本文目录一览:
- 1、实数包括什么?
- 2、实数的定义是什么?
- 3、实数的定义是什么
- 4、实数的定义
- 5、实数的定义是什么?
- 6、实数是指什么
- 7、什么是实数,有什么意义?
- 8、实数是什么?
- 9、实数的概念是什么 实数的概念都是什么
- 10、什么是实数?
实数包括什么?
实数包括有理数和无理数。
实数由一个五元组(R,+,0,×,1,≤)定义,其中,R是一个无限的集合;“+”和“×”是对R中元素的二元运算,“0”和“1”是R中特别重要的元素,“≤”是R中元素的二元关系。
多元组的元素必须满足一组公理,称作域公理。实数是域这种数学结构的一个典型例子。域作为一种基础结构,在数学王国被广泛使用。
需要了解代数,才能了解域这种结构的基础。通常使用一个域公理集合来定义域。
扩展资料
实数(所有值域)有两种主要的运算:加法和乘法。这两种运算需要在某种方式下合作。
1、“+”和“×”满足交换律:a+b=b+a,a×b=b×a。
2、“×”对于每个“+”满足分配律。意思是(3+4)×5=3×5+4×5。
3、对于“+”运算,0是唯一的恒等值。对所有的a,a+0=a。
4、对于R里面的每一个数x,有且只有一个数-x,称作x的加法逆元,满足x+(-x)=0,并且对于所有x≠0,x≠-x。
5、对于“×”运算,1是唯一的恒等值。对所有的a,a×1=a。
有理数和无理数
无限不循环小数,叫做无理数.
注意无理数应满足三个条件:①是小数;②是无限小数;③不循环。
实数集简介:
通俗地认为,通常包含所有有理数和 无理数的集合就是 实数集,通常用大写字母 R表示。
18世纪, 微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。
任何一个非空有 上界的集合(包含于 R)必有 上确界。
设 A、 B是两个包含于 R的集合,且对任何 x属于 A, y属于 B,都有 x< y,那么必存在 c属于 R,使得对任何 x 属于 A, y属于 B,都有 x< c< y。
符合以上四组 公理的任何一个集合都叫做 实数集,实数集的元素称为 实数。
实数是有理数和无理数的总称,包括0。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
扩展资料性质
1.封闭性
实数集对加、减、乘、除(除数不为零)四则运算具有封闭性,即任意两个实数的和、差、积、商(除数不为零)仍然是实数。
2.有序性
实数集是有序的,即任意两个实数
3.传递性
实数大小具有传递性,
4.阿基米德性质
实数具有阿基米德性质(Archimedean property)
5.稠密性
实数集具有稠密性,即两个不相等的实数之间必有另一个实数,既有有理数,也有无理数。
参考资料:百度百科-实数
包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。有理数可以分成整数和分数,而整数可以分为正整数、零和负整数。分数可以分为正分数和负分数。无理数可以分为正无理数和负无理数。实数集合通常用字母
r
或
r^n
表示。而r^n
表示
n
维实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后
n
位,n
为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
1)相反数(只有符号不同的两个数,他们的和为零,我们就说其中一个是另一个的相反数)
实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。
2)绝对值(在数轴上一个数a与原点0的距离)
实数a的绝对值是:|a|
①a为正数时,|a|=a(不变)
②a为0时,
|a|=0
③a为负数时,|a|=
-a(为a的绝对值)
(任何数的绝对值都大于或等于0,因为距离没有负的。)
3)倒数(两个实数的乘积是1,则这两个数互为倒数)
实数a的倒数是:1/a
(a≠0)
4)数轴
(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应
实数包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”(任何实数都可在数轴上表示)。
实数的定义是什么?
