×

氦化钠被承认了吗,氦化钠被承认了吗

admin admin 发表于2024-04-10 10:04:54 浏览21 评论0

抢沙发发表评论

本文目录一览:

氦化钠被承认了吗

氦化钠被承认了。
氦是宇宙中含量第二多的元素,是七种惰性气体元素之一,很难与其他元素发生作用。然而,在极端条件下,惰性气体又可以分为两类:其中氪、氙、氡相对活跃,而氩、氖、氦则非常冷漠。而在2016年,中国研究人员在相当于110万个标准大气压的环境下,制造出了一种氦化合物:氦化钠。
此前,研究人员已经找到其他元素与氦进行配对的方法。但一直以来,都没有形成什么能够稳定存在的物质。最常见的例子就是氦与其他元素的范德华力,无需共价键或者离子键就可以存在。在极低的温度下,氦确实可以形成范德华力,但极其微弱,无法长久保持。
氦这种坚固的稳定力源于其闭壳层电子组态:其外壳层是完满的状态,没有空间和其他原子通过共用电子进行结合。不过这是地球表面环境中的情况。
作为宇宙中第二丰富的元素,氦在恒星和巨型气体行星的构成中起着重要作用。在外太空或者地球深处的极端条件下,它可能遵循着不同寻常的规律。如今,研究人员刚刚验证这种奇异的现象。
研究人员通过“晶体结构预测”模型进行演算发现,在极度的压力之下,一种稳定的氦钠化合物能够形成。然后他们在金刚石压腔实验中真的创造出了前所未见的化合物:Na2He。实验可以为氦和钠原子提供相当于110万倍地球大气压的条件。

氦化钠被承认了吗

承认了。在2016年,中国研究人员在相当于110万个标准大气压的环境下,制造出了一种氦化合物,氦化钠。氦化钠的发现是在实验室中进行的,这一发现为氦化钠的存在提供了科学依据,得到了学术界的广泛关注和认可。所以氦化钠被承认。

氦氧化钠是什么?

不是“氦氧化钠”因该是“氢氧化钠”
化学式为NaOH,俗称烧碱、火碱、苛性钠,为一种具有很强腐蚀性的强碱,一般为片状或颗粒形态,易溶于水(溶于水时放热)并形成碱性溶液,另有潮解性,易吸取空气中的水蒸气和二氧化碳。NaOH是化学实验室其中一种必备的化学品,亦为常见的化工品之一。纯品是无色透明的晶体。密度2.130g/cm3。熔点318.4℃。沸点1390℃。工业品含有少量的氯化钠和碳酸钠,是白色不透明的晶体。有块状,片状,粒状和棒状等。式量40.01
氢氧化钠在水处理中可作为碱性清洗剂,溶于乙醇和甘油;不溶于丙醇、乙醚。在高温下对碳钠也有腐蚀作用。与氯、溴、碘等卤素发生歧化反应。与酸类起中和作用而生成盐和水。

