本文目录一览:
- 1、万有引力公式推导是什么?
- 2、急求开普勒定律的推导过程
- 3、开普勒三定律的证明?
- 4、谁知道开普勒第三定律是怎样推导出来的?
- 5、开普勒一二三定律公式
- 6、开普勒三大定律如何证明
- 7、开普勒三定律是什么?
- 8、开普勒三大定律怎么联系起来理解 还有万有引力公式怎么理解啊?
- 9、开普勒定律是怎么推导出来的?
万有引力公式推导是什么?
万有引力定律的推导以开普勒第三定律作为已知条件,开普勒第三定律r3 /T2=C(C是常数),推导得F=GHMm/r2 。引力大小与它们质量的乘积成正比与它们距离的平方成反比,与两物体的化学组,成和其间介质种类无关。
开普勒第三定律r3 /T2=C (C是常数),万有引力F,形式未知,但一定等于向心力F=mr (2π/T) 2,带入1/T2=C/r3,F=mr4π2* (C/r3) =C' *m/r2,因为引力的对称性F=C”*M/r2,所以,F=GMm/r2, G是常数。
万有引力定律发现的意义:
万有引力定律的发现,是17世纪自然科学最伟大的成果之一。 它把地面上物体运动的规律和天体运动的规律统一了 起来,对以后物理学和天文学的发展具有深远的影响。它第一次解释了(自然界中四种相互作用之一) 一种基本相互作用的规律,在人类认识自然的历史上树立了一座里程碑。
万有引力定律揭示了天体运动的规律,在天文学上和宇宙航行计算方面有着广泛的应用。它为实际的天文观测提供了一套计算方法,可以只凭少数观测资料,就能算出长周期运行的天体运动轨道,科学史上哈雷彗星、海王星、冥王星的发现,都是应用万有引力定律取得重大成就的例子。
利用万有引力公式,开普勒第三定律等还可以计算太阳、地球等无法直接测量的天体的质量。牛顿还解释了月亮和太阳的万有引力引起的潮汐现象。他依据万有引力定律和其他力学定律,对地球两极呈扁平形状的原因和地轴复杂的运动,也成功的做了说明。推翻了古代人类认为的神之引力。
急求开普勒定律的推导过程
牛顿为什么发现了万有引力定律,就是根据开普勒三定律推导出来的,因此开普勒定律是根本的,而万有引力定律是在其之上的。
用自己的弟子证明自己是对的是不合适的,是不服众的。
开普勒定律是从大量的对行星运动的观测数据中归纳总结出来的,推导过程看来得问开普勒啦。 “大量”两个字,不是谁都能碰的,那是相当耗时的。
谁有数据呢,去问天文学家吧。推导归纳,去问数学家吧。其他人也行,只不过,我认为他们更合适些。但是谁会在这上面耗时间呢(太繁了),除非有现成的。这种问题,一般只有专家才有现成的。
开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
用公式表示为:SAB=SCD=SEK
简短证明:以太阳为转动轴,由于引力的切向分力为0,所以对行星的力矩为0,所以行星角动量为一恒值,而角动量又等于行星质量乘以速度和与太阳的距离,即L=mvr,其中m也是常数,故vr就是一个不变的量,而在一短时间△t内,r扫过的面积又大约等于vr△t/2,即只与时间有关,这就说明了开普勒第二定律。
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:R^3/T^2=k
其中,R是行星公转轨道半长轴,T是行星公转周期,k=GM/4π^2=常数
关于行星运动规律的开普勒三大定律是:
①所有的行星分别在不同的椭圆轨道上围绕太阳运动,太阳处在这些椭圆的一个焦点上.
②对每个行星而言,行星和太阳的连线在任意相等的时间内扫过的面积都相等("面积速度"不变).
③所有行星的椭圆轨道的半长轴的三次方跟公转周期的二次方的比值都相等.
