
真核细胞的细胞核中存在可能属于呼吸细菌或蓝细菌的遗传信息,说明最初的呼吸细菌和蓝细菌的大部分基因组在漫长的共进化过程中发生了向细胞核的转移。
线粒体拥有自己DNA,其形状与细菌的环状DNA类似,无组蛋白结合;线粒体具有自身的DNA聚合酶及RNA聚合酶,能进行独立的复制与转录;其mRNA、rRNA的沉降系数与细菌的相似。
线粒体具备独立、完整的蛋白质合成系统。与真核细胞的蛋白质合成系统相比,线粒体蛋白质合成的多数特征与细菌蛋白质合成系统更相似。
线粒体分裂方式与细菌相似。线粒体及叶绿体均以缢裂的方式分裂增殖,类似于细菌。
线粒体的外膜与真核细胞内膜相似,内膜与细菌质膜相似;线粒体内膜的蛋白质/脂质的比例远大于外膜,与细菌相似。
类似来源的还有叶绿体。
是粒线体还是叫线粒体?
两者都曷互通的,并没有任何差别。 线粒体 线粒体 Mitochondria 线粒体又称「粒线体」,是人体细胞内的夹长形状细微粒子,它的作用是将食物中的养分如蛋白质、碳水化合物、脂肪酸等通过一系列的传递和化学作用转化为人体能量所需的名为ATP的元素,提供能量给身体各部份,例如运动员剧烈运动超出线粒体所能生产的ATP(Adenosine Triphosphate)腺甘三 磷 酸 盐,便会产生大量乳酸,引致乳酸中毒现象,轻者如肌肉疼痛,重者会抽筋甚至瘫痪。同样地身体任何器官过份劳累,线粒体不能供应ATP,都有可能积聚大量乳酸引致乳酸中毒。祺安的病称为MELAS ,全学名为 (Mitochondrial线粒体的Encephalomyopathy脑和肌肉病Lactic Acidosis 乳酸中毒 Strokelike Episodes类似中风现象)
所有线粒体病现在还未有正式的中文译名。 线粒体不规则疾病 Mitochondrial Disorder 所有由线粒体不规则引致的病征(详见下面说明)。因为线粒体存在人体细胞内,可说是无处不在,但最常见于肌肉和脑部病,越来越多证据显示许多器官性疾病如心脏病、肝病、糖尿病、肾病等与线粒体有关,很可惜线粒体不规则病自一九八零年后才被科学家分辨出来,医学界和基因学家仍未能找到有效的医疗方法,最严重的问题是大多数一九八零年前出版的医学书籍都未有记载此类疾病,医生都未经训练如何断症,大多误断为其他疾病,令病人不能适时获得洽当的护理,虽然现在线粒体病仍被视为罕见疾病,但当更多医生和病患者对线粒体病加深认识,将来会有更多线粒体病患者被诊断出来。美国联合线粒体病基金会UMDF鼓励病患者和对线粒体病有认识的医护人员,多些介绍此类疾病给公众。 三类遗传性线粒体病 ? 母系遗传:线粒体内DNA缺陷mtDNA defects,包括定点突变point mutation,消失deletions,及复制duplications,只从母体遗传。 ? 常染色体遗传:细胞核内DNA缺陷,有分显性及隐性两种,可从父母任何一方遗传。 ? X染色体遗传:X染色体缺陷。 「粒线体」(Mitochondrion)是分布在细胞质内的杆状细胞器,它的作用是氧化糖份来产生能量,以作维持生命所需。故它有「生命能量站」之称。 生物的成长,不单在于细胞要能维持正常的增长,亦在于其能维持正常的死亡。细胞之死亡可以分为两类:坏死(necrosis)和程序死亡(apoptosis),两者的分别在于细胞的主动性和被动性,坏死是被杀,而程序死亡是自杀。