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
实数是有理数和无理数的总称,通常用黑正体字母R表示。其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
本来实数仅称作数,后来引入了虚数概念,原本的数称作实数意义是实在的数。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
实数的运算定理
1、加法:
(1)同号两数相加,取原来的符号,并把它们的绝对值相加;
(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。可使用加法交换律、结合律。
2、减法:减去一个数等于加上这个数的相反数。
3、乘法:
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。
(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。
(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。
4、除法:
(1)两数相除,同号得正,异号得负,并把绝对值相除。
(2)除以一个数等于乘以这个数的倒数。
(3)0除以任何数都等于0,0不能做被除数。
5、乘方与开方:乘方与开方互为逆运算。
6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。无论何种运算,都要注意先定符号后运算。
实数中的几个概念:
1、相反数:只有符号不同的两个数叫做互为相反数。(1)实数a的相反数是-a;(2)a和b互为相反数a+b=0。
2、倒数:(1)实数a(a≠0)的倒数是1/a;(2)a和b 互为倒数;(3)注意0没有倒数。
3、绝对值:
(1)一个数a 的绝对值有以下三种情况:
(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n次方根
(1)平方根,算术平方根:设a≥0,称叫a的平方根,叫a的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:叫实数a的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
实数的定义是什么
实数可以通过不等式、数列、函数等多种方式定义,以下是一般的实数定义:
1、实数是一种数学对象,包括所有的有理数和无理数,可以用于测量和计算物理量等。实数可以表示为无限小数,或用分数表示为有理数或者以代数方式表示为根式或无理数的形式。
2、实数可以进行四则运算(加减乘除),并满足一些性质,如结合律、交换律、分配律等。实数具有一个全序关系,也就是说任意两个实数都可以比较大小。
3、在实数集合中,有理数是可以表示为两个整数之商的数,无理数则不能。
实数集合具有以下性质:
1、实数集合是一个有序集合,即实数之间可以比较大小。
2、实数集合是一个完备的数学集合,也就是说,实数集合中的每个实数都有一个唯一的位置,并且没有任何实数可以填补这个位置,这一性质也称为实数集合的连续性。
3、实数集合包含有理数和无理数,而有理数和无理数又可以分为代数数和超越数两类。
4、实数集合具有一些基本运算法则,如加法、减法、乘法、除法、乘方等。
5、实数集合中的数可以表示为无限小数或者有理数的形式。
实数是一种基本的数学概念,它在数学中扮演着重要的角色。实数集合的定义与性质也是数学中基础的知识,对于各个领域的数学研究都具有重要的影响。
实数的定义
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
扩展资料实数的分类
一、按定义分:有理数、无理数。
1、有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
2、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e。
二、按正负分:正数、负数、0。
1、正数是数学术语,比0大的数叫正数(positive number),0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写。
2、负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如?2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。
3、0是介于-1和1之间的整数。是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的所有倍数都是0。0不能作为除数。
参考资料来源:百度百科—实数
包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
这是初中的知识点。
有理数和无理数统称为实数。
这是初中的知识点。有理数和无理数统称为实数。 有理数和无理数统称为实数,这是中学的定义。至于实数的严格定义,有康托尔的基本列说,戴德金的分割
戴德金方法:有人批评戴德金分割(A,B)存在不够完备的地方。因为按照他定义无理数的方法,即如果A中无最大数,B中也无最小数,则称此“分割”为一个无理数。针对这种定义,有批评者问:在A中无最大数,B中也无最小数时,必须事先证明A与B之间的“空隙”只能容纳一个点,才能将此“分割”定义为一个(无理数)实数,但戴德金并未作此证明,就将此分割定义为一个实数而不是若干个甚至无数个实数,此空隙内是否还有非实数存在,戴德金也未给出否定的证明,这是否是戴德金实数理论的缺陷?批评者说,数学家戴德金是为了证明实数的完备性才这样定义实数的,他用这个不合理的实数定义回避了无穷小危机。对此有反对者说,以上批评者说的“空隙”一词,是没有意义的;其说的“一个点“的”点“字也是没有意义的,而戴德金的“分割”一词是有严格的定义的,采用的是经典的集合论的概念。按照集合论中的概念,“同一个“分割和”不相同“的分割,区分是很明确的,逻辑是很严密的;“同一个“分割定义成同一个实数,”不同的“分割是不同的实数,因此说”空隙“是否”一个点“的问题天然就不存在。
康托方法:康托无疑是连续统(有理数与无理数的统称)理论的创始人之一,有人说他是“实数理论研究的终结者”。但是他在创建连续统理论的时候首先涉及的概念是有限与无限,但是他也没有给出严格的定义,因为这也是很困难的,因为有限与无限是一对矛盾。
包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作“实数”——意义是“实在的数”。
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。
扩展资料
实数的基本定理:
1、上(下)确界原理:非空有上(下)界数集必有上(下)确界。
2、单调有界定理:单调有界数列必有极限。具体来说:单调增(减)有上(下)界数列必收敛。
3、闭区间套定理(柯西-康托尔定理):对于任何闭区间套,必存在属于所有闭区间的公共点。若区间长度趋于零,则该点是唯一公共点。
4、有限覆盖定理(博雷尔-勒贝格定理,海涅-波雷尔定理):闭区间上的任意开覆盖,必有有限子覆盖。或者说:闭区间上的任意一个开覆盖,必可从中取出有限个开区间来覆盖这个闭区间。
5、极限点定理(波尔查诺-魏尔斯特拉斯定理、聚点定理):有界无限点集必有聚点。或者说:每个无穷有界集至少有一个极限点。
6、有界闭区间的序列紧性(致密性定理):有界数列必有收敛子列。
7、完备性(柯西收敛准则):数列收敛的充要条件是其为柯西列。或者说:柯西列必收敛,收敛数列必为柯西列。
参考资料来源:百度百科-实数
实数的定义是什么?