也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。
开普勒第二定律具体内容开普勒在1609年发表了关于行星运动的两条定律:
开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
开普勒第二定律(面积定律):对于任何一个行星来说,它与太阳的连线在相等的时间扫过相等的面积。
用公式表示为:SAB=SCD=SEK
简短证明:以太阳为转动轴,由于引力的切向分力为0,所以对行星的力矩为0,所以行星角动量为一恒值,而角动量又等于行星质量乘以速度和与太阳的距离,即L=mvr,其中m也是常数,故vr就是一个不变的量,而在一短时间△t内,r扫过的面积又大约等于vr△t/2,即只与时间有关,这就说明了开普勒第二定律。
1609年,这两条定律发表在他出版的《新天文学》。
1619年,开普勒又发现了第三条定律:
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:R^3/T^2=k
其中,R是行星公转轨道半长轴,T是行星公转周期,k=GM/4π^2=常数
一。开普勒第一定律可以用隆格-楞次矢量与位失的标积来证明:
万有引力是有心力,在有心力场里运动的质点角动量守恒,证法如下:
在与距离的平方成反比的有心力场中还有一个特殊守恒量——隆格-楞茨矢量。为了导出这个守恒量,先看v × L的时间变化率:
d(v × L)/dt = dv/dt × L = m dv/dt × (r × v)
= - GMmr-3 r× (r × v) = - GMmr-3[r(v · r) – v(r · r)]
= - GMmr-3[rrvr – vr2] = - GMm[r/r2 · dr/dt – 1/r · dr/dt]
= GMm[r · d(1/r)/dt + 1/r · dr/dt] = GMm d(r/r)/dt
亦即
d(v × L – GMmr/r)/dt = 0
或
B ≡ v × L – GMmr/r = 常量
上式所定义的B就是隆格-楞茨矢量(Runge-Lenz vector),从这个矢量我们可以得到许多关于开普勒运动的重要信息。
为了得到开普勒运动的轨道,看矢径r与隆格-楞茨矢量的标积:
r · B = r · (v × L) - GMmr
= L · (r × v) - GMmr = L2/m - GMmr
令θ为矢量r和B之间的夹角,r · B = rBcosθ,由上式得
r = p/(1 + εcosθ)
式中
p = L2/GMm2
ε = B/GMm
以上便是用平面极坐标 (r, θ) 描绘的圆锥曲线,ε为偏心率,p为半正交弦。ε < 1时为椭圆,ε > 1时为双曲线,ε = 1时为抛物线,ε = 0时为圆。从这里我们看到隆格-楞茨矢量的几何意义:其方向沿通过焦点的对称轴,指向最近的拱点;其大小正比于偏心率。对于圆轨道,B = 0。
二、开普勒第二定律的证明可以用角动量守恒证明:
ds/dt=v(rcosa)/2=(mvrcosa)/2m=L/2m
由角动量L守恒即得掠面速度ds/dt守恒
三、第三定律的证法
在图中,A,B分别为行星运动的近日点和远日点,以Va和Vb分别表示行星在该点的速度,由于速度沿轨道切线方向,可见Va和Vb的方向均与此椭圆的长轴垂直,则行星在此两点时对应的面积速度分别为
SA=1/2rAvA=1/2(a-c)vA……………………………………{1}
sB=1/2rBvB=1/2(a+c)vB
根据开普勒第二定律,应有SA=SB,因此得
vB=[(a-c)/(a=c)]vA……………………………………………{2}
行星运动的总机械能E等于其动能与势能之和,则当他经过近日点和远日点时,其机械能应分别为
EA=1/2m(vA)^2-(GMm)/rA=1/2m(vA)^2-(GMm)/(a-c)…………{3}
Eb=1/2m(Vb)^2-(GMm)/rB=1/2m(vB)^2-(GMm)/(a+c)
根据机械能守恒,应有EA=EB,故得
1/2m[(vA)^2-(vB)^2]=GMm[1/(a-c)-1/(a+c)]……………………{4}