在程序死亡中,细胞内有一既定的「自杀系统」,当细胞接收到外来的死亡讯息,便会触及此「自杀系统」,引发一连串蛋白分解?及核酸内切?的连锁反应。这些?就像很多把锋利的小刀,把细胞核内的物质,例如脱氧核糖核酸(DNA)切成很多的小段,细胞因而被瓦解。有一点需要一提,就是在程序死亡中;细胞膜不会破裂,细胞内的物质也不会外溢,相反地会被?分解为一个一个小球状的物体,最后经过新陈代谢而消失。 正常来说,程序死亡常见于生物发育的过程中,或细胞受到感染的时候。 最近,科学家发现了很多棘手的疾病,例如:癌病、爱滋病及柏金逊症等均与程序死亡有关。以癌病为例,由于细胞本身有病变,应该「受死」的细胞,在接收了死亡讯息之后,却不执行程序死亡,失控地不断的生长所致。 程序死亡的机制是和多种基因有关,例如BCL-2,BAX和BAD等;以BCL-2为例,这个基因可以抑制程序死亡的过程,而BAX则可以引致程序死亡。虽然有关程序死亡的基因早在数年前已被发现,但其能令细胞死亡的原因到最近才较清晰,这个哑谜的答案就是粒线体。 BCL-2是位于粒线体外膜上的一种蛋白质。当细胞接收到死亡讯息后,粒线体的外膜受BCL-2的影响产生变化,打开了很多小孔,同时释放出其中一种物质——细胞色素C(cytochrome C)。释出的细胞色素C触动细胞的「自杀系统」,其中涉及到不同梯次的蛋白?分解,在过程中释放了细胞死亡因子,包括致命的蛋白?和核酸内切?,因而令细胞核瓦解,导致程序死亡。 细胞色素C是粒线体内膜上氧化磷酸作用中的一个主要部份,它的角色一向相信是与能量的产生有关,为何这个分子亦涉及程序死亡,到现在为止仍无从而知。科学家正努力研究细胞色素C在程序死亡中的角色和BCL-2如何控制粒线体外膜的开关。此方面的研究,除了可以令我们明了细胞死亡的机制外,研究的成果亦可以带给癌症及爱滋病者的治疗曙光。
参考: .knowledge.yahoo/question/?qid=7006101501257&others=1
是"线粒体"。 线粒体(mitochondrion,来源于希腊语mitos「线」 + khondrion「颗粒」,又译为粒线体),在细胞生物学中是存在于大多数真核生物(包括植物、动物、真菌和原生生物)细胞中的细胞器。一些细胞,如原生生物锥体虫中,只有一个大的线粒体,但通常一个细胞中有成百上千个。细胞中线粒体的具体数目取决于细胞的代谢水准,代谢活动越旺盛,线粒体越多。线粒体可占到细胞质体积的25%。 线粒体可看作是「细胞能量工厂」,因其主要功能是将有机物氧化产生的能量转化为ATP。 线粒体结构 在不同的细胞类型中,线粒体的整体结构可能会非常不同。某些情况下,线粒体如右图所示,很像个香肠的形状,大小1到4微米。另一些时候,线粒体会形成分叉且相互连接的管状网路。通过观察活细胞中被荧光标记的线粒体,发现它们能够戏剧性地改变形状。此外,几个线粒体可以融合成一个,一个也可以分裂成两个。 线粒体具有两个功能不同的膜:外膜和内膜。线粒体外膜完整包围细胞器,与细胞膜组成一致。而内膜具有很多向内的皱褶,称为「嵴」。嵴上面有很多用于有氧呼吸和制造ATP的结构,这些折叠可以增加线粒体内膜的表面积以增强其效率。 内膜将线粒体其分成两个部分:内膜之内的部分称为「基质」,而内外膜之间的部分称为「膜间腔」。 线粒体膜 线粒体的内外膜均由磷脂双层组成,其中镶嵌有蛋白质,类似一般的细胞膜。