本文目录一览:
- 1、角动量守恒的应用
- 2、角动量守恒应用
- 3、角动量守恒有什么应用
- 4、物理中的角动量守恒怎样应用
- 5、有哪些实际现象可以用角动量守恒来解释?
- 6、角动量守恒定理运用条件
- 7、物理知识:角动量守恒定律
- 8、角动量守恒定理运用条件
- 9、动量守恒定律的应用的几种类型
角动量守恒的应用
1、一个旋转的陀螺,为什么不容易倒下呢?可以看到,陀螺旋转时只受过转轴的重力,是不受外力矩的,因此它的角动量守恒,在理想情况下它将一直转下去。
2、跳水运动中运动员跳落时,可以将其想象为一个下落的不停转动的车轮,此时她旋转的转轴垂直于她的旋转平面。她下落时只受过转轴的重力,满足角动量守恒定律条件。角动量公式有两个变量:动量臂r和速度v。跳水运动员将身体蜷缩使质量分布靠近质心动量臂减小,根据角动量不变,故转速增大;而接近水面时伸开身体使质量分布远离质心而减小转速,最终平稳地沿垂直方向进入水中以减小水花。
3、花样溜冰运动员和芭蕾舞演员作旋转动作,先将两臂和腿伸开,旋转起来后,把两臂和腿收回因为身体某些部分离轴近了,转速迅速增加;需要停止的时候,重新把两臂和腿伸开去,降低转速,运动员就平稳地停下来。
角动量守恒应用
宇宙自然生命简史,你的科普入门手册丨科学声音出品,必属精品
导航仪,开普勒定律(径矢单位时间内扫过面积相等)
角动量守恒 角动量守恒,又称角动量守恒定律
是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变.dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化.角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.
根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.
此原理多用于天文学,天体运行时自转不变.
(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量
,亦即 ,因而 .这时,物体绕定轴作匀角速转动.
(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.
(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
角动量守恒有什么应用
角动量守恒 角动量守恒,又称角动量守恒定律
是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变.dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化.角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.
根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.
此原理多用于天文学,天体运行时自转不变.
(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量
,亦即 ,因而 .这时,物体绕定轴作匀角速转动.
(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.
(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
物理中的角动量守恒怎样应用
你好, 物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。
角动量守恒定律
如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。
这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
详细内容
概述
反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点
角动量原理图
(或轴)运动的普遍规律。物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
希望能帮到你。
有哪些实际现象可以用角动量守恒来解释?
有关角动量守恒的实际现象:
1、人走路现象
选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。
而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。注意,身体的角动量刚才还是顺时针,现在就变成了逆时针。根据角动量定理,角动量只要发生改变,就必须有力矩作用在系统上。因此,脚底必须给身体一个让其逆时针旋转的力矩,这是走路时身体受到外力矩的唯一方式。
2、飞机尾翼
把整个直升飞机视为一个整体,并从整体对转动轴角动量守恒来解释。在飞机发动机未发动之前,直升飞机静止在地面上,整个物体系对转轴的角动量为零。当发动机发动,角动量增加,这时外力距由直升飞机的轮子与地面的摩擦力提供,满足角动量守恒定律。
3、陀螺仪
外环可绕垂直轴自由转动,内环可绕水平轴自由转动,回转仪安装在内环中,其转轴与内环转轴相垂直,三轴交于一点,并与陀螺仪的质心重合。
它可使回转仪的转轴在空间取任意方向,由于三转轴都通过质心,所以回转仪不受重力矩作用,因此回转仪高速旋转时,角动量保持不变,不论支架转到什么方位,回转仪的转轴始终保持不变。常平架陀螺仪具有转轴方向不变的特点,称为指示型陀螺,可以作为指示器。
扩展资料:
角动量守恒对人类有非常重要的意义,从日常生活到科技应用,角动量对人类文明做出了不可磨灭的贡献。在走路这样对我们来说再熟悉不过的举动中,竟然暗含着如此神奇的物理规律。
角动量守恒定律是指系统所受合外力矩为零时系统角动量保持不变;它描述的主要对象是物体的旋转运动,因此,它实质上对应着空间旋转的不变性。
例如,在开普勒运动中,当考虑到太阳系中行星受到太阳万有引力时,由于万有引力对太阳这个参考点力矩为零,所以它们以太阳为参考点的角动量守恒,这也说明了行星绕太阳公转单位时间内与太阳连线扫过的面积大小总是恒定值的原因。另外,角动量守恒也是陀螺效应产生的原因。
角动量守恒定理运用条件
对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。一般定理,不要什么条件,定律有一定的适用条件。
质点系的角动量定理:质点系对任一固定点O的角动量对时间的微熵等于作用于该质点系的诸外力对O点的力矩的矢量和。内力不能改变质点系的整体转动情况。
角动量守恒定律,条件--合外力矩等于零。
角动量守恒条件是合外力矩等于零。角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。
角动量守恒的具体应用:用角动量守恒推算开普勒第二定律开普勒第二定律:在相等时间内,太阳和运动着的行星的连线所扫过的面积都是相等的。行星在太阳的向心引力作用下绕日运动,所以行星受到的引力对太阳的力矩为零,那么角动量就华丽丽的守恒了,故有L=rpsinα=常数。由上述推导可之掠面速度A/t为常数,所以相同时间行星绕太阳扫过的面积相等。
物理知识:角动量守恒定律
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。角动量守恒定律是物理和自然界的一条重要定律。它在日常生活、天体物理、微观物理和工程中都有广泛的应用。例如,角动量守恒定律可以很好地解释开普勒天体运行第二定律、陀螺效应等。
当一个质点绕原点运动时,它的角动量L=RxP。这里,R是质点相对于原点的位置向量;P是质点的线性动量;而x表示矢量积。
具有一定质量的物体绕一固定轴转动,它的角动量L可表示为这个物体的惯性矩I和它的角速度向量w的乘积,即L=Ixw.