由{2}{4}两式可解得
(vA)^2={(a+c)GM}/{a(a-c)}………………………………{5}
(vAB)^2={(a-c)GM}/{a(a+c)}
由{5}式和{1}式得面积速度为
SA=SB=S=(b/2)√[(GM)/a]
椭圆的面积为( 兀ab ) ,则得此行星运动周期为
T=(兀ab)/S=2兀a√a/(GM)…………………………{6}
将{6}式两边平方,便得
(a)^3/(T)^2=(GM)/4(兀)^2
这就是开普勒第三定律
3楼的答案不合适,
牛顿为什么发现了万有引力定律,就是根据开普勒三定律推导出来的,因此开普勒定律是根本的,而万有引力定律是在其之上的。
用自己的弟子证明自己是对的是不合适的,是不服众的。
开普勒定律是从大量的对行星运动的观测数据中归纳总结出来的,推导过程看来得问开普勒啦。 “大量”两个字,不是谁都能碰的,那是相当耗时的。
谁有数据呢,去问天文学家吧。推导归纳,去问数学家吧。其他人也行,只不过,我认为他们更合适些。但是谁会在这上面耗时间呢(太繁了),除非有现成的。这种问题,一般只有专家才有现成的。
只能说祝你走运,能碰上个专家。拜拜
也可以不按一楼的推,一楼的直观,但过程麻烦,我有一种方法,就是据万有引力定律得,Gm1m2/(r^2)=m2(2π/T)^2*r,直接变形的,r^3/T^2=GM1/4π^2 ,就是GM/4π^2 ,m1就是中心天体的质量,也就是为什么说常熟K只与中心天体的质量有关的原因
普勒第一定律、开普勒第二定律、开普勒第三定律都是通过对太阳系内天体运动地观察得出的。它是行星运动的规律,更是通过大量统计数据得出的规律。
开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
用公式表示为:SAB=SCD=SEK
简短证明:以太阳为转动轴,由于引力的切向分力为0,所以对行星的力矩为0,所以行星角动量为一恒值,而角动量又等于行星质量乘以速度和与太阳的距离,即L=mvr,其中m也是常数,故vr就是一个不变的量,而在一短时间△t内,r扫过的面积又大约等于vr△t/2,即只与时间有关,这就说明了开普勒第二定律。
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:R^3/T^2=k
其中,R是行星公转轨道半长轴,T是行星公转周期,k=GM/4π^2=常数
关于行星运动规律的开普勒三大定律是:
①所有的行星分别在不同的椭圆轨道上围绕太阳运动,太阳处在这些椭圆的一个焦点上.
②对每个行星而言,行星和太阳的连线在任意相等的时间内扫过的面积都相等("面积速度"不变).
③所有行星的椭圆轨道的半长轴的三次方跟公转周期的二次方的比值都相等.
也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。
开普勒第二定律具体内容开普勒在1609年发表了关于行星运动的两条定律:
开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
开普勒第二定律(面积定律):对于任何一个行星来说,它与太阳的连线在相等的时间扫过相等的面积。
用公式表示为:SAB=SCD=SEK
简短证明:以太阳为转动轴,由于引力的切向分力为0,所以对行星的力矩为0,所以行星角动量为一恒值,而角动量又等于行星质量乘以速度和与太阳的距离,即L=mvr,其中m也是常数,故vr就是一个不变的量,而在一短时间△t内,r扫过的面积又大约等于vr△t/2,即只与时间有关,这就说明了开普勒第二定律。
1609年,这两条定律发表在他出版的《新天文学》。
1619年,开普勒又发现了第三条定律:
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:R^3/T^2=k
其中,R是行星公转轨道半长轴,T是行星公转周期,k=GM/4π^2=常数
最后,开普勒定律是科学家证明推导的,我们只要知道用就可以拉
如果你特别有兴趣的话,等以后从事这方面之后就可以自己推导啦~~~
加油!!!
开普勒三定律的证明?
