×

波粒二象性实验,“双缝交涉实验”究竟用波粒二象性可以怎么充分而科学的解释?

admin admin 发表于2024-04-04 03:11:34 浏览23 评论0

抢沙发发表评论

本文目录一览:

哪一个实验证明了光的波粒二象性?

杨氏干涉实验,有干涉是波
康普顿的实验,证明光子的散射,这是粒子的性质,称康普顿效应证明了粒子性
所以是波粒二象性

光的波粒二象性有哪些实验现象支撑?

希望能帮到你。
光的粒子性可以被光电效应,康普顿效应所证明;波动性可由光的干涉和衍射现象证明。
光的波粒二象性有如下实验现象支撑:
科学家们借助试验捕获了光的粒子与波同时存在的场景。
主要利用了杨氏双缝实验。把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是众人皆知的双缝干涉条纹。
望采纳。

光的波粒二象性是在哪些重要的实验基础上的?

历 了实验到理论 、理论到实验的多次反复 .其最终确立经历了三个过程:一是光量子概念的确立 ,二是能量子 (原子 中量子态)的确定 ,三是物质粒子波粒二象性的确定 .与这三个过程相对应 的有三类重要 的、有名的实
验 (有的在当时还只是思想实验),一是证实光量子的黑体辐射、光电效应、康普顿效应等实验 ;二是证实原子 中量子态的光谱实验 、夫兰克——赫兹实验等;三是证实物质波性戴维孙——革末实验 、电子双逢干涉实验

举出一个实验事实来说明微观粒子具有波粒二象性。

我们知道光是由光子构成。
光的偏振,衍射等证明了光有波动性。
光电效应证明了光的离子性(根据其方程可得知)。
和意识无关!电子双缝干涉实验神奇在哪里?波粒二象性的由来

证明光具有波粒二象性的著名实验有哪些?

1803年,杨氏写成了论文《物理光学的实验和计算》。他根据光的干涉定律对光的衍射现象作了进一步的解释,认为衍射是由直射光束与反射光束干涉形成的。但由于他认为光是一种纵波,所以在理论上遇到了很多麻烦。他的理论受到了英国政治家布鲁厄姆的尖刻的批评,被称作是“不合逻辑的”、“荒谬的”、“毫无价值的”。 虽然杨氏的理论以及后来的辩驳都没有得到足够的重视、甚至遭人毁谤,但他的理论激起了牛顿学派对光学研究的兴趣。 1808年,拉普拉斯用微粒说分析了光的双折射线现象,批驳了杨氏的波动说。 1809年,马吕斯在试验中发现了光的偏振现象。在进一步研究光的简单折射中的偏振时,他发现光在折射时是部分偏振的。因为惠更斯曾提出过光是一种纵波,而纵波不可能发生这样的偏振,这一发现成为了反对波动说的有利证据。 1811年,布吕斯特在研究光的偏振现象时发现了光的偏振现象的经验定律。光的偏振现象和偏振定律的发现,使当时的波动说陷入了困境,使物理光学的研究更朝向有利于微粒说的方向发展 面对这种情况,杨氏对光学再次进行了深入的研究,1817年,他放弃了惠更斯的光是一种纵波的说法,提出了光是一种横波的假说,比较成功的解释了光的偏振现象。吸收了一些牛顿派的看法之后,他又建立了新的波动说理论。杨氏把他的新看法写信告诉了牛顿派的阿拉戈。 1817年,巴黎科学院悬赏征求关于光的干涉的最佳论文。土木工程师菲涅耳也卷入了波动说与微粒说之间的纷争。在1815年菲涅耳就试图复兴惠更斯的波动说,但他与杨氏没有联系,当时还不知道杨氏关于衍射的论文,他在自己的论文中提出是各种波的互相干涉使合成波具有显著的强度。事实上他的理论与杨氏的理论正好相反。后来阿拉戈告诉了他杨氏新提出的关于光是一种横波的理论,从此菲涅耳以杨氏理论为基础开始了他的研究。1819年,菲涅耳成功的完成了对由两个平面镜所产生的相干光源进行的光的干涉实验,继杨氏干涉实验之后再次证明了光的波动说。阿拉戈与菲涅耳共同研究一段时间之后,转向了波动说。1819年底,在非涅耳对光的传播方向进行定性实验之后,他与阿拉戈一道建立了光波的横向传播理论。 1882年,德国天文学家夫琅和费首次用光栅研究了光的衍射现象。在他之后,德国另一位物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 至此,新的波动学说牢固的建立起来了。微粒说开始转向劣势 随着光的波动学说的建立,人们开始为光波寻找载体,以太说又重新活跃起来。一些著名的科学家成为了以太说的代表人物。但人们在寻找以太的过程中遇到了许多困难,于是各种假说纷纷提出,以太成为了十九世纪的众焦点之一。 菲涅耳在研究以太时发现的问题是,横向波的介质应该是一种类固体,而以太如果是一种固体,它又怎么能不干扰天体的自由运转呢。不久以后泊松也发现了一个问题:如果以太是一种类固体,在光的横向振动中必然要有纵向振动,这与新的光波学说相矛盾。 为了解决各种问题,1839年柯西提出了第三种以太说,认为以太是一种消极的可压缩性的介质。他试图以此解决泊松提出的困难。1845年,斯托克斯以石蜡、沥青和胶质进行类比,试图说明有些物质既硬得可以传播横向振动又可以压缩和延展——因此不会影响天体运动。 1887年,英国物理学家麦克尔逊与化学家莫雷以“以太漂流”实验否定了以太的存在。但此后仍不乏科学家坚持对以太的研究。甚至在法拉第的光的电磁说、麦克斯韦的光的电磁说提出以后,还有许多科学家潜心致力于对以太的研究。 十九世纪中后期,在光的波动说与微粒说的论战中,波动说已经取得了决定性胜利。但人们在为光波寻找载体时所遇到的困难,却预示了波动说所面临的危机。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说。1921年,爱因斯坦因为"光的波粒二象性"这一成就而获得了诺贝尔物理学奖。 1921年,康普顿在试验中证明了X射线的粒子性。1927年,杰默尔和后来的乔治汤姆森在试验中证明了电子束具有波的性质。同时人们也证明了氦原子射线、氢原子和氢分子射线具有波的性质。 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。 光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。正是他们的努力揭开了遮盖在“光的本质”外面那层扑朔迷离的面纱。 参考: http://zhidao.baidu.com/question/25389368.html
物质波:杨氏双缝干涉实验 牛顿环 泊松亮斑 微观: 光电性

