本文目录一览:
- 1、离散傅里叶变换怎么求?
- 2、离散傅里叶变换的计算公式是什么?
- 3、离散傅里叶变换公式是什么?
- 4、离散傅里叶变换公式
- 5、什么是傅里叶变换公式?
- 6、dtft的全称
- 7、快速傅里叶变换——理论
- 8、离散傅里叶变换的物理意义
- 9、傅里叶变换是什么公式
离散傅里叶变换怎么求?
根据欧拉公式,cosω0t=[exp(jω0t)+exp(-jω0t)]/2。
直流信号的傅里叶变换是2πδ(ω)。
根据频移性质可得exp(jω0t)的傅里叶变换是2πδ(ω-ω0)。
再根据线性性质,可得
cosω0t=[exp(jω0t)+exp(-jω0t)]/2的傅里叶变换是πδ(ω-ω0)+πδ(ω+ω0)。
扩展资料
计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。
它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。
时间抽取算法 令信号序列的长度为N=2,其中M是正整数,可以将时域信号序列x(n)分解成两部分,一是偶数部分x(2n),另一是奇数部分x(2n+1),于是信号序列x(n)的离散傅里叶变换可以用两个N/2抽样点的离散傅里叶变换来表示和计算。考虑到和离散傅里叶变换的周期性,式⑴可以写成
⑶其中(4a)(4b)由此可见,式⑷是两个只含有N/2个点的离散傅里叶变换,G(k)仅包括原信号序列中的偶数点序列,H(k)则仅包括它的奇数点序列。虽然k=0,1,2,…,N-1,但是G(k)和H(k)的周期都是N/2,它们的数值以N/2周期重复。
离散傅里叶变换的计算公式是什么?
离散傅里叶变换常用公式表是:cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。
傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布。
论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827)。
当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
离散傅里叶变换公式是什么?
sinwt的傅里叶变换公式是cosωbai0t=[exp(jω0t)+exp(-jω0t)]/2。
计算离散傅里叶变换的快速方法,有按时间抽取的FFT算法和按频率抽取的FFT算法。前者是将时域信号序列按偶奇分排,后者是将频域信号序列按偶奇分排。
它们都借助于的两个特点:一是周期性;二是对称性,这里符号*代表其共轭。这样,便可以把离散傅里叶变换的计算分成若干步进行,计算效率大为提高。
变换提出
傅里叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。
当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在他此后生命的六年中,拉格朗日坚持认为傅里叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。
法国科学学会屈服于拉格朗日的威望,拒绝了傅里叶的工作,幸运的是,傅里叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。
离散傅里叶变换公式
u(t)=1/jw+pai*冲激函数(w),仔秋频域微风,时域*-jt,最后等式两段*j就可以了。
在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
傅立叶变换可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
扩展资料:
傅里叶变换的相关规定:
1、傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。
2、正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。
2、卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。
参考资料来源:百度百科-傅立叶变换
什么是傅里叶变换公式?
傅里叶变换是一种将函数从时域(时间域)转换到频域(频率域)的数学变换。常用的傅里叶变换公式如下:
1. 连续时间傅里叶变换(Continuous Fourier Transform):
F(ω) = ∫[f(t) * e^(-jωt)] dt
其中,F(ω) 表示频域的复数函数,f(t) 表示时域的函数,ω 是频率,j 是虚数单位。
2. 离散时间傅里叶变换(Discrete Fourier Transform):
F(k) = Σ[f(n) * e^(-j(2π/N)kn)],对 n = 0 to N-1
其中,F(k) 表示频域的复数函数,f(n) 表示时域的离散序列,N 是序列的长度,k 是频率索引。
这些公式描述了傅里叶变换的基本原理,将函数在时域的表示转换为频域的表示。傅里叶变换的频谱表示了信号在不同频率上的成分信息,它在信号处理、图像处理、通信等领域中得到广泛应用。需要注意的是,傅里叶变换有很多变体和衍生形式,上述公式只是其中的常用形式之一。
dtft的全称
dtft的全称
DTFT”是“Discrete Time Fourier Transformation”的缩写,中文术语是“离散时间傅立叶变换”。
传统的傅立叶变换(FT)一般只能用来分析连续时间信号的频谱,而计算机只会处理离散的数字编码消息,所以现代社会需要对大量的离散时间序列信号进行傅立叶分析。DTFT就是IT领域中对离散时间信号进行频谱分析的数学工具之一。
傅立叶变换的问题在于它包含太多的无穷大而无法实际使用,其固有的无穷大共有三个
无限积分——信号被整合在整个的时间
连续频率——信号由无数个相邻频率组成