把星球作的运动看成圆周运动.这时,万有引力充当向心力.用质量,角速度,轨道半径表示出向心力,这样就可以写出一个方程.再将方程中的角速度用周期,圆周率表示.再用绕同一中心天体运的星体列一个方程,两式相比就可证明开普勒第三定律:
万有引力f=gmm/(r*r)(1)
向心力fn=mv*v/r(2)
(1)=(2),
求出v*v=gm/r(3)
又t*t=[2*3.14159*r/(v*v)][2*3.14159*r](4)
将(3)代入(4)即可
r^3/t^2=k=gm/4π^2=rrr/tt
r或a=行星公转轨道半长轴
t=行星公转周期
k=常数=gm/4π^2
谁知道开普勒第三定律是怎样推导出来的?
开普勒三大定律
你知道你犯了个多低级的错误吗?,你的万有引力等推导式都是由开普勒第三定侓推导而来,你再倒推回去有意思吗?套公式谁都会,问题是万本之宗的开普勒第三定侓是怎么来的
把星球作的运动看成匀速圆周运动。这时,万有引力提供向心力。用质量、角速度、轨道半径表示出向心力,这样就可以写出一个方程.再将方程中的角速度用周期、圆周率表示。再用绕同一中心天体运的星体列一个方程,两式相比就可证明开普勒第三定律:
万有引力F=GMm/(R^2)(1)
向心力Fn=mv^2/R(2)
(1)=(2),求出v^2=GM/R(3)
又T^2=(2πR/v)^2(4)
将(3)代入(4)即可
R^3/T^2=K
=GM/4π^2=R^3/T^2
R为运行轨道半径
T=行星公转周期
开普勒一二三定律公式
开普勒第一定律:每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。开普勒第二定律(面积定律)用公式表示为:SAB=SCD=SEK,开普勒第三定律公式:(R^3)/(T^2)=k(其中k=GM/(4π^2))。
数学推导 开普勒定律是关于行星环绕太阳的运动,而牛顿定律更广义的是关于几个粒子因万有引力相互吸引而产生的运动。在只有两个粒子,其中一个粒子超轻于另外一个粒子,这些特别状况下,轻的粒子会环绕重的粒子移动,就好似行星根据开普勒定律环绕太阳的移动。然而牛顿定律还容许其它解答,行星轨道可以呈抛物线运动或双曲线运动。这是开普勒定律无法预测到的。在一个粒子并不超轻于另外一个粒子的状况下,依照广义二体问题的解答,每一个粒子环绕它们的共同质心移动。这也是开普勒定律无法预测到的。
开普勒定律,或者是用几何语言,或者是用方程,将行星的坐标及时间跟轨道参数相连结。牛顿第二定律是一个微分方程。开普勒定律的导引涉及解微分方程的艺术。我们会先导引开普勒第二定律,因为开普勒第一定律的导引必须建立于开普勒第二定律。
开普勒三大定律如何证明
首先,开普勒有三大天文定律(都是针对行星绕太阳运动的)
行星运动第一定律(椭圆定律):
所有行星绕太阳的运动轨道是椭圆,太阳位于椭圆的一焦点上。
行星运动第二定律(面积定律):
联接行星和太阳的直线在相等的时间内扫过的面积相等。
行星运动第三定律(调和定律):
行星绕太阳运动的公转周期的平方与它们的轨道半长径的立方成正比。
牛顿的万有引力定律是在调和定律的基础上提出的假设,并且被科学观测所验证。
万有引力的内容用公式表示就是:
F=G*M1*M2/(R*R)
开普勒的调和定律认为:
T*T/(R*R*R)=常数
如果我们考虑两个做星体运动的星体,以一个质量为M1的星体做参考系,那么可以看成质量为M2的星体绕M1做圆周运动,而它们之间的万有引力提供了它们做圆周运动的向心力。
即:
M2*(W*W)*R=G*M1*M2/(R*R)
而W=2*3.14/T带入上面的式子就可以得到T平方比上R的三次方是定制,也就是开普勒定律所阐述的内容,这样就证明了牛顿引力定律。
其实科学的讲,这不叫证明,因为牛顿定律是牛顿想出来的,再通过一系列科学的观测数据来核实的,并不能从根源来证明,开普勒也是实验天文学家,他是通过对天文资料的长期观测总结猜想出他的三大定律的,物理学的发现往往就是通过猜想的.