波粒二象性是怎么被发现的

和意识无关!电子双缝干涉实验神奇在哪里?波粒二象性的由来

“双缝交涉实验”究竟用波粒二象性可以怎么充分而科学的解释?

光粒子具有波的性质和粒子的性质,这就是著名的波粒二象性。这个性质可以解决很多问题,比如双缝干涉实验。
和意识无关!电子双缝干涉实验神奇在哪里?波粒二象性的由来
为什么人们总是对细思极恐的“双缝干涉实验”感到十分畏惧,这项物理实验究竟蕴藏了什么秘密令人如此不寒而栗?难道诡异的电子双缝干涉实验有着恐怖片一般的观影感受?实际上,双缝干涉实验之所以令人感到恐怖是因为这项实验颠覆了数千年以来,人类对客观世界的主流认知,简单来说就是,当人类在认识世界、改造世界的的过程中,人们的意识决定着客观对象的呈现形式,这一结论是不是十分的雷人呢?
  
  在经典科学的认识论与方法论中,人们再一次强调认识活动中主体与客体的分离关系,并指出客体独立于主体,主体的认识活动甚至无法对客体产生任何影响,千百年以来,这些原则也成为了人类的认识活动的基本原则,后来,还在牛顿等人的推动下不断“大放异彩”,甚至无法撼动,随着人类对世界基本认识的不断深入、不断扩展,当人们成功的打开了亚原子的大门时,也将一个惊人的秘密揭示,也就是极具里程碑意义的电子双缝干涉实验,英国科学家托马斯扬的光干涉实验研究,为人类抛下了一个问题,即光的本质为何物,是粒子还是波?
  