常见的稀有气体化合物有哪些

稀有气体氙的化合物,氙氟化物 ---- 二氟化氙、四氟化氙、六氟化氙, 氙氧化物 ---- 三氧化氙、四氧化氙
氦化钠现在已经被证实了,是一种稀有气体化合物
稀有气体化合物
氦化合物
尽管一些理论上一些氦化合物在低温高压下能稳定存在,但还没有实验能证明这一点。
氦合氢离子,化学式为HeH+,是一个带正电的离子,键级为1,可以存在与气态中,通过光谱观测到。它首次发现于1925年,通过质子和氦原子在气相中反应制得。它是已知最强的酸,质子亲和能为177.8
kJ/mol。这种离子也被称为氦氢分子离子。有人认为,这种物质可以存在于自然星际物质中。这是最简单的异核离子,可以与同核的氢分子离子(H2
+)相比较。与H2
+不同的是,它有一个永久的键偶极矩,使它更容易表现出光谱特征。
不同于氦合氢离子,氢和氦构成的中性分子(HeH)在一般情况下(基态)不稳定,但它的激发态可以作为准分子存在,20世纪80年代中期首次在光谱中观测到。
科学家们有三种制得氦化合物的构想
一是制得TF2离子,利用T的β衰变制得HeF2
TF2(CF3SO2)→HeF2+β
第二种是用热中子照射LiF发生核反应
LiF+0n→2He+T
第三种是直接用α粒子轰击固态氟,制得HeF2
氖化合物
氖化合物理论上存在的可能性依然不确定,且氖的水合物很不稳定。
氩化合物
氩已知唯一的化合物为
氟氩化氢
,氟氩化氢是一群由马库·拉萨能领导的芬兰化学家发现的
这群芬兰化学家是将氩气和氟化氢在碘化铯表面冷冻至-265°C,这使氩气结成冰,然后再用大量的紫外线照射这氩冰和氟化氢的混合物,这使得氩和氟化氢反应产生氩氟化氢。经过红外光谱术分析后,他们发现氩原子已经和氟原子、氢原子产生化学键,但该化学键非常的弱,只要温度高于-256°C它就会再分解为氩和氟化氢。
氪化合物
氪与氟反应得到
二氟化氪
。过去有报道称"四氟化氪"(实际上是二氟化氪)与水在-30℃时反应得到2-3%的"氪酸"KrO3·xH2O,该溶液有氧化性,能将碘离子氧化为碘单质,与氢氧化钡溶液反应得到产率7%的白色晶体"氪酸钡"。这些报道可信度不高,后来也未能重现。在含放射性同位素二氧化硒衰变产物中用光谱检测到Kr-O键的存在,还没有方法合成氧化氪。
氙化合物
氙在稀有气体元素中是化合物最多的
1962年,巴特列在研究无机氟化物时,发现强氧化性的
六氟化铂
可将O2氧化为O2+。由于O2到O2+的电离能(1165
kJ
mol)与Xe到Xe的电离能相差不大(1170
kJ
mol),因此他尝试用PtF6氧化Xe。结果反应得到了橙黄色的固体。巴特利特认为它是六氟合铂酸氙(Xe[PtF6])。
这是第一个制得的稀有气体化合物。后期的实验证明该化合物化学式并非如此简单,包括XeFPtF6和XeFPt2F11。
在成功合成六氟合铂酸氙,化学家又尝试用类似的六氟化钌来氧化氙。结果发现除了生成Xe(RuF6)x外,还存在有氙和氟气直接生成二元氙氟化物的副反应。因此克拉森(Howard
Claassen)通过让氙和氟在高温下反应,成功合成了四氟化氙。
合成的稀有气体化合物绝大多数都是氙的化合物,其中比较重要的包括:
氙氟化物--XeF2、XeF4、XeF6
氙的氟氧化物--XeOF2、XeOF4、XeO2F2、XeO3F2、XeO2F4
氙氧化物--XeO3、XeO4
二氟化氙可由Xe和F2混合气暴露在阳光下制得。但有趣的是,1960年代之前的半个世纪中,却没有人发现仅仅混合这两种气体就有可能发生反应。
制得了一大种类形式为XeOxY2的稀有气体化合物,其中x
=
1、2、3,Y是任何电负性强的基团,比如CF3、N(SO2F)2或OTeF5。这类化合物范围相当广,可以有上千个之多,并且涉及氙和氧、氮、碳甚至金之间的化学键。一同报道的还有高氙酸、一些稀有气体卤化物和配离子。化合物Xe2Sb2F11中含有目前已知最长的化学键,其中的Xe–Xe键长308.71
pm。
氡化合物
氡可与氟反应生成
二氟化氡
,在固态时会发出黄色光。它与氙的相应化合物类似,但更稳定,更不易挥发。
包合物
稀有气体包合物在近几十年曾被广泛研究过,它们由于有可能用于储存稀有气体而引起了人们的兴趣。在这些包合物中,稀有气体原子基本上都是被包容在笼状的主体分子中,即主体分子构成笼状晶格,将稀有气体包藏在笼中。能否形成包合物主要决定于主体分子和客体分子间的几何因素是否合适。例如,氩、氪和氙可以与β-氢醌形成包合物,氦和氖却因为体积太小而无法包合在内。
稀有气体包合物中,研究较多的主体分子是水、氢醌、苯酚和氟代苯酚。
包合物可以用来从稀有气体中分离出He和Ne,及运输Ar、Kr和Xe。此类化合物亦可用作放射源,Kr的包合物是β粒子的安全来源,Xe的包合物则是γ射线的来源。
配位化合物
曾经一度认为诸如Ar·BF3之类的配位化合物可在低温下存在,但始终未经实验验证。并且,有报道称化合物WHe2和HgHe2可由电子轰击制得。然而最近的研究表明,它们并不是真正的化合物,He很有可能只是被金属表面吸附。
水合物
水合物可由将稀有气体压入水中制得。有理论认为,强极性的水分子使稀有气体原子产生诱导偶极,产生偶极-偶极作用力。因此原子序数较大的稀有气体所形成的水合物,如Xe·6H2O,比原子序数小的稀有气体元素形成的要更加稳定。但2010年来对于这些化合物是否存在产生了疑问。
内嵌富勒烯型化合物
稀有气体原子可以被包覆在富勒烯分子中,形成多种多样的内嵌富勒烯型化合物。它们首先在1993年合成。用C60与He或Ne在3bar压力下反应,得到的大约650000个富勒烯分子中,只有一个可以与稀有气体原子形成包合物He@C60或Ne@C60;压力增大至3000bar时,产率增至0.1%。