答案补充
G,是万有引力系数,是常数,是规定死的,=6.67乘以10的负11次方,牛米方除以千克方
答案补充
牛顿知道有个引力常数,但是他没测试出来,测试出来的是英国物理学家卡文迪许,通过铅球试验测试出G的数值
答案补充
假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力的话,同样遵从平方反比的规律,那么,由于月球轨道半径约为地球半径的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的60的平方分之一。根据牛顿第二定律,物体在月球轨道上运动时的加速度,也就是月球公转的向心加速度,也就应该是它在地面附近下落时的加速度的60的平方分之一
答案补充
知道月球与地球的距离,月球公转的周期,从而能够算出月球运动的向心加速度。
答案补充
数据表明,地面物体所受地球的引力,月球受到地球的引力,以及太阳与行星间的引力,是遵从同样的规律,所以,证明了万有引力的存在
答案补充
m括号2派除以T括号的平方乘以R=mg,化简得4派方R除以T方=a
首先,开普勒有三大天文定律(都是针对行星绕太阳运动的)
行星运动第一定律(椭圆定律):
所有行星绕太阳的运动轨道是椭圆,太阳位于椭圆的一焦点上。
行星运动第二定律(面积定律):
联接行星和太阳的直线在相等的时间内扫过的面积相等。
行星运动第三定律(调和定律):
行星绕太阳运动的公转周期的平方与它们的轨道半长径的立方成正比。
牛顿的万有引力定律是在调和定律的基础上提出的假设,并且被科学观测所验证。
万有引力的内容用公式表示就是:
F=G*M1*M2/(R*R)
开普勒的调和定律认为:
T*T/(R*R*R)=常数
如果我们考虑两个做星体运动的星体,以一个质量为M1的星体做参考系,那么可以看成质量为M2的星体绕M1做圆周运动,而它们之间的万有引力提供了它们做圆周运动的向心力。
即:
M2*(W*W)*R=G*M1*M2/(R*R)
而W=2*3.14/T带入上面的式子就可以得到T平方比上R的三次方是定制,也就是开普勒定律所阐述的内容,这样就证明了牛顿引力定律。
其实科学的讲,这不叫证明,因为牛顿定律是牛顿想出来的,再通过一系列科学的观测数据来核实的,并不能从根源来证明,开普勒也是实验天文学家,他是通过对天文资料的长期观测总结猜想出他的三大定律的,物理学的发现往往就是通过猜想的.答案补充
G,是万有引力系数,是常数,是规定死的,=6.67乘以10的负11次方,牛米方除以千克方答案补充
牛顿知道有个引力常数,但是他没测试出来,测试出来的是英国物理学家卡文迪许,通过铅球试验测试出G的数值答案补充
假定维持月球绕地球运动的力与使得苹果下落的力真的是同一种力的话,同样遵从平方反比的规律,那么,由于月球轨道半径约为地球半径的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的60的平方分之一。根据牛顿第二定律,物体在月球轨道上运动时的加速度,也就是月球公转的向心加速度,也就应该是它在地面附近下落时的加速度的60的平方分之一答案补充
知道月球与地球的距离,月球公转的周期,从而能够算出月球运动的向心加速度。答案补充
数据表明,地面物体所受地球的引力,月球受到地球的引力,以及太阳与行星间的引力,是遵从同样的规律,所以,证明了万有引力的存在答案补充
m括号2派除以T括号的平方乘以R=mg,化简得4派方R除以T方=a
开普勒定律
也统称“开普勒三定律”,也叫“行星运动定律”,是指行星在宇宙空间绕太阳公转所遵循的定律。由于是德国天文学家开普勒根据丹麦天文学家第谷·布拉赫等人的观测资料和星表,通过他本人的观测和分析后,于1609~1619年先后早归纳提出的,故行星运动定律即指开普勒三定律。