  物理学者们为此展开了争论,然而,他们的探讨仅仅局限于经典物理范畴,蒂宾根大学的克劳斯约恩松突发奇想后,利用电子进行了意义非凡的双缝干涉实验,从而使得量子领域的潘多拉魔盒释出了洪荒之力,17世纪,几何光学之父牛顿建立了经典力学,他认为光是由不计其数个微小粒子组成的粒子流,也就是人们有所耳闻的光的粒子说,这一理论也合理的解释了光的折射、反射等现象,从而导致随后的100多年里,光的粒子说成为了光的正统学说,托马斯杨完成了光的双缝干涉实验,并在实验中证实了光是波,因为干涉仅仅是波的特征,从而导致光的波动说成功的取代了光的粒子说的地位。
  
  100多年以后,人们在光的波动说中探索到了部分无法解释的神秘现象,例如黑体辐射、光电效应等,从而导致爱因斯坦、普朗克等物理学家再次将光的粒子说搬回科学的舞台,幸运的是,随着量子力学的发展,人类首次指出光的波粒二象性,美国著名理论物理学家费恩曼曾说,双缝干涉是量子力学的核心实验,它甚至包含了量子力学最深刻的奥秘,后来人类在经典力学的光的波动学说中逐渐懂得,双缝干涉现象实际上只是对光的波动进行了解释,甚至不足为奇。
  有趣的是,双缝干涉在量子力学中,则显得十分烧脑,它带来的诸多问题,就连科学家们也表示没有头绪,量子力学认为双缝干涉实验中,光是由一份一份的光量子构成,每一份的能量大小为E=hv,h记为普朗克常数,v则是光子的频率,双缝干涉实验是指,当一束单色光穿过很窄的单缝后再次穿过双缝时,便会在双缝后面的屏幕上产生干涉条纹,这项实验的神奇之处在于,当人类一个一个的发射光子时,也能够得到干涉条纹,当人们将光子置换为电子、分子时,也依然得到了干涉条纹,该实验现象表明了一个事实,即单个粒子在同一时间内同时通过了双缝,这一现象相当于单个粒子被一分为二后通过了双缝,干涉期间,它们将再次组成一个粒子落到屏幕上。
  然而,这还不算什么,惊人的是,当人类试图探测粒子究竟穿过了哪条缝时,例如在双缝处安置探测器等行为,人们会发现,实验中的干涉条纹竟会立即消失的无影无踪,也令科学家们感到十分费解,因为人类怎么也想不到,观察实验的过程与否竟会影响实验的结果,爱因斯坦对此表示,难道你不观察月亮的时候,月亮就不存在了吗?
  当不计其数的顶级物理学家对量子力学的双缝实验现象进行全面的猜想时,他们最终找到了合理的解释,并将实验进行延伸,引出了薛定谔的猫、延迟选择量子擦除实验等,也让人类逐渐懂得薛定谔的猫这一思想实验中,猫死与猫活对应了双缝干涉实验中的两条缝,两项实验的本质相同,当人类决断出双缝干涉实验时,也梳理清楚了既死又活的猫,如此看来,人的意识决定着电子的行为,这也是电子双缝干涉实验给予人类的答复,这项实验也一举拿下了令人头皮发麻的十大物理实验的首榜,至此,你还天真的认为鬼魂仅是迷信吗?

波粒二象性实验怎么理解???

你如果承认是光子的自身的震动,实际上,也是一种波的性质的体现.并且,干涉和衍射是波特有的性质.再往大了说,我们抛一个球,在地板上,他的入射角出射角相同,那么他的显示的是粒子的特性,但是,在接如果你放下球,让球自己在地板上震动,这个时候显示的是震动的特性,就接近于波了,所以后来,德布罗意认为所有的物体都有波动性,就是德布罗意波.
具体操作我也记不清了,原理是要同一光源,产生相同频率的波.我不太明白你说的被缝的边界粒子牵引这话的意思.你是说边界的粒子靠万有引力还是靠电磁力?万有引力的话,我们现在不能确定光子的静质量是否是零 ,如果那个缝的边界可以吸引光子,那么我们的周围将观察不到直线传播的光,如果是电磁力,光子是一种能量,我们同样要看不到直线传播的光线才对.
什么是波粒二象性1

证明波粒二象性的实验

和意识无关!电子双缝干涉实验神奇在哪里?波粒二象性的由来
A、光的干涉是波特有现象,光的干涉现象证明光的波动性,而光电效应说明光具有粒子性,这两个实验能证明光的波粒二象性,故A正确;
B、光的衍射是波特有现象,光的衍射现象证明光的波动性,而康普顿效应说明光具有粒子性,故B正确;
C、光的反射和折射现象说明光具有粒子性,故C错误;
D、光的反射现象和小孔成像,故说明光具有粒子性,故D错误;
故选:AB

