本文目录一览:
- 1、应力与应变的关系公式
- 2、应力与应变的关系公式
- 3、应力与应变的关系公式是什么
- 4、应力和应变是怎么计算的?
- 5、材料力学公式(应力、应变、弹性模量、泊松比等基本概念)
- 6、弹性模量计算公式中应力、应变分别指什么?
- 7、应力的计算公式?
- 8、应变计算公式
- 9、弹性模量计算公式中应力、应变分别指什么?
应力与应变的关系公式
应力与应变的关系公式:F=k·x或△F=k·Δx,应力是应变的原因,应变是应力的结果。物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。工程构件,大多数情形下,内力并非均匀分布,通常“破坏”或“失效”往往从内力集度最大处开始,因此,有必要区别并定义应力概念。
应力与应变的关系公式
应力与应变的关系公式是ε=ΔL/L,应力与应变的比例常数E被称为弹性系数或扬氏模量,不同的材料有其固定的扬氏模量。虽然无法对应力进行直接的测量但是通过测量由外力影响产生的应变可以计算出应力的大小。
当应力超过σe后,应力与应变之间的直线关系被破坏,并出现屈服平台或屈服齿。如果卸载,试样的变形只能部分恢复,而保留一部分残余变形,即塑性变形,这说明钢的变形进入弹塑性变形阶段。σs称为材料的屈服强度或屈服点,对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限。
应力与应变的关系公式是什么
F=kx或△F=kx
应力与应变的关系公式:F=k·x或△F=k·Δx,应力是应变的原因,应变是应力的结果。物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力。同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。
物体中一点在所有可能方向上的应力称为该点的应力状态。通过分析可知,只需用过一点的任意一组相互垂直的三个平面上的应力就可代表点的应力状态,而其它截面上的应力都可用这组应力及其与需考察的截面的方位关系来表示。
在结构力学分析中,我们会遇到大量有关应力和应变的定义。它们可能是第二类皮奥拉-基尔霍夫应力(SecondPiola-KirchhoffStress)或者对数应变(LogarithmicStrain)。在这篇文章中,我们将调查这些数量,讨论为什么需要如此多不同定义的应力和应变,并说明作为有限元分析人员了解这些应力和应变的重要性。在许多教材中,都能找到张量表达式与变换的定义。
拉伸试验
在评估材料的力学数据时,会进行单轴拉伸试验。拉伸试验实际测量的是力与位移的关系曲线,但是为了使这些结果与试样尺寸无关,通常用应力与应变的关系来表示结果。如果变形足够大,那么将遇到的一个问题:我是根据样本的原始横截面积计算应力,还是根据当前的面积计算应力?答案是两种定义都会被使用,它们分别被称为名义应力和真实应力。
第二个并不是很明显的问题是:如何测量相对伸长,即应变。将伸长长度与原始长度之间的比率定义为工程应变,\epsilon_{eng}=\frac{L-L_0}{L_0}。但是,对于较大的拉伸,更常见的是使用拉伸\lambda=\frac{L}{L_0},或者真实应变(对数应变)\epsilon_{true}=\log\frac{L}{L_0}=\log\lambda。
真实应变在金属试验中更为常见,因为它适合许多塑性模型。对于可能具有很大伸长率的材料,例如橡胶,拉伸是一个更常见的参数。请注意,对于未变形的材料,拉伸为\lambda=1。
为了在分析中利用测量数据,我们必须确保以下两点
1、测试中如何定义应力和应变
2、您的分析软件期望它以什么形式应用于特定的材料模型
单轴数据的转换并不困难,但一定不能忘记。
应力和应变是怎么计算的?