然而这两层膜具有很不同的特性:包围整个细胞器的外膜约含50%质量的磷脂,并且包含很多酶,参与肾上腺素的氧化,色氨酸的降解及脂肪酸的延伸等等。 而线粒体内膜包含100多种不同的多肽,蛋白相对磷脂的比例相当高(质量比3:1,大约一个蛋白分子对15个磷脂)。此外,内膜富含一种少见的磷脂心磷脂,是细菌的质膜所特有的。 外膜包含很多称作「孔道蛋白」的整合蛋白,具有相对大的内部通道(大约2-3奈米,可允许离子和小分子通过。而大分子不能通过外膜。内膜不含孔道蛋白,通透性很弱,几乎所有离子和分子都需要特殊的跨膜转运蛋白 来进出基质。 线粒体基质 除各种酶之外,线粒体基质中还有核糖体和少量DNA分子。也就是说,线粒体含有自己的遗传物质,且具有能够加工其自身DNA和蛋白的工具(参见:蛋白质生物合成)。细胞染色体之外的DNA编码几种线粒体的肽(人有13种),包括线粒体内膜中的蛋白,而更多的蛋白是由细胞核中的基因编码的。 线粒体功能 虽然线粒体的首要功能是分解有机物,产生能量(以生成ATP的形式),但线粒体在其他代谢反应里还起到很大的作用。如: 细胞凋亡 谷氨酸受体介导的兴奋毒效应 细胞增殖 细胞氧化还原状态调节 原血红素 合成 胆固醇合成 产生热量 (使生物保持温暖) 某些特定的细胞线粒体有特定的功能,例如肝细胞的线粒体含有处理氨的酶
可以处理这种蛋白质代谢后带有毒性的物质。如果某些与线粒体功能有关的基因突变,会导致各种不同的线粒体病。 能量 如上所述,线粒体的主要任务是生产ATP。这是通过糖酵解
丙酮酸和NADH (糖酵解线上粒体外完成
即胞浆)实现的。糖代谢分为有氧和无氧两种。 丙酮酸:三羧酸循环 糖酵解中生成的丙酮酸会被主动运输穿过线粒体膜
到达线粒体基质与辅酶A生成乙醘辅酶A。一旦生成,乙醘辅酶A就会进入到柠檬酸循环
或曰三羧酸循环或Krebs循环。过程中产生3分子NADH和1分子FADH2
它们会参与电子传递链。 除了琥珀酸脱氢酶是存在于线粒体内膜上这一例外
其他的酶都是游离线上粒体的基质中。 NADH和FADH2:电子传递链 NADH和FADH2在电子传递链里面经过几步反应会释放能量,其中一部分生成ATP,其余则作为热能散失。线上粒体内膜上的酶复合体(NADH-泛醌还原酶
泛醌-细胞色素C还原酶
细胞色素C氧化酶)利用过程中释放的能量将质子逆浓度梯度泵入膜间(质子在膜间浓度比在基质中的高)。 当质子被泵入膜间后,质子就会有顺浓度梯度扩散的趋势。唯一的通道是复合体VATP合酶。当质子通过复合体从膜间回到基质的时候,ATP合酶可以利用ADP和磷酸合成ATP。这个过程被称为化学渗透。这也是一个协助扩散的例子。Peter Mitchell就因为提出了这一假说而获得了1978年诺贝尔奖。1997年诺贝尔奖获得者保罗·博耶和约翰·瓦克阐明了ATP合酶的机制。 用于种群遗传学研究 卵细胞会破坏与之受精的 *** 内的线粒体
所以个体的线粒体DNA只来自于母亲。但个体其他的基因和DNA则是来自于父母双方。就因为这种母系传承
人口遗传学和进化生物学的科学家就可以利用从线粒体DNA中所得的数据去了解种系关系和进化的情况。 最新的研究却表明,线粒体基因重组在人类身上是能够发生的 内共生学说 在各种细胞器中,线粒体具有特殊性,因其含有核糖体且自身带有遗传物质。线粒体DNA是环状的,且有一些和标准真核生物遗传密码不同的变化。 这些特性导致了内共生学说——线粒体起源于内共生体。这种被广泛接受的学说认为,原先生活的细菌在真核生物的共同祖先中繁殖,形成今天的线粒体。 2007-02-11 12:55:20 补充: 我的答案没有错.又比他快.还要选他.是作弊么