德布罗意的波粒二象性的内容

1924年,德布罗意提出“物质波”假说,认为和光一样,一切物质都具有波粒二象性。根据这一假说,电子也会具有干涉和衍射等波动现象,这被后来的电子衍射试验所证实。
1924年,路易-维克多?德?布罗意注意到原子中电子的稳定运动需要引入整数来描写,与物理学中其他涉及整数的现象如干涉和振动简正模式之间的类似性,构造了德布罗意假设,提出正如光具有波粒二象性一样,实物粒子也具有波粒二象性。他将这个波长λ和动量p联系为:λ=h/p
这是对爱因斯坦等式的一般化,因为光子的动量为p = E / c(c为真空中的光速),而λ = c / ν。
德布罗意的方程三年后通过两个独立的电子散射实验被证实于电子(具有静止质量)身上。在贝尔实验室Clinton Joseph Davisson和Lester Halbert Germer以低速电子束射向镍单晶获得电子经单晶衍射,测得电子的波长与德布罗意公式一致。在阿伯丁大学,George Paget Thomson以高速电子穿过多晶金属箔获得类似X射线在多晶上产生的衍射花纹,确凿证实了电子的波动性;以后又有其他实验观测到氦原子、氢分子以及中子的衍射现象,微观粒子的波动性已被广泛地证实。根据微观粒子波动性发展起来的电子显微镜、电子衍射技术和中子衍射技术已成为探测物质微观结构和晶体结构分析的有力手段。
德布罗意于1929年因为这个假设获得了诺贝尔物理学奖。Thomson和Davisson因为他们的实验工作共享了1937年诺贝尔物理学奖。
一、德布罗意的科学地位
法国著名理论物理学家,1929年诺贝尔物理学奖获得者,波动力学的创始人,物质波理论的创立者,量子力学的奠基人之一。
二、德布罗意的科学贡献
德布罗意之前,人们对自然界的认识,只局限于两种基本的物质类型:实物和场。前者由原子、电子等粒子构成,光则属于后者。但是,许多实验结果之间出现了难以解释的矛盾。物理学家们相信,这些表面上的矛盾,势必有其深刻的根源。1923年,德布罗意最早想到了这个问题,并且大胆地设想,人们对于光子建立起来的两个关系式 会不会也适用于实物粒子。如果成立的话,实物粒子也同样具有波动性。为了证实这一设想,1923年,德布罗意又提出了作电子衍射实验的设想。1924年,又提出用电子在晶体上作衍射实验的想法。1927年,戴维孙和革末用实验证实了电子具有波动性,不久,G.P.汤姆孙与戴维孙完成了电子在晶体上的衍射实验。此后,人们相继证实了原子、分子、中子等都具有波动性。德布罗意的设想最终都得到了完全的证实。这些实物所具有的波动称为德布罗意波,即物质波。
三、德布罗意的科学荣誉
由于德布罗意的杰出贡献,他获得了很多的荣誉。1929年获法国科学院享利。彭加勒奖章,同年又获诺贝尔物理学奖。1932年,获摩纳哥阿尔伯特一世奖,1952年联合国教科文组织授予他一级卡琳加奖,1956年获法国家科学研究中心的金质奖章。德布罗意于1933年当选为法国科学院院士,1942年以后任数学科学常务秘书。他还是华沙大学、雅典大学等六所著名大学的荣誉博士,是欧、美、印度等18个科学院院士。
四、德布罗意的生平
1892年8月15日出生于下塞纳,1910年获巴黎大学文学学士学位,1913年又获理学士学位,1924年获巴黎大学博士学位,在博士论文中首次提出了"物质波"概念。1929年获诺贝尔物理学奖。1932年任巴黎大学理论物理学教授,1933年被选为法国科学院院士。1987年逝世。?
五、德布罗意的科学生涯
德布罗意1892年8月15日出生于法国塞纳河畔的蒂厄浦,是法国一贵族家庭的次子。德布罗意家族自17世纪以来在法国军队、政治、外交方面颇具盛名。祖父J。V。A德布罗意(1821~1901)是法国著名政治家和国务活动家,1871年当选为法国国民议会下院议员,同年担任法国驻英国大使,后来还担任过法国总理和外交部长等职务。