应力计算公式: σ=N /An 。 力N与净截面积An的比值是应力σ,即单位面积上所承受的力是应力。
应变计算公式ε= a / L 。变形量a与未受力前的原尺寸L之间的比值是应变ε,即单位长度上产生的变形量称为应变。
测量工具
应力仪或者应变仪是来测定物体由于内应力的仪器。一般通过采集应变片的信号,而转化为电信号进行分析和测量。
方法是:将应变片贴在被测定物上,使其随着被测定物的应变一起伸缩,这样里面的金属箔材就随着应变伸长或缩短。很多金属在机械性地伸长或缩短时其电阻会随之变化。
应变片就是应用这个原理,通过测量电阻的变化而对应变进行测定。一般应变片的敏感栅使用的是铜铬合金,其电阻变化率为常数,与应变成正比例关系。
材料力学公式(应力、应变、弹性模量、泊松比等基本概念)
材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,其重要性在于可以为材料的设计和使用提供理论依据。本文将介绍材料力学中的一些基本概念和公式,并结合实例进行应用。
一、应力和应变
应力是指物体受到的力在单位面积上的大小,通常用符号σ表示,单位为帕斯卡(Pa)。应力的公式为:
σ=F/A
其中,F为物体受到的力,A为物体受力面积。
应变是指物体在受到应力作用下发生的变形程度,通常用符号ε表示,其公式为:
ε=ΔL/L
其中,ΔL为物体受力后发生的长度变化,L为物体原始长度。
二、弹性模量
弹性模量是材料的一种力学性质,它描述了材料受到应力时的弹性变形程度。弹性模量通常用符号E表示,单位为帕斯卡(Pa)。其公式为:
E=σ/ε
弹性模量越大,说明材料的弹性越好,即在受到应力后能够迅速恢复原状。
三、泊松比
泊松比是材料的另一种力学性质,它描述了材料在受到应力时沿着一个方向的收缩程度与沿着垂直方向的膨胀程度之比。泊松比通常用符号ν表示,其公式为:
ν=-εy/εx
其中,εy为材料在受到应力时沿着垂直方向的应变,εx为材料在受到应力时沿着一个方向的应变。
四、应用实例
下面我们以一根钢杆为例,介绍材料力学公式的应用。
1.计算钢杆的应力
假设一根钢杆受到1000N的拉力作用,其直径为10mm,求钢杆的应力。
解:首先计算钢杆的横截面积:
A=πr2=π(5mm)2≈78.54mm2
然后应用应力公式,计算钢杆的应力:
σ=F/A=1000N/78.54mm2≈12.73MPa
因此,钢杆的应力为12.73MPa。
2.计算钢杆的应变
假设钢杆的长度为1m,其受力后长度变化为0.1mm,求钢杆的应变。
解:应用应变公式,计算钢杆的应变:
ε=ΔL/L=0.1mm/1000mm=0.0001
因此,钢杆的应变为0.0001。
3.计算钢杆的弹性模量
假设钢杆的应力为10MPa,应变为0.001,求钢杆的弹性模量。
解:应用弹性模量公式,计算钢杆的弹性模量:
E=σ/ε=10MPa/0.001≈10GPa
因此,钢杆的弹性模量为10GPa。
4.计算钢杆的泊松比
假设钢杆在受到应力时沿着垂直方向的应变为0.0005,沿着一个方向的应变为0.001,求钢杆的泊松比。
解:应用泊松比公式,计算钢杆的泊松比:
ν=-εy/εx=-0.0005/0.001=-0.5
因此,钢杆的泊松比为-0.5。
弹性模量计算公式中应力、应变分别指什么?
在所考察的截面某一点单位面积上的内力称为应力
一点处变形的程度的力学量是该点的应变
一般地讲,对弹性体施加一个外界作用,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。其计算公式为:E
=
σ
/
ε,E即为弹性模量,σ为应力,ε为应变。其具体含义如下:
应力类似于压强的定义,即单位面积所受的力,计算公式为
σ=F/A,这样就能表示出单位面所受的力的大小,而应变是指杆件变形量与总长度的比值,类似于伸长率。
应力的计算公式?
应变计算公式应变计算公式:σ=F/A。物体在受到外力作用下会产生一定的变形,变形的程度称应变。应变有正应变(线应变),切应变(角应变)及体应变。主要有线应变和角应变两类。
在多个物体组成的系统中,由系统之外的物体对这个系统的作用力称为外力,指由太阳辐射、重力、日月引力等来自地球外部的引力(通过大气、水、生物等)所引起的作用。包括风化作用、侵蚀作用、搬运作用、沉积作用和固结成岩作用。
应力状态是指物体由于外因(受力、湿度、温度场变化等)而变形时,在物体内各部分之间产生相互作用的内力,单位面积上的内力称为应力。应力是一个矢量,沿截面法向的分量称为正应力,沿切向的分量称为切应力。
物体中一点在所有可能方向上的应力称为该点的应力状态。但过一点可作无数个平面,是只需用过一点的任意一组相互垂直的三个平面上的应力就可代表点的应力状态,而其它截面上的应力都可用这组应力及其与需考察的截面的方位关系来表示。
应变计算公式
应变没有单位,一般用应变仪测量出来的是微应变uε,1ε=0uε应变计算公式应变计算公式σ=FA物体在受到外力作用下会产生一定的变形,变形的程度称应变应变有正应变线应变,切应变角应变及体应变。
弹性模量E 切变模量G 泊松比v三者关系公式为G=E21+v泊松比材料沿载荷方向产生伸长或缩短变形的同时,在垂直于载荷的方向会产生缩短或伸长变形垂直方向上的应变εl与载荷方向上的应变。
应变计算公式σ=FA切应变弹性模量E切变模量G泊松比v三者关系公式为G=E21+v应变计算公式σ=FA物体在受到外力作用下会产生一定的变形,变形的程度称应变应变有正应变线应变。
1首先应力计算公式σ=NAn力N与净截面积An的比值是应力σ,即单位面积上所承受的力是应力2其次应变计算公式ε=aL变形量a与未受力前的原尺寸L之间的比值是应变ε3最后即单位长度上产生的变形量称为。
弹性模量计算公式中应力、应变分别指什么?
应变是指杆件变形量与总长度的比值,类似于伸长率。
应力类似于压强的定义,即单位面积所受的力,计算公式为 σ=F/A。
弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。
但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。