具体内容
开普勒在1609年发表了关于行星运动的两条定律:
开普勒第一定律(椭圆定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
用公式表示为:SAB=SCD=SEK
1609年,这两条定律发表在他出版的《新天文学》。
1618年,开普勒又发现了第三条定律:
开普勒第三定律(调和定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:a^3/T^2=K
a=行星公转轨道半长轴
T=行星公转周期
K=常数
1619年,他出版了《宇宙的和谐》一书,介绍了第三定律,他写道:
“认识到这一真理,这是超出我的最美好的期望的。大局已定,这本书是写出来了,可能当代有人阅读,也可能是供后人阅读的。它很可能要等一个世纪才有信奉者一样,这一点我不管了。”
开普勒定律的意义
首先,开普勒定律在科学思想上表现出无比勇敢的创造精神。远在哥白尼创立日心宇宙体系之前,许多学者对于天动地静的观念就提出过不同见解。但对天体遵循完美的均匀圆周运动这一观念,从未有人敢怀疑。开普勒却毅然否定了它。这是个非常大胆的创见。哥白尼知道几个圆合并起来就可以产生椭圆,但他从来没有用椭圆来描述过天体的轨道。正如开普勒所说,“哥白尼没有觉察到他伸手可得的财富”。
其次,开普勒定律彻底摧毁了托勒密的本轮系,把哥白尼体系从本轮的桎梏下解放出来,为它带来充分的完整和严谨。哥白尼抛弃古希腊人的一个先入之见,即天与地的本质差别,获得一个简单得多的体系。但它仍须用三十几个圆周来解释天体的表观运动。开普勒却找到最简单的世界体系,只用七个椭圆说就全部解决了。从此,不须再借助任何本轮和偏心圆就能简单而精确地推算行星的运动。
第三,开普勒定律使人们对行星运动的认识得到明晰概念。它证明行星世界是一个匀称的(即开普勒所说的“和谐”)系统。这个系统的中心天体是太阳,受来自太阳的某种统一力量所支配。太阳位于每个行星轨道的焦点之一。行星公转周期决定于各个行星与太阳的距离,与质量无关。而在哥白尼体系中,太阳虽然居于宇宙“中心”,却并不扮演这个角色,因为没有一个行星的轨道中心是同太阳相重合的。
由于利用前人进行的科学实验和记录下来的数据而作出科学发现,在科学史上是不少的。但像行星运动定律的发现那样,从第谷的20余年辛勤观测到开普勒长期的精心推算,道路如此艰难,成果如此辉煌的科学合作,则是罕见的。这一切都是在没有望远镜的条件下得到的!
发现
被称为“星子之王”的第谷·布拉赫在天体观测方面获得不少成就,死后留下20多年的观测资料和一份精密星表。他的助手开普勒利用了这些观测资料和星表,进行新星表编制。然而工作伊始便遇到了困难,按照正圆轨道来编制火星运行表一直行不通,火星这个“狡猾家伙”总不听指挥,老爱越轨。经过一次次分析计算,开普勒发现,如果火星轨道不是正圆,而是椭圆,那么矛盾不就烟消云散了吗。经过长期细致而复杂计算以后,他终于发现:行星在通过太阳的平面内沿椭圆轨道运行,太阳位于椭圆的一个焦点上。这就是行星运动第一定律,又叫“轨道定律”。
当开普勒继续研究时,“诡谲多端”的火星又将他骗了。原来,开普勒和前人都把行星运动当作等速来研究的。他按照这一方法苦苦计算了1年,却仍得不到结果。后来他发现,在椭圆轨道上运行的行星速度不是常数,而是在相等时间内,行星与太阳的联线所扫过的面积相等。这就是行星运动第二定律,又叫“面积定律”。
开普勒又经过9年努力,找到了行星运动第三定律:太阳系内所有行星公转周期的平方同行星轨道半长径的立方之比为一常数,这一定律也叫“调和定律”。
开普勒三定律是什么?