德布罗意从18岁开始在巴黎大学学习理论物理,但是因为打算沿其家族传统,以后从事外交活动,他也学习历史,并且于1909年获得历史学位。由于他哥哥(M。德布罗意)是一位实验物理学家,拥有设备精良的私人实验室,从事物理实验研究。因而德布罗意在学习历史的二象性。
人类对自然的认识由浅入深、由片面到全面、由现象到本质不断深化。对光本性的认识同时,受到他哥哥的影响,参与一些物理研究工作。从他哥哥那里德布罗意了解到普朗克和爱因斯坦关于量子方面的工作,这些引起了他对物理学的极大兴趣。经过一翻思想斗争之后,德布罗意终于放弃了已决定的研究法国历史的计划,选择了物理学的研究道路,并且希望通过物理学研究获得博士学位。第一次世界大战期间,德布罗意在军队服役,被分配到无线电台工作,中断了他的理论物理研究。1919年,德布罗意重新回到他哥哥的实验室研究X射线,在这里,他不仅获得了许多原子结构的知识,而且接触到X射线时而象波、时而象粒子的奇特性质。德布罗意曾经与其兄就X射线的性质进行了长时间的讨论,他对其兄及其同事们的实验工作发生了浓厚的兴趣。为了对这些现象做出理论解释,1920年,德布罗意重新开始研究理论物理,特别是关于量子问题,他的研究终于取得了可喜成果。1923年9月和10月,德布罗意发表了三篇关于物质波的论文,创立了物质波理论。之后,他投人博士论文的写作,1924年11月他以题为《量子理论的研究》的论文通过博士论文答辩,获得博士学位。在这篇论文中,包括了德布罗意近两年取得的一系列重要研究成果,全面论述了物质波理论及其应用。
德布罗意获得博士学位后,继续留在巴黎大学,他又发表了有关波动力学的有创造性的研究成果,同时担任教学任务。德布罗意在神也是沿着这个认识规律发展的。在认识发展中,物质生产水平、实验条件起了决定性的作用,同时促进人类认识水平的不断提高。学院担任了两年义务讲座后,1928年被聘为新建立的巴黎大学享利·彭加勒学院理论物理教授,他担任这一职务从事教学工作一直到1962年退休。1945年以后,他还担任法国原子能委员会顾问。1930年到1950年间,德布罗意的研究工作主要是波动力学的推广,他的研究取得了许多成果,发表了大量评论和论文。1951年以后的一段时间,德布罗意研究粒子和波之间的关系,目的是通过研究用经典的空间和时间概念对波动力学作出因果解释。此时重新研究他于1927年提出的引导波理论,但不久他就放弃这方面的工作,回到了以前的研究领域,探索微观现象产生的原因和决定论的科学哲学观点,用波动力学的观点探讨热力学和分子生物学。德布罗意一生的研究成果颇丰,他的著作就达25本之多。由于德布罗意的杰出贡献,他获得了很多的荣誉。1929年获法国科学院享利。彭加勒奖章,同年又获诺贝尔物理学奖。1932年,获摩纳哥阿尔伯特一世奖,1952年联合国教科文组织授予他一级卡琳加奖,1956年获法国家科学研究中心的金质奖章。德布罗意于1933年当选为法国科学院院士,1942年以后任数学科学常务秘书。他还是华沙大学、雅典大学等六所著名大学的荣誉博士,是欧、美、印度等18个科学院院士。
六、物质波理论的形成
德布罗意开始研究物理学时,适逢现代物理学发生深刻革命的时期。1900年,普朗克研究黑体辐射时假定谐振子取分立的能量,提出量子的概念,由此出发,他推导出能够描述黑体辐射规律的普朗克黑体辐射公式。但是,人们并没有认识能量子的重要性,只把能量子看作仅仅是在支配物质和辐射相互作用过程中是合适的,频率为V的物质振子仅仅以hV的倍数发射或吸收能量。直到1905年,量子概念才发生了重要发展。1905年,爱因斯坦发表了题为《关于光的产生和转化的一个启发性观点》的论文,文中通过对黑体辐射的研究和论证,得到并提出了光量子的概念,并用它成功地解释了光电效应。