参考: 我的常识
线粒体的5个功能
线粒体的5个功能是ATP合成、电子传递、激活氧分子、钙离子储存、细胞程式性死亡。
1、ATP合成:线粒体是细胞内ATP的主要合成场所,它含有大量的ATP合成酶和ATP合成所需的原料。线粒体通过氧化磷酸化产生ATP,为细胞提供化学能源。
2、电子传递:线粒体内部的呼吸链可以传递电子,并在电子传递过程中产生ATP。电子从NADH和FADH2传递到氧气,并在此过程中释放出能量用于合成ATP。
3、激活氧分子:线粒体内的细胞色素氧化酶可以激活氧分子,并将氧化性较强的氧自由基转化为水,这一过程生成ATP。这是制造ATP的最终步骤。
4、钙离子储存:线粒体是细胞内钙离子的主要储存场所之一。线粒体吸收胞质中的钙离子,调节钙离子在细胞内的平衡。
5、细胞程式性死亡:线粒体释放出的细胞色素C可以激活细胞凋亡,引发细胞程式性死亡。线粒体损伤或功能障碍会诱发细胞凋亡,这是细胞保护机制的一部分。
线粒体的概述:
1、线粒体的结构,线粒体有双层膜结构,内膜褶皱形成嵴,内含线粒体基质。内膜含有五种复合物,用于呼吸作用和ATP合成。线粒体的结构与功能密切相关,结构的完整性决定着线粒体的正常功能。
2、线粒体DNA,线粒体含有自己的环状DNA,编码部分线粒体内的RNA和蛋白质。线粒体DNA通常遗传自母亲,其突变会影响线粒体功能并导致疾病。线粒体DNA的稳定性和完整性对维持正常的呼吸作用和ATP代谢至关重要。
3、线粒体与氧化磷酸化,线粒体是氧化磷酸化的场所,依靠氧化反应和磷酸化产生ATP。氧化磷酸化包括解糖酵解、三羧酸循环、电子传递链和氧化磷酸化等过程,最终产生大量ATP为细胞提供化学能量。
4、线粒体与细胞凋亡,线粒体释放的细胞色素C可以启动细胞凋亡。当线粒体受损或功能失调时,细胞色素C被释放,激活凋亡酶并诱导细胞凋亡。这是细胞保护机制的一部分,可以清除功能失调的细胞。
5、线粒体相关疾病,线粒体DNA突变或功能障碍会导致线粒体相关疾病。如线粒体脑病变、线粒体肌病变、帕金森病等。这些疾病的治疗主要针对症状,维持细胞功能,目前还无根治疗法。维持线粒体功能对于治疗这类疾病至关重要。
线粒体的意义
1、线粒体是细胞能量代谢的中心,线粒体依靠氧化磷酸化产生ATP,为细胞提供所需的化学能量。线粒体产生的ATP不仅驱动细胞内各种生化反应,还提供细胞运动和细胞分裂等活动所需的能量。所以,线粒体的正常功能是维持细胞生命活动的基础。
2、线粒体在细胞凋亡中发挥关键作用,当线粒体受损时,会释放细胞色素C来激活细胞凋亡过程。这是细胞保护机制的一部分,可以清除功能失常的细胞。线粒体的this作用是维持细胞生命体系稳定的保证。
3、线粒体基因编码部分线粒体蛋白,其变异会导致线粒体功能障碍相关的遗传疾病。线粒体DNA突变常导致细胞呼吸链复合物的subunit结构或功能异常,影响ATP的产生,继而引起蛋白质合成障碍、细胞凋亡增多等,这类疾病常表现为进行性加重的神经系统退行性变性。所以,线粒体基因的稳定性是细胞生存的基石。
线粒体是什么,为什么线粒体是抗衰的源头?