He元素能形成化合物吗

目前没有,稀有气体Xe就有
氦有极高的电离能,有很大的反应惰性,并且由于半径极小,连水笼包合物都极难存在,但是就在去年,我国科学家成功合成氦化钠Na2He,其晶胞结构类似氟化钙,但实际上氦仍显零价,实际组成:2Na+.2e-.He。满意请采纳,谢谢

氦、氖、氩有没有化合物的?

氦氖氩氪氙 在化学周期表中位于最右列,是0族元素
它们的最外层有8个电子,既不会失去电子也不会得到电子,所以化学性质很稳定,不会发生任何反应 所以它们都是以单原子形式存在的
都是惰性气体,没有化合物的
氦:氦化钠
氖:没有化合物
氩:氟氩化氢、氟氩化铯
氪:二氟化氪
氙:六氟化氙、三氟化氙
除了氦与氖外,只有氩有自己的化合物——HArF
有……你可以百度百科一下……
氩,非金属元素,元素符号Ar。氩是单原子分子,单质为无色、无臭和无味的气体。
是稀有气体中在空气中含量最多的一个,由于在自然界中含量很多,氩是目前最早发现的稀有气体。化学性极不活泼,但是已制的其化合物-氟氩化氢。氩不能燃
烧,也不能助燃。氩的最早用途是向电灯泡内充气。焊接和切割金属也使用大量的氩。用作电弧焊接不锈钢、镁、铝和其他合金的保护气体,即氩弧焊。

na2he 能在常温常压下存在吗

在标准状况下22.4升气体的物质的量为一摩尔,那么二氧化氮和二氧化碳混合气体中,含有2NA氧原子的正确的。但总在常温常压下22.4升气体的物质的量,要小于一摩尔,所以22.4L的No2和CO2混合气体含有氧原子的数量要小于2NA。

请问哪里能买到99.9999%的高纯金属钾呀?

一般情况下不可能,尤其是这类高纯度物品,一般是不允许卖的。即使有的让买,价格一般也不被人所接受。
可以买低纯度的钾在电解精炼或加热到溶化后放入煤油中。

1n是什么化学元素?