这一工作的意义之一在于,光量子的概念是在分析和研究黑体辐射基础上得到的,表明量子概念具有比较普遍的意义。爱因斯坦认为:密度小的单色辐射,从其热现象方面的行为看,仿佛是由一些独立的能量所组成。本世纪初期,人们通过对X射线的研究认识到,X射线具有时而象波、时而象粒子的奇特性质。1913年,玻尔提出原子中的电子运动的量子化条件,原子中的电子只有可能进行某些运动,成功地解释了氢原子光谱。玻尔的量子化条件没有理论基础,是人为规定的。1919-1922年,法国物理学家布里渊提出了一个解释玻尔基于化条件的理论。布里渊把电子和波作为一个整体进行研究,设想在原子核周围存在着一层以太,电子在其中运动掀起波,这些波相互干涉在原子核周围形成驻波。这些研究成果,尤其是布里渊的理论对德布罗意提出物质被思想产生巨大影响。
德布罗意重新开始研究理论物理,物理学面临着的主要困难是:对于光需要有微粒说和波动说两种理论;确定原子中电子的稳定运动涉及到整数,这些都是当时人们无法理解的事实。德布罗意首先考察光量子理论和玻尔的量子化条件。确定光微粒能量的表达式是W=hv,这个公式中包含着频率v,而纯粹的粒子理论不包含频率的因素;确定原子中电子的稳定运动涉及到整数,而物理学中涉及到整数的只是干涉现象和本征振动现象。这些结果使德布罗意想到,对于光需要同时引进粒子的概念和周期的概念;对于电子不能简单地用微粒来描述电子本身,还必须赋予它们周期的概念。于是,德布罗意形成了指导他进行研究的全部概念:在所有情况下,都必须假设微粒伴随着波而存在,他的首要目的就是建立微粒的运动和缔合波的传播之间的对应关系。
1923年夏末,德布罗意已开始形成他的相波(后来他称为相位波)概念,9月10日,他发表了关于物质波理论的第一篇论文——《波和量子》,文中提出的思想可以被看作是波动力学理论的开端。两个星期后,德布罗意又发表了《光量子、衍射和干涉》的论文,明确提出相干波的概念。文中明确指出:要描述一个动点的运动,观察者必须将这一运动与一个非物质的、在同一方向上传播的正弦波联系起来。在观察者看来,这一波的频率等于上述动点的总能量除以普朗克常量h。同年10月8日,德布罗意发表关于物质波理论的第三篇论文《量子、气体运动理论以及费马原理》。文中阐述了波与粒子的对应关系,他假定与任何粒子相联系的相波,在空间任何点与粒子同相位。相波的频率与速度由粒子的能量和速度所决定。
德布罗意的这三篇论文是物质波理论奠基工作的开端。继这三篇论文之后,德布罗意着手撰写他的博士论文《量子理论的研究》。1924年11月,德布罗意通过论文答辩,获博士学位。他的博士论文包括了近两年研究的一些成果,比较系统地论述了物质波理论,得到物质波的一些重要结果。德布罗意认为,任何运动着的物体都伴随着一种波动,而且不可能将物体的运动和波的传播分开,这种波称为相位波。存在相位波是物体的能量和动量同时满足量子条件和相对论关系的必然结果。德布罗意考虑静止质量为外、相对于静止观察者的速度为的粒子,他假设粒子是周期性内在现象的活动中心,它的频率 , 是普朗克常数, 是粒子的内在能量。以狭义相对论原理和严格的量子关系式为基础,L。德布罗意通过严格论征得到:相位波的波长是,是普朗克常数, 是相对论动量,这就是著名的德布罗意波长与动量的关系。此外,德布罗意把相位波的相速度 和群速度(能量传递的速度)联系起来,证明了波的群速度等于粒子速度,确定了群速度与粒子速度的等同性。他的这些研究成果形成了比较完整的物质波理论。
七、物质波理论的实验验证