开普勒三大定律又分别称为椭圆定律、面积定律和调和定律。
开普勒第一定律,也称椭圆定律、轨道定律、行星定律。每一行星沿各自的椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点上。这一定律实际揭示了行星绕太阳公转的角动量守恒。由德国天文学家约翰尼斯·开普勒提出的,在此定律以前,人们认为天体的运行轨道是完美的圆形。
开普勒行星运动第二定律,也称等面积定律,指的是太阳系中太阳和运动中的行星的连线(矢径)在相等的时间内扫过相等的面积。开普勒第二定律是对行星运动轨道更准确的描述,为哥白尼的日心说提供了有力证据,并为牛顿后来的万有引力证明提供了论据。
开普勒第三定律:也叫行星运动定律,是指绕以太阳为焦点的椭圆轨道运行的所有行星,其椭圆轨道半长轴的立方与周期的平方之比是一个常量。这里,a是行星公转轨道半长轴,T是行星公转周期,K是常数,其大小只与中心天体的质量有关。
扩展资料
一、开普勒定律发现背景
1600年,开普勒来到捷克西部山城布拉格,成为第谷·布拉赫的助手。 第谷将毕生观测数据交予开普勒,希望他继续编制世界上最精确的行星运行表。第二年第谷与世长辞。开普勒于1609年在他出版的《新天文学》上发表了关于行星运动的两条定律,又于1618年,发现了第三条定律。
1605年,根据布拉赫的行星位置资料,沿用哥白尼的匀速圆周运动理论,通过4年的计算发现第谷观测到的数据与计算有8’的误差,开普勒坚信第谷的数据是正确的,从而他对“完美”的神运动(匀速圆周运动)发起质疑,经过近6年的大量计算,开普勒得出了第一定律和第二定律。
又经过10年的大量计算,得出了第三定律。第一和第二定律发表于1609年,是开普勒从天文学家第谷观测火星位置所得资料中总结出来的;第三定律发表于1619年。开普勒三定律,使得哥白尼的日心说不再是“数学天文学”意义上假设,真正确立日心说。
二、开普勒定律适用范围
三条定律适用于宇宙中一切绕心的天体运动,在宏观低速天体运动领域具有普遍意义。对于高速的天体运动,开普勒定律提供了其回归低速状态的方程。根据这三条定律,通过数学计算,预报行星在天空中的位置,且预报与观测结果十分相符。
开普勒第二定律及其引出的推论,不仅适用绕太阳运转的所有行星,也适用于以行星为中心的卫星,还适用于单颗行星或卫星沿椭圆轨道运行的情况。
开普勒定律不仅适用于太阳系,他对具有中心天体的引力系统(如行星-卫星系统)和双星系统都成立。围绕同一个中心天体运动的几个天体,它们轨道半径三次方与周期的平方的比值都相等。
参考资料来源:百度百科-开普勒第一定律
参考资料来源:百度百科-开普勒第二定律
参考资料来源:百度百科-开普勒第三定律
参考资料来源:人民网-开普勒定律:近代天文学基石
1.开普勒定律:
第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆
的一个焦点上
第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫
过相同的面积。
第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R的三次方跟公
转周期T的二次方的比值都相等。
表达式为:?K(K?GM) k 只与中心天体质量有关的
22
3
T4?