角动量又称为动量矩,是一个矢量,是位矢叉乘于动量。
定律简介
例如一个在向心力场中运动的质点,始终受到一个通过力心的向心力作用,因向心力对力心的力矩为零,所以根据角动量定理,物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
定理也称动量矩定理。
表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。
定理应用
角动量守恒定律是物理和自然界的一个重要定律,它在日常生活、天体物理、微观物理和工程等许多方面都有广泛的应用。例如:当滑冰者手臂收缩时,自我旋转滑冰者的转动速度就会加快。用角动量守恒定律也可解析中子星有很高的转动速率等。另外,角动量守恒定律也是陀螺效应的原因。
角动量守恒定律反映了质点和质点系围绕一点或一轴运动的普遍规律。如一质量为 m的质点受指向固定中心O的向心力F的作用,因力F对O点的力矩为零,根据牛顿第二定律可推得质点对O点的角动量守恒,Lo=r×mv=常矢量,此常矢量决定于运动的起始条件,r为质点对于O点的矢径,v为质点的速度。如将太阳看成固定中心,行星看成质点,则角动量守恒表明行星轨道必在一平面上。矢径在相等的时间内扫过的面积相等,这就是开普勒行星运动三定律之一—开普勒第二定律 。
角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,如能量守恒定律、动量守恒定律和角动量守恒定律等。1931 [1]年,W.泡利根据守恒定律,推测自由中子衰变时有反中微子产生,1956年后这一结论为实验所证实。
角动量守恒定理运用条件
对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。一般定理,不要什么条件,定律有一定的适用条件。
质点系的角动量定理:质点系对任一固定点O的角动量对时间的微熵等于作用于该质点系的诸外力对O点的力矩的矢量和。内力不能改变质点系的整体转动情况。
角动量守恒定律,条件--合外力矩等于零。
动量守恒定律的应用的几种类型
1.动量守恒定律有适用条件和广阔的应用范围
动量守恒定律在系统不受外力或所受外力之和为零或外力远小于内力时成立,它既适用于宏观系统,也适用于微观系统,同时也适用于变质量系统;不但能解决低速运动问题,而且能解决高速运动问题,但也应注意它只在惯性参考系中成立.
2.动量守恒定律可用不同的方式表达
(1)从守恒的角度来看: .作用前后系统的总动量不变.
(2)从变化的角度来看, ,作用前后系统的总动量变化为零.
(3)从转移的角度来看: ,系统内A物体的动量增加必等于B物体的动量减少,即系统内A、B两物体的动量变化大小相等,方向相反.
3.动量守恒定律具有物理量的矢量性,状态的同时性及参考系的同一性
(1)因为动量是矢量,所以动量守恒定律的表达式是矢量式,作用前后物体在一直线上运动时,规定正方向后,将矢量式简化为代数式运算.
(2)因为动量是状态量,所以动量守恒定律表达式中的动量都是确定状态的动量,它们都对应着某一相同的时刻,这称为状态的同时性.
(3)因为动量是相对量,所以动量守恒定律表达式中的各动量必须是相对于同一惯性参考系的,这称为参考系的同一性.
(二)对动量守恒的过程可用位移来表示动量守恒
设系统的总动量为零,如果系统内两物体在相互作用过程中任一时刻总动量都守恒,那么用平均速度来表示动量守恒的表达式也应成立,即 ,由于相互作用的时间相等 ,所以 。
1.用位移来表示动量守恒的表达式仍是矢量式,解题要选取正方向.
2.作用过程中两物体发生的位移 是相对于同一惯性参考系的,一般是以地面为参考系.
一、动量守恒定律定义:
动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论, 但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律, 是时空性质的反映。其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出。
二、动量守恒定律的应用类型:
(1)系统不受外力或系统所受的外力的合力为零。
(2)系统所受外力的合力虽不为零,但比系统内力小得多。
(3)系统所受外力的合力虽不为零,但在某个方向上的分力为零,则在该方向上系统的总动量保持不变——分动量守恒。
(4)在某些实际问题中,一个系统所受外力和不为零,内力也不是远大于外力,但外力在某个方向上的投影为零,那么在该方向上也满足动量守恒的条件。
三、动量守恒定律的四性:
1.矢量性
动量守恒方程是一个矢量方程,对于作用前后物体的运动方向都在同一直线上的问题,应选取统一的正方向。凡是与选取的正方向相同的为正,相反为负。若方向未知,可设为与正方向相同来列动量守恒方程,通过解的结果的正负,判定未知量的方向。
2.瞬时性
动量是一个瞬时量,动量守恒是指系统在任一瞬时的动量守恒。m1v1+m2v2=m1v1′+m2v2′,等号左边是作用前的各物体动量和,等号右边是作用后的各物体动量和,不同时刻动量不能相加。
3.相对性
动量大小与选择的参考系有关,应注意各物体的速度是相对同一惯性系的速度,一般选取地面为参考系。
4.普适性
它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。