线粒体是什么,为什么线粒体是抗衰的源头?
线粒体是细胞的器官,主要负责转化和储存能量。它们是抗衰老的源头,因为它们能够促进细胞的新陈代谢,提高细胞的免疫力,延缓细胞的衰老。它们还可以帮助细胞抵抗外界的损伤,减少炎症反应,促进细胞的再生。
线粒体好比一个发电厂,给社会提供能源的同时,也给社会带来污染。
线粒体是一个细胞器,细胞需要靠线粒体产生能量驱动。当氧气充足时,我们摄入的供能物质(糖分和脂肪等)会在线粒体里进行 “燃烧”,生成细胞可以利用的能量,即三磷酸腺苷(ATP)。但是,“燃烧”的同时也会产生自由基,虽然低浓度的自由基具有一定的生理功能,但是过量的自由基对身体伤害很大。这也是熬夜最伤身体和皮肤的基本原理。抗衰的源头就是精准清除线粒体内的过量自由基。清除线粒体内部过量的自由基,保护好线粒体,是抵御衰老,保证身体健康和气色好的根本。
线粒体的定义
线粒体是活细胞进行有氧呼吸的主要场所,能进行有氧呼吸的第二、第三阶段,是细胞的动力车间。它由双层膜构成,内有许多与有氧呼吸有关的酶,而且还含有少量的DNA和RNA。现在通常提到这个,可以用来帮助缓解衰老?我自己就有在吃派络维,有专利活化线粒体的成分,可以帮助改善身体。
线粒体(mitochondrion)[1]是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"power house"。 其直径在0.5到1.0微米左右。 除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。 线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。
中文名
线粒体
外文名
mitochondrion
分布
大多数真核细胞
直径
0.5到1.0微米左右
分布区域
分布在细胞功能旺盛的区域
形状
短棒状、圆球状
作用
为细胞的各种生命活动提供能量
形态特征
大小
线粒体结构示意图
线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为0.5-1.0μm,长1-2μm,在光学显微镜下,需用特殊的染色,才能加以辨别。在动物细胞中,线粒体大小受细胞代谢水平限制。不同组织在不同条件下可能产生体积异常膨大的线粒体,称为“巨线粒体”(megamitochondria):胰脏外分泌细胞中可长达10-20μm;神经元胞体中的线粒体尺寸差异很大,有的也可能长达10μm;人类成纤维细胞的线粒体则更长,可达40μm。有研究表明在低氧气分压的环境中,某些如烟草的植物的线粒体能可逆地变为巨线粒体,长度可达80μm,并形成网络。
线粒体就是我们身体的能量车间,生命体95%的能量来自线粒体,我们又可以叫线粒体是“动力工厂”,就像车子如果没有汽油就没有能量就不能够运转起来,如果我们没有了线粒体那就是无法运转的一具躯壳,线粒体对我们至关重要。最近自己在吃抗衰产品中,派络维就是通过改善线粒体的方式来帮助抗衰的。可以加速去了解下
线粒体是一种存在于大多数细胞中的由两层膜包被的细胞器
线粒体或粒体线,真核细胞的一种半自主的细胞器,由双层膜组成的囊状结构;其内膜向腔内突起形成许多嵴,主要功能在于通过呼吸作用将食物分解产物中贮存的能量逐步释放出来,供应细胞各项活动的需要?故有“细胞动力站”之称。线粒体是1897年由德国学者C.本达首先命名的。我平时有吃派络维进行线粒体抗衰,效果不错
线粒体是什么
线粒体
mitochondrion