实数是有理数和无理数的总称。
数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
扩展资料:
实数的性质有:
一、高级性质
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。
二、拓扑性质
实数集构成一个度量空间:x和y间的距离定为绝对值(x-y),作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是 1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。
三、完备性
实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
参考资料来源:百度百科—实数
实数是指什么
实数是包括有理数和无理数在内的所有数的集合。
1、实数的定义
实数是数学中包括有理数和无理数在内的所有实数的集合,它们可以直观地看作小数(有限或无限的),能把数轴“填满”。实数和虚数共同构成复数。
在古希腊时期,数学家们认为有理数足以满足测量上的需要,但后来发现仅使用有理数无法精确表示某些长度,从古希腊到 17 世纪,数学家们逐渐接受无理数的存在,并将其与有理数平等地看作数,称为实数。实数系是完备的阿基米德有序域,是定义了算数运算的运算系统。
2、正数和负数
实数是一个包含正数、负数和零的集合,其中正数是大于0的实数,负数是小于0的实数。正数和负数都是不可数的无限集合。0既不是正数也不是负数,通常将0与正数统称为非负数,将0 与负数统称为非正数。与整数类似,非负整数包括0和正整数,非正整数包括0和负整数。
有理数与无理数
1、有理数的定义:
有理数是指可以表示为两个整数之比的数,包括整数(正整数、0、负整数)和分数(正分数、负分数)。有理数可以写成a/b的形式,其中a和b是整数,且b≠0。有理数可以分为正有理数、负有理数和零。
正有理数是大于0的有理数,负有理数是小于0的有理数,而零则是等于0的有理数。
2、无理数的定义:
无理数是指不能表示为两个整数之比的数,它们的小数形式是无限不循环的。无理数包括如根号2、圆周率π等著名数学常数。无理数的小数形式无法写成有限位数的小数或者循环小数,而是无限不循环的小数。
有理数和无理数在数学中有广泛的应用,它们共同构成了实数的体系。实数包括有理数和无理数,是数学中非常重要的基本概念。
什么是实数,有什么意义?
实数是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是唯一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
扩展资料:
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
整数和小数的集合也是实数,而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。
实数是什么?
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数,就是:整数、小数,以及“带小数”的统称。
实数包括了:
整数(正整数、负整数、零);
小数(正的、负的、有限的、无限的、循环的、不循环的)。
带小数(含有整数部分和小数部分)
这些,都是小学学过的知识吧?
实数,简单来说,就是:“数轴上所有的点”上的数字。
--------------------------
虚数,是“实数与虚单位 i 的乘积”。
其中 i * i =-1。
由于 i 的存在,虚数就是“i 轴上所有的点”的数字。
--------------------------
复数,包括实部和虚部两个部分。
一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。
复数就是:“复平面上所有点”上的数字。
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
扩展资料:实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。
由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。
事实上这假设独立于ZFC集合论,在ZFC集合论内既不能证明它,也不能推出其否定。
实数的概念是什么 实数的概念都是什么
1、实数的概念是什么:实数是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
2、实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
3、所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是唯一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
什么是实数?
实数,就是:整数、小数,以及“带小数”的统称。
实数包括了:
整数(正整数、负整数、零);
小数(正的、负的、有限的、无限的、循环的、不循环的)。
带小数(含有整数部分和小数部分)
这些,都是小学学过的知识吧?
实数,就是“数轴上所有的点”上的数字。
--------------------------
虚数,是“实数与虚单位 i 的乘积”。
其中 i * i =-1。
由于 i 的存在,虚数就是“i 轴上所有的点”的数字。
--------------------------
复数,包括实部和虚部两个部分。
一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。
复数就是:覆盖“复平面”上所有点的数字。
01 实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数,实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。