连续时间信号——信号在每个时刻都包含一个值,即一个无限的时刻数量
变换公式
离散时间傅立叶变换并没有摆脱无穷大 1 和 2,但它确实消除了无穷大 3。下面比较一下比较傅立叶变换和离散时间傅立叶变换的公式
其实DTFT是一种特殊的Z变换。在Z变换中,如果复变量z仅在z平面的单位圆(r=|z|=1或σ=0)上取值,则复变量转化为纯虚变量。
DTFT的局限性:
离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分析中具有重要的理论意义。但在用计算机实现运算方面比较困难。
这是因为,在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角频率Ω上却是连续的周期函数。而计算机只能处理变量离散的数字信号。
快速傅里叶变换——理论
离散信号傅里叶变换的公式如下所示:
离散傅里叶变换的原理是将原本非周期的信号复制扩展为周期信号,在实际的数字电路处理中,处理的信号是有限长的,取长度为N,即N为信号 的周期,对于有限长周期信号,其离散傅里叶变换有如下性质: 其中 为周期信号的傅里叶级数,而 表示当且仅当 时有 ,因此可以将傅里叶变换转为离散表达,如下所示: 考虑 以N为周期,因此仅需要计算k从0到N-1即可,取 此公式写成矩阵乘法模式如下所示: W为一个 的方阵,该计算的复杂度为
对于系数矩阵中的元素 ,其公式如下所示: 考虑 ,推导公式如下所示: 再考虑 和 的情况: 再考虑 和 的情况: 最后考虑 且 或 的情况: 根据上述推导,可以得出系数W具有以下四条性质,这三条性质会在后续推导中用到:
基n快速傅里叶变换用于一个长度N为 的序列,例如基2快速傅里叶作用在 的序列上,基4快速傅里叶作用在 的序列上。现在考虑基2FFT的推导(硬件实现一般使用基4或基8FFT实现),首先写出有限长离散序列的傅里叶变换,记一个信号 的FFT变换为 : 快速傅里叶变换的核心思想为 分而治之 ,即 分治法 ,该思想的核心是将一个长度为N的问题,分级为两个长度为 的问题,应用在这里即是需要将一个序列长度为N的FFT变换问题分解为两个序列长度为 的FFT变换。首先进行如下变换: 矩阵的形式如下所示: 根据W的性质 ,代入后有: 矩阵形式的表达如下所示,现在的矩阵为两个个高度为N,长度为N/2的矩阵。 代入 ,根据W的性质 有: 矩阵表达如下所示: 代入 ,根据W的性质 有: 矩阵表达如下所示: 根据上述推导,一个长度为N点的离散傅里叶变换被变为一个长度为 的离散傅里叶变换,取 公式如下所示:
根据频域抽取基2FFT的算法,除了按前后分类外,还可以直接按奇偶进行分类,公式如下所示: 对应的矩阵表示为: 取序列 , 代入上述表达式,取 再代入W的变换性质可得: 其对应的矩阵为: 即将对F[k]的上半部分结果分解为两个FFT结果的和,即: 现在考虑F[k]的下半部分,公式如下所示: 取 ,代入有: 代入W的性质 和 ,有: 将变量i更换为k,其矩阵形式为: 最终可以将结果汇总为:
蝶形运算的公式如下,蝶形运算输入为 和 ,输出为 和 ,系数为 : 其转换为矩阵表达为: 蝶形公式对应着2点FFT的计算,2点FFT的计算如下所示: 转换为矩阵表达为: 对应到蝶形运算有:
首先列出基2频域抽取FFT的分治公式: 以一个8点FFT为例,输入序列为: 进行第一次分治,分为两个4点FFT,序列为: 示意图如下所示,偶数标号的结果由第一个FFT生成,奇数标号的结果由第二个FFT生成:
随后进行第二次分治,将每个4点FFT分解为两个2点FFT,每个序列为: 示意图如下所示:
最终通过2点FFT计算出结果,但如上图所示,计算出的结果位置与标号并不对应,例如计算输出的标号为2的数据(Y10[1])应当位于输出序列(X)的标号4(X[4])。其变换规律为计算输出的标号为n的数据(第n+1个数据)对应到输出序列标号为m的数据,n为m的二进制反序。以计算输出标号为6(第七个数据)的数据Y13[0]为例,6的二进制为110,反序为011,对应十进制数为3,即有 。
首先列出时域抽取FFT的分治公式:
离散傅里叶变换的物理意义
离散傅里叶变换:傅里叶变换在时域和频域上都呈现离散的形式
(1)物理意义设x(n)是长度为N的有限长序列,则其傅里叶变换,Z变换与离散傅里叶变换分别用以下三个关系式表示X(e^jω)= ∑n={0,N-1}x(n) e^jωnX(z)= ∑n={0,N-1}x(n)z^-nX(k)= ∑n={0,N-1}x(n) e^-j2π/Nnk单位圆上的Z变换就是序列的傅里叶变换离散傅里叶变换是x(n)的频谱X(ejω)在[0,2π]上的N点等间隔采样,也就是对序列频谱的离散化,这就是DFT的物理意义.
傅里叶变换是什么公式
公式如下图:
傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。
①傅里叶变换
②傅里叶逆变换
傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。
公式如下图:
傅里叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的。
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。
傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅立叶变换用正弦波作为信号的成分。
f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛,和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。
①傅里叶变换
②傅里叶逆变换
傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成频率谱——显示与频率对应的幅值大小)。