定值与行星无关
高中生吗?如果是的话,看书本解释就够了。
爱好?那也差不多看高中课本就差不多了。
大学而且是物理专业?那直接放弃开普勒定律吧,用牛顿定律在极坐标下自己推导广元二体运动,因为你会发现——开普勒定律表述有误,毕竟开普勒当年没有牛顿定律和微积分,有点错误我们也能理解。
在心里缅怀就行,大学之后就别用开普勒原始解释了,你可以完善下
1、开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
2、开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
用公式表示为:SAB=SCD=SEK
3、开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
用公式表示为:a^3/T^2=K
a=行星公转轨道半长轴
T=行星公转周期
K=常数 =GM/4π^2
扩展资料:开普勒第二定律适用范围:
开普勒定律适用于宇宙中一切绕心的天体运动。在宏观低速天体运动领域具有普遍意义。对于高速的天体运动,开普勒定律提供了其回归低速状态的方程。
也就是说,开普勒第二定律及其引出的推论,不仅适用绕太阳运转的所有行星,也适用于以行星为中心的卫星,还适用于单颗行星或卫星沿椭圆轨道运行的情况。
仅适用于宏观低速运动的天体。提出的时候并没有给出严格的证明,但是为后来许多定律的证明奠定了基础。
开普勒第三定律的适用范围:
开普勒定律是一个普适定律,适用于一切二体问题。开普勒定律不仅适用于太阳系,他对具有中心天体的引力系统(如行星-卫星系统)和双星系统都成立。
围绕同一个中心天体运动的几个天体,它们轨道半径三次方与周期的平方的比值(R^3/T^2)都相等,为(GM/4π^2),为中心天体质量。这个比值是一个与行星无关的常量,只与中心体质量有关,那么M相同是这个比值相同。
参考资料:百度百科 开普勒定律
开普勒三大定律怎么联系起来理解 还有万有引力公式怎么理解啊?
开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
历史上开普勒通过多年观测得出的结论
这些定律在后来科学 的发展过程中逐步验证
最后成为开普勒三定律
其中第一定律是由轨道能量决定的
第二定律是角动量守恒的变形说法
第三定律则纯是观测结果
而历史上正是先有开普勒三定律 后有万有引力定律的
牛顿也正是从开普勒第三定律出发推导出万有引力定律
即万有引力平方反比的规律
什么叫理解?
开普勒第一定律(轨道定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
开普勒第三定律(周期定律):所有的行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。
实际上这三个定律适用的范围不同,不是可以互相推论的
万有引力是这样 F=m*KM/R2 可以看成F=m*a的形式 KM/R2 为加速度a
不难看出万有引力和作用物体的质量成正比,和两者的距离成平方反比,而K则是一个常数,称为引力常数,是这个宇宙的基本性质常数之一
开普勒定律是怎么推导出来的?
用纸和笔再加星星推出来的,嘻嘻
开普勒定律是开普勒发现的关于行星运动的定律。
开普勒在1609年发表了关于行星运动的两条定律:
开普勒第一定律(椭圆定律):每一行星沿一个椭圆轨道环绕太阳,而太阳则处在椭圆的一个焦点中。
开普勒第二定律(面积定律):从太阳到行星所联接的直线在相等时间内扫过同等的面积。
用公式表示为:SAB=SCD=SEK
1609年,这两条定律发表在他出版的《新天文学》上。
1618年,开普勒又发现了第三条定律:
开普勒第三定律(调和定律):行星绕日一圈时间的平方和行星各自离日的平均距离的立方成正比。
用公式表示为:a3/T2=K
a=行星公转轨道半长轴
T=行星公转周期
K=常数
1619年,他出版了《宇宙的和谐》一书,介绍了第三定律,他写道:
认识到这一真理,这是超出我的最美好的期望的。大局已定,这本书是写出来了,可能当代有人阅读,也可能是供后人阅读的。它很可能要等一个世纪才有信奉者一样,这一点我不管了。
开普勒发现的行星运动定律改变了整个天文学,彻底摧毁了托勒密复杂的宇宙体系,完善并简化了哥白尼的日心说。开普勒定律为伊萨克·牛顿发现万有引力定律奠定了基础。
德国天文学家开普勒(Johannes Kepler)是丹麦著名天文学家第谷(Tycho Brahe)的学生和继承人,他与意大利的伽利略(Galileo)是同时代的两位巨人。开普勒从理论的高度上对哥白尼学说作了科学论证,使它更加提高了一大步。他所发现的行星运动定律“改变了整个天文学”,为后来牛顿(Isaac Newton)发现万有引力定律奠定了基础。开普勒也被后人赞誉为“天空的立法者”。
开普勒根据第谷毕生观测所留下的宝贵资料,孜孜不倦地对行星运动进行深入的研究,提出了行星运动三定律。