1
H

qīng
1.008
1s1
+1、-1
主族
非金属
Hydrogen
密度最小,同位素为氕、氘和氚
2
He

hài
4.003
1s2
0
主族
非金属
稀有气体
Helium
最难液化,稀有气体,由中国学者成功制得氦化合物
Na2He
3
Li


6.941
2s1
+1
主/金/碱
Lithium
密度小于煤油,用石蜡封存的活泼碱金属,空气中生成黑色氮化锂,可与水反应
4
Be


9.012
2s2
+2
主/金/碱土
Beryllium
最轻碱土金属元素,有毒,与水几乎不反应
5
B

péng
10.81
2s22p1
+3
主族
非金属
Boron
单质硬度仅次于金刚石的非金属元素,重要微量元素
6
C

tàn
12.01
2s22p2
无机+2、
+4、-4,
有机不规则
主族
非金属
Carbon
硬度最高(金刚石)、导电(石墨),细胞干重中含量最高,是生命的基本构架
7
N

dàn
14.01
2s22p3
-3、 +1 、
+2、 +3、
+4、+5
主族
非金属
Nitrogen
空气中含量最多的元素,不活泼,其氧化物是大气污染物
8
O

yǎng
16.00
2s22p4
-2、-1
主族
非金属
Oxygen
地壳中最多,生物体内最多,支持燃烧和需氧型生物呼吸
9
F


19.00
2s22p5
-1
主族
非金属
卤素
Fluorine
最活泼的非金属,化合价没有正价,单质不能被氧化
10
Ne

nǎi
20.18
2s22p6
0
主族
非金属
稀有气体
Neon
稀有气体,用于光源
11
Na


22.99
3s1
+1
主/金/碱
Sodium
活泼,与空气或水接触发生反应,只能储存在石蜡、煤油或稀有气体中,钠光灯是重要黄光光源
12
Mg

měi
24.31
3s2
+2
主/金/碱土
Magnesium
碱土金属,能在二氧化碳或氮气中燃烧,能与水反应但相当缓慢
13
Al


26.98
3s23p1
+3
主族
金属
Aluminium
地壳里含量最多的金属,具有非金属性,应用广泛
14
Si

guī
28.09
3s23p2
+4、-4
主族
非金属
Silicon
地壳中含量仅次于氧,外表很像金属,是芯片的重要元素
15
P

lín
30.97
3s23p3
-3、+3、+5
主族
非金属
Phosphorus
有白磷和红磷,白磷有剧毒且在常温下可以自燃
16
S

liú
32.06
3s23p4
-2、+4、+6
主族
非金属
Sulphur
黄色固体,质地较软且轻,与火山活动密切相关
17
Cl


35.45
3s23p5
-1、+1、
+3、+4、
+5、+7
主族
非金属
卤素
Chlorine
黄绿色有毒气体,活泼,支持燃烧
18
Ar


39.95
3s23p6
0
主族
非金属
稀有气体
Argon
稀有气体,在空气中含量最多的稀有气体
19
K

jiǎ
39.10
4s1
+1
主/金/碱
Potassium
比钠活泼,遇水即燃
20
Ca

gài
40.08
4s2
+2
主/金/碱土
Calcium
空气中会与氮化合,能与水反应,是石灰、骨骼主要组成成分
21
Sc

kàng
44.96
3d14s2
+3
副族
金属
Scandium
一种柔软过渡金属,常与钆、铒混合存在
22
Ti

tài
47.87
3d24s2
+3、+4
副族
金属
Titanium
能在氮气中燃烧,熔点高
23
V

fán
50.94
3d34s2
+3、+5
副族
金属
Vanadium
高熔点稀有金属
24
Cr


52.00
3d54s1
+3、+4、+6
副族
金属
Chromium
硬度最高的金属
25
Mn

měng
54.94
3d54s2
区间[-3,+7]的整数
副族
金属
Manganese
在地壳中分布广泛
26
Fe

tiě
55.85
3d64s2