德布罗意撰写论文时,他的哥哥(M.德布罗意)建议他的论文应包括实验部分,可是他没有采纳这个建议。他的物质波理论是在没有得到任何已知事实支持的情况下提出来的,这就使得答辩委员会对物质波的真实性存在疑虑,答辩委员会主席佩兰就提出了物质波如何用实验来证实的问题。对佩兰的提问,德布罗意回答:用晶体对电子的衍射实验验证物质波的存在是可能的。他的这个思想是早已形成的,他曾在1923年9月24日《光量子、衍射和干涉》一文中指出:从很小的孔穿过的电子束,可能产生衍射现象,这也许会成为在实验上验证物质具有波粒二象性的方法。他还曾向他哥哥的同事道维里叶提出做电子的衍射实验,后者因忙于电视实验而将其搁置。
物理学的发展需要理论的和实验的两只脚向前迈进,现在理论这只脚已经先向前迈进了一步,这就给实验提出了研究课题。物质波理论提出后,如何从实验上证实物质波存在就成了人们关注的一个热点。
按照德布罗意理论,经过几千伏加速电压的电子束,其波长数量级为10-10米,这与X射线的波长是同一个数量级,因而可以用晶体对电子的衍射实验验证物质波。德布罗意的理论一传到美国,就在纽约开始了显示电子衍射的实验。尽管这个实验开始并不是为验证波动理论而做的,但是到了1926年,这项工作的目的已经转变为验证物质波理论。1927年初,戴维森和革末通过实验发现,在镍晶体对电子的衍射实验中,有19个事例可以用来验证波长和动量之间的关系,而且每次都在测量精确度范围内证明了德布罗意公式的正确性。戴维森实验所用电子束的电子能量很低,仅有50-600电子伏特。同年G.P.汤姆逊用较高能量的电子做了晶体对电子束衍射的实验,他让电子能量为1000-8000电子伏特的电子束垂直射入赛玛哈、金、铂或铝等薄膜上,观测产生的衍射图样。实验观测和由德布罗意理论得到的结果非常一致,这充分证明了电子具有波动性,再一次用无可辨驳的事实向人们展示了德布罗意理论是正确的。以后,人们通过实验又观察到原子、分子……等微观粒子都具有波动性。实验证明了物质具有波粒二象性,不仅使人们认识到德布罗意的物质波理论是正确的,而且为物质波理论奠定了坚实基础。
其英文名称为:De Broglie Waves
所谓粒子,主要是指它具有集中的、不可分割的特性。微观客体和其他物质相互作用时,取粒子的方式,而不是波动方式,我们接收到的是一颗一颗的粒子,接收不到分数颗粒子。其次,提到波就意味着场的概念,所谓波不过是周期性地传播运动的场而已。场是弥散的。微观客体的传播取波动的方式,而不像经典粒子一样有一条轨道。波动性和粒子性是在不同实验条件下得到的概念。
-----摘自 柯善哲《量子力学》 科学出版社
德布罗意在1924年提出一个假说,指出波粒二象性不只是光子才有,一切微观粒子,包括电子和质子、中子,都具有波粒二象性。
他把光子的动量与波长的关系式p=h/λ推广到一切微观粒子上,指出:具有质量m 和速度v 的运动粒子也具有波动性,这种波的波长等于普朗克恒量h跟粒子动量mv的比,即λ= h/(mv),这个关系式后来就叫做德布罗意公式。
通过两个独立的电子衍射实验,德布罗意的方程被证实可用来描述电子的量子行为。在阿伯丁大学,乔治·汤姆孙将电子束照射穿过薄金属片,并且观察到预测的干涉样式。在贝尔实验室,克林顿·戴维森和雷斯特·革末做实验将低速电子入射于镍晶体,取得电子衍射图样,结果符合理论预测。
扩展资料:
爱因斯坦在波和粒子上的发现
1905年,爱因斯坦提出了光电效应的光量子解释,人们开始意识到光波同时具有波和粒子的双重性质。
爱因斯坦将光束描述为一群离散的量子,现称为光子,而不是连续性波动。从普朗克黑体辐射定律,爱因斯坦推论,组成光束的每一个光子所拥有的能量等于频率乘以一个常数,即普朗克常数,他提出了“爱因斯坦光电效应方程”,其中, Wo是逃逸电子的最大动能, 是逸出功。
1916年,美国物理学者罗伯特·密立根做实验证实了爱因斯坦关于光电效应的理论。从麦克斯韦方程组,无法推导出普朗克与爱因斯坦分别提出的这两个非经典论述。物理学者被迫承认,除了波动性质以外,光也具有粒子性质。
参考资料来源:百度百科-波粒二象性