真核细胞的半自主的细胞器。由双层膜组成的囊状结构,其内膜向腔内突起形成许多嵴,主要功能在于通过呼吸作用将食物分解产物中贮存的能量逐步释放出来,供应细胞各项活动的需要,故有细胞动力站之称。
线粒体外形和大小常随细胞类型及生理条件的不同而有较大差别,呈很小的球、杆、或细丝状,以杆状的居多。线粒体在细胞内的分布,一般在需要能量较多的部位。
结构大致分3部分:① 外膜和内膜 ,内膜向腔内突起形成嵴。②内外膜之间的空间,称为膜间腔;嵴的膜间腔的一面排列着许多直径8~9纳米的圆球形颗粒,并有短柄与膜连接,称为ATP酶复合体或ATP合酶。③嵴与嵴之间的介质称为基质。
线粒体含有酶和辅酶共约70余种,能催化很多代谢反应,如氨基酸代谢 、脂肪酸 氧化分解等 ,并能 进行 DNA 的复制、转录和 RNA 的转译等等,但主要功能在于催化供能物质的氧化以释放能量,供细胞各种活动的需要。
线粒体内含DNA 。它们呈双线环状,其外形、大小和信息含量与细胞核 DNA相比都有很大的差异 ,周长通常大约是5微米。每个线粒体平均含2 ~ 6个这样大小的DNA环 。线粒体DNA 由于信息含量有限 ,不可能编码合成整个线粒体所需的蛋白质。线粒体的大部分组分是由细胞核 DNA 编码,在细胞质的核糖体上合成,然后再与线粒体自身合成的一些组分共同组装的。有较多的实验证据表明细胞内线粒体通过原有线粒体的分裂产生。
线粒体的功能
线粒体最主要作用是供能。
基质内含有与三羧酸循环所需的全部酶类,内膜上具有呼吸链酶系及ATP酶复合体。线粒体能为细胞的生命活动提供场所,是细胞内氧化磷酸化和形成ATP的主要场所,有细胞"动力工厂"(powerplant)之称。另外,线粒体有自身的DNA和遗传体系,但线粒体基因组的基因数量有限,因此,线粒体只是一种半自主性的细胞器。
线粒体是是细胞有氧呼吸的主要场所,为细胞新陈代谢提供能的地方,将细胞中的一些有机物当燃料,使这些与氧结合,经过复杂的过程,转变为二氧化碳和水,同时将有机物中的化学能释放出来,供细胞利用。
拓展资料:线粒体(mitochondrion) 是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"power house"。其直径在0.5到1.0微米左右。
除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。
线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。
参考资料:百度百科-线粒体
线粒体,有氧呼吸产生能量的主要场所。
植物细胞的能量转换器是叶绿体和线粒体
线粒体能将细胞中的一些有机物当燃料,使这些与氧结合,经过复杂的过程,转变为二氧化碳和水,同时将有机物中的化学能释放出来,供细胞利用
由于线粒体的作用,生物组织内有机物能在氧的参与下转变成无机物,如二氧化碳和水 ,并为生物组织和细胞提供进行生命活动所需的能量或ATP
线粒体功能1.为细胞供能2.控制细胞间信号传递、细胞分化与生死周期3.与性激素合成有关。改善线粒体功能对人体抗衰有着至关重要的作用,在平时的生活不仅仅要主要生活习惯,饮食习惯也是非常的重要。同时也可以适当的额外补充补充剂,我平时吃的派络维的效果蛮不错的,通过睡眠体现出来的是睡眠质量,精力充沛?体内数值变化,最近还没有去检测这个就不说了,以免误导。
线粒体,有氧呼吸产生能量的主要场所。
植物细胞的能量转换器是叶绿体和线粒体
线粒体能将细胞中的一些有机物当燃料,使这些与氧结合,经过复杂的过程,转变为二氧化碳和水,同时将有机物中的化学能释放出来,供细胞利用
由于线粒体的作用,生物组织内有机物能在氧的参与下转变成无机物,如二氧化碳和水 ,并为生物组织和细胞提供进行生命活动所需的能量或ATP