+2、+3、+6
Ⅷ族
金属
Iron
地壳含量第二高的金属,单质产量最高,有磁性
27
Co


58.93
3d74s2
+2、+3
Ⅷ族
金属
Cobalt
同位素60Co被应用于X光发生器中,有磁性
28
Ni

niè
58.69
3d84s2
+2、+3
Ⅷ族
金属
Nickel
有磁性和良好可塑性,可用于制作充电电池,甘肃金昌镍矿
29
Cu

tóng
63.55
3d104s1
+1、+2
副族
金属
Copper
人类发现较早的金属之一,可塑性很好,导电性能优
30
Zn

xīn
65.39
3d104s2
+2
副族
金属
Zinc
人体需要的微量元素,干电池负极
31
Ga

jiā
69.72
3d104s24p1
+3
主族
金属
Gallium
熔点低沸点高,用于半导体
32
Ge

zhě
72.64
3d104s24p2
+4
主族
金属
Germanium
具有两性,是一种重要的半导体材料
33
As

shēn
74.92
4s24p3
-3、+3、+5
主族
非金属
Arsenic
As2O3(即砒霜)剧毒
34
Se


78.96
4s24p4
-2、+4、+6
主族
非金属
Selenium
可用于制作硒鼓,可使玻璃致色为鲜红色
35
Br

xiù
79.90
4s24p5
-1、+5、+7
主族
非金属
卤素
Bromine
红棕色液体,活泼,不易溶于水,易溶于有机溶剂
36
Kr


83.80
4s24p6
+2
主族
非金属
稀有气体
Krypton
稀有气体,可与氟化合
37
Rb


85.47
5s1
+1
主/金/碱
Rubidium
密度大于水,比钾更活泼
38
Sr


87.62
5s2
+2
主/金/碱土
Strontium
是碱土元素中丰度最小的元素,与水反应会使溶液变白
39
Y


88.91
4d15s2
+3
副族
金属
Yttrium
人工合成的钇铝榴石曾被当做钻石的替代品
40
Zr

gào
91.22
4d25s2
+4
副族
金属
Zirconium
氧化物立方氧化锆为钻石的人工替代品
41
Nb


92.91
4d45s1
+5
副族
金属
Niobium
铌钢被用于制作汽车外壳
42
Mo


95.96
4d55s1
+4、+6
副族
金属
Molybdenum
植物生长所需的微量元素
43
Tc


98
4d55s2
+4、+7
副族
金属
Technetium
原子序数最小的放射性元素,第一个人工合成的元素
44
Ru

liǎo
101.1
4d75s1
+1、+4、+8
Ⅷ族
金属
Ruthenium
硬而脆呈浅灰色的多价稀有金属元素
45
Rh

lǎo
102.9
4d85s1
+3,+4
Ⅷ族
金属
Rhodium
现代珠宝制作过程进行表面处理的必须元素
46
Pd


106.4
4d10
+2、+4
Ⅷ族
金属
Palladium
被应用于酒精检测中
47
Ag

yín
107.9
4d105s1
+1
副族
金属
Silver
贵金属,导电性最好,银镜反应用于制作镀银玻璃镜
48
Cd


112.4
4d105s2
+2
副族
金属
Cadmium
重金属,有毒,过量摄入会导致痛痛病
49
In

yīn
114.8
5s25p1
+3
主族
金属
Indium
可塑性强,有延展性,115In是主要核素,有放射性
50
Sn


118.7
5s25p2
+2、+4
主族
金属
Tin
人类最早发现应用的元素之一,被用于制造容器
51
Sb


121.8
5s25p3
-3、+3、+5
主族
金属
Antimony
熔点低,被用于制作保险丝,湖南冷水江锑矿
52
Te


127.6
5s25p4
-2、+4、+6
主族
非金属
Tellurium
密度最大的非金属,碲酸含6个羟基
53
I

diǎn
126.9
5s25p5
-1、+5、+7
主族
非金属
卤素
Iodine
紫黑色固体,可升华,活泼,甲状腺所需的微量元素
54
Xe

xiān
131.3
5s25p6
+4、+6、+8
主族
非金属
稀有气体
Xenon
稀有气体,可与氟化合
55
Cs


133
6s1
+1
主/金/碱
Cesium
具有金色光泽的碱金属,熔点很低,比铷更活泼,遇水即爆
56
Ba

bèi
137.3
6s2
+2
主/金/碱土
Barium
与水反应不变白,氢氧化钡可溶于水,硫酸钡被应用于钡餐透视
57
La

lán
139
5d1 6s2
+3
副/金/镧
Lanthanum
第一个镧系元素
58
Ce

shì
140
4f1 5d1 6s2
+3、+4
副/金/镧
Cerium
用来制造打火石
59
Pr


141
4f3 6s2
+3
副/金/镧
Praseodymium
英文名称最长
60
Nd


144
4f4 6s2
+3
副/金/镧
Neodymium
磁性强
61
Pm


145
4f5 6s2
+3
副/金/镧
Promethium
有放射性
62
Sm

shān
150.5
4f6 6s2
+3
副/金/镧
Samarium
磁性强
63
Eu

yǒu
152
4f7 6s2
+3
副/金/镧
Europium
活泼,能放出红光
64
Gd


157
4f7 5d1 6s2
+3
副/金/镧
Gadolinium
未配对电子达到上限
65
Tb


159
4f9 6s2
+3
副/金/镧
Terbium
通电时改变形状
66
Dy


162.5
4f10 6s2
+3
副/金/镧
Dysprosium
英文名称源自“很难得到”
67
Ho

huǒ
165
4f11 6s2
+3
副/金/镧
Holmium
银白色,质软,可用来制磁性材料
68
Er

ěr
167
4f12 6s2
+3
副/金/镧
Erbium
银灰色,质软,可用来制特种合金,激光器等
69
Tm

diū
169
4f13 6s2
+3
副/金/镧
Thulium
银白色,质软,可用来制X射线源等
70
Yb


173
4f14 6s2
+2、+3
副/金/镧
Ytterbium
银白色,质软,可用来制特种合金,也用作激光材料等
71
Lu


175
4f14 5d1 6s2
+3
副/金/镧
Lutetium
银白色,质软,可用于核工业
72
Hf


178.5
5d2 6s2
+4
副/金
Hafnium
银白色,熔点高。可用来制耐高温合金,也用于核工业等
73
Ta

tǎn
181
5d3 6s2
+5
副/金
Tantalum
钢灰色,耐腐蚀质硬,熔点高。可用于航天工业及核工业
74
W


184
5d4 6s2
+4、+6
化学元素周期表是根据核电荷数从小至大排序的化学元素列表。列表大体呈长方形,某些元素周期中留有空格,使特性相近的元素归在同一族中,如碱金属元素、碱土金属、卤族元素、稀有气体,非金属,过渡元素等。这使周期表中形成元素分区且分有七主族、七副族、Ⅷ族、0族。由于周期表能够准确地预测各种元素的特性及其之间的关系,因此它在化学及其他科学范畴中被广泛使用,作为分析化学行为时十分有用的框架。
元素在周期表中的位置不仅反映了元素的原子结构,也显示了元素性质的递变规律和元素之间的内在联系。使其构成了一个完整的体系,被称为化学发展的重要里程碑之一。
同一周期内,从左到右,元素核外电子层数相同,最外层电子数依次递增,原子半径递减(0族元素除外)。失电子能力逐渐减弱,获电子能力逐渐增强,金属性逐渐减弱,非金属性逐渐增强。元素的最高正氧化数从左到右递增(没有正价的除外),最低负氧化数从左到右递增(第一周期除外,第二周期的O、F元素除外)。
同一族中,由上而下,最外层电子数相同,核外电子层数逐渐增多,原子半径增大,原子序数递增,元素金属性递增,非金属性递减。
元素周期表的意义重大,科学家正是用此来寻找新型元素及化合物。