线粒体是人体的能量工厂,所以它是细胞的生存的能量来源。线粒体的老化和流失容易影响人体寿命和健康状态。线粒体的完整和保持,可以让细胞充满活力,皮肤细胞新陈代谢的速度和频率有了一定的改变,就会变得更年轻态?所以补充线粒体对于皮肤状态,身体的活力都是有改善效果的。日本有一款派络维改善线粒体衰老有一定的效果,可以试试看。
主要功能:
1,能量转化
线粒体是真核生物进行氧化代谢的部位,是糖类、脂肪和氨基酸最终氧化释放能量的场所。线粒体负责的最终氧化的共同途径是三羧酸循环与氧化磷酸化,分别对应有氧呼吸的第二、三阶段。
2,三羧酸循环
糖酵解中生成的每分子丙酮酸会被主动运输转运穿过线粒体膜。进入线粒体基质后,丙酮酸会被氧化,并与辅酶A结合生成CO2、还原型辅酶Ⅰ和乙酰辅酶A。
乙酰辅酶A是三羧酸循环(也称为“柠檬酸循环”或“Krebs循环”)的初级底物。参与该循环的酶除位于线粒体内膜的琥珀酸脱氢酶外都游离于线粒体基质中。
在三羧酸循环中,每分子乙酰辅酶A被氧化的同时会产生起始电子传递链的还原型辅因子(包括3分子NADH和1分子FADH2)以及1分子三磷酸鸟苷(GTP)。
3,氧化磷酸化
NADH和FADH2等具有还原性的分子(在细胞质基质中的还原当量可从由逆向转运蛋白构成的苹果酸-天冬氨酸穿梭系统或通过磷酸甘油穿梭作用进入电子传递链)在电子传递链里面经过几步反应最终将氧气还原并释放能量,其中一部分能量用于生成ATP,其余则作为热能散失。
在线粒体内膜上的酶复合物(NADH-泛醌还原酶、泛醌-细胞色素c还原酶、细胞色素c氧化酶)利用过程中释放的能量将质子逆浓度梯度泵入线粒体膜间隙。
虽然这一过程是高效的,但仍有少量电子会过早地还原氧气,形成超氧化物等活性氧(ROS),这些物质能引起氧化应激反应使线粒体性能发生衰退。
当质子被泵入线粒体膜间隙后,线粒体内膜两侧便建立起了电化学梯度,质子就会有顺浓度梯度扩散的趋势。质子唯一的扩散通道是ATP合酶(呼吸链复合物V)。
当质子通过复合物从膜间隙回到线粒体基质时,电势能被ATP合酶用于将ADP和磷酸合成ATP。这个过程被称为“化学渗透”,是一种协助扩散。
彼得·米切尔就因为提出了这一假说而获得了1978年诺贝尔奖。1997年诺贝尔奖获得者保罗·博耶和约翰·瓦克阐明了ATP合酶的机制。
4,储存钙离子
线粒体可以储存钙离子,可以和内质网、细胞外基质等结构协同作用,从而控制细胞中的钙离子浓度的动态平衡。线粒体迅速吸收钙离子的能力使其成为细胞中钙离子的缓冲区。
在线粒体内膜膜电位的驱动下,钙离子可由存在于线粒体内膜中的单向运送体输送进入线粒体基质;排出线粒体基质时则需要钠-钙交换蛋白的辅助或通过钙诱导钙释放(calcium-induced-calcium-release,CICR)机制。
在钙离子释放时会引起伴随着较大膜电位变化的“钙波”(calcium wave),能激活某些第二信使系统蛋白,协调诸如突触中神经递质的释放及内分泌细胞中激素的分泌。线粒体也参与细胞凋亡时的钙离子信号转导。
扩展资料:
线粒体(mitochondrion) 是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为"power house"。其直径在0.5到1.0微米左右。
除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。
线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。
参考资料:百度百科---线粒体