本文目录一览:
- 1、动量矩定理公式是什么
- 2、动量矩定理
- 3、动量矩定理在一定程度上描述了质点系相对于定点的运动状态
- 4、动量矩公式
- 5、动量矩定理公式是什么
- 6、动力学的三大基本公式是什么?
- 7、动量定理公式
- 8、关于动量矩定理,转动刚体的动量矩,等于转动惯量乘以角速度,对吧? 那转动惯量乘以角加速度等于什么?
- 9、动量矩定理
动量矩定理公式是什么
动量矩定理公式是:dv=FCos。动力学普遍定理之一,它给出质点系的动量与质点系受机械作用的冲量之间的关系。动量定理有微分形式和积分形式两种。
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
动量矩定理
AB物体和圆盘分开计算
A、B动量矩=m1vr
圆盘动量矩=1/2mr^2 ω
方向相同,相加即可。
(2)相当于平面投影上,一根均质杆,长度2l sinθ,质量m
两端质点m1,
计算方法同上,
杆动量矩=1/3m(lsinθ)^2*ω
我的理解就是说只对纯转动才使用,不能有平动
应该是平动转动同时出现的话,那应该引入惯性力才能解决,所以一般的动量矩定理就没法用了
不知道我的理解是否正确,希望没有误导你
动力学普遍定理之一,它给出质点系的动量矩与质点系受机械作用的冲量矩之间的关系。动量矩定理有微分形式和积分形式两种。
积分形式
设质点系中任一质点的质量为mi,受外力的合力
和内力
的合力作用,加速度为
,沿曲线轨迹运动到Q点时的速度为
(见图)。
根据牛顿第二定律,有:
将式(1)向轨迹的切线方向投影,得式
因
,
代入式(2)可得:
。
上式可以改写为:
式中为质点i的动能;和分别为质点i上外力和内力的元功。对于整个质点系则应为:
式中为质点系的总动能。对式(4)进行积分,可得:
式中T1,为质点系在过程开始时的动能;T2为质点系在过程结束时的动能。
式(5)是以积分形式表示的质点系的动能定理,它表明:质点系的总动能在某个力学过程中的改变量,等于质点系所受的诸外力和诸内力在此过程中所做功的总和。
微分形式
将式(4)两边除以dt,得:
式中
为外力的功率;
为内力的功率。
式(6)是以微分形式表示的质点系的动能定理,它表明;质点系的总动能随时间的变化率等于质点系所受诸外力和诸内力在单位时间内所作功的总和。
质点是质点系的一个特殊情况,故动能定理也适用于质点。但是,对于质点和刚体,诸内力所做功的总和等于零,因为前者根本不受内力作用,而后者的内力则成对出现,其大小相等,方向相反,作用在同一直线上,且刚体上任两点的距离保持不变,故其内力作功总和等于零。
扩展资料:
在某力学过程的时间间隔内,质点系对某点动量矩的改变,等于在同一时间间隔内作用于质点系所有外力对同一点的冲量矩的矢量和。
对刚体绕定轴z以角速度ω转动(转动惯量为Iz)的情况,可投影到z轴上。
即在某一时间间隔内,刚体对z轴动量矩(Izω)的改变,等于在同一时间间隔内作用于刚体上所有外力对 z轴的冲量矩的代数和。
质点是质点系的一个特殊情况,故动量矩定理也适用于质点。
参考资料:百度百科-动量矩定理
动量矩定理在一定程度上描述了质点系相对于定点的运动状态
动量矩定理,反映了质点系随质心平动的动力学规律。
动量矩定理公式:F=G/n,动量矩又称角动量,描述物体转动状态的量,又称角动量。一个质量为m、速度为v、矢径为r的质点对r的原点的动量矩为L=r×mv。
最简单的场景就是质点的动量矩定理。
对于质点系的话,就是求和:
对于刚体,可以应用于质点系的动量矩定理:
动量矩公式
动量矩公式是M=R×P,动量矩又称角动量,动力学普遍定理之一,它给出质点系的动量矩与质点系受机械作用的冲量矩之间的关系。动量矩定理有微分形式和积分形式两种。
描述物体转动状态的量,又称角动量。一个质量为m、速度为v、矢径为r的质点对r的原点的动量矩为L=r×mv。动量矩是个矢量,它在某一轴上的投影就是对该轴的动量矩。对轴的动量矩是个标量。质点系或刚体对某点(或某轴)的动量矩等于其中所有质点的动量对该点(或该轴)之矩的矢量和(或代数和)。
动量矩定理公式是什么
动量矩定理公式是什么如下:
动量守恒、动能(机械能)守恒的两个方程(应是弹性正碰撞的式子)为:
mA* VA0=mA * VA+mB * VB。
(mA* VA0^2 / 2)=(mA * VA^2 / 2)+(mB * VB^2 / 2)。
即:mA* VA0=mA * VA+mB * VB
mA* VA0^2 =mA * VA^2 +mB * VB^2
将方程1变形,得 mA* (VA0- VA)=mB * VB。
将方程2变形,得 mA* (VA0^2- VA^2)=mB * VB^2。
由于 VA0≠VA ,所以把以上二式相除,得。
VA0+ VA= VB
通过以上处理,使方程变为一次函数。
再由方程1与方程3联立,容易求得。
VA=(mA-mB)* VA0 /(mA+mB)。
VB=2* mA* VA0 /(mA+mB)。
注:以上的 VA0、VA、VB是包含方向(正负)的。
扩展资料:
(1)p=p′ ,即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;
(2)Δp=0 ,即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为: m?v?+m?v?=m?v?′+m?v?′ (等式两边均为矢量和);
(3)Δp?=-Δp? . 即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动 量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变。
动力学的三大基本公式是什么?
1、动量矩定理:F=ma(合外力提供物体的加速度);
2、动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);
3、动量定理:Ft=mV-mv(合外力的冲量等于物体动量的变化量)。
从牛顿运动微分方程组推导出来的具有明显物理意义的定理,计有动量定理、动量矩定理、动能定理、质心运动定理等四个。前三个都是运动微分方程的一次积分,末一个是动量定理的又一次积分,牛顿认为物体运动的量应用“质量和速度的乘积”表示。
因此他叙述运动定律时,用“动量的变化率”,而不是用“质量乘加速度”可见,动量定理是牛顿观点的产物。这定理主要用于求速度v(或质心速度)和作用时间的关系。
G.W.莱布尼兹则认为表示物体运动的物理里应是“质量与速度的平方的乘积”,并将mv2称为活力。用现在的观点,这就相当于物体的动能的两倍。
牛顿对力的作用是从时间的累积效应来认识的,而莱布尼兹则从力对运动路程的累积来认识。所以动能定浬适用于求速度v和路程S的关系动量矩适用于物体的转动效应,所以与转动有关的力学问题可以考虑动量矩定理。有关质心位置的问题,应用质心运动定理。
扩展资料
动力学的基本内容包括质点动力学、质点系动力学、刚体动力学,达朗伯原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论、陀螺力学、外弹道学、变质量力学以及正在发展中的多刚体系统动力学等(见振动,运动稳定性,变质量体运动,多刚体系统)。
质点动力学有两类基本问题:一是已知貭点的运动,求作用于质点上的力,二是已知作用于质点上的力,求质点的运动,求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力。
求解第二类问题时需要求解质点运动微分方程或求积分。所谓质点运动微分方程就是把运动第二定律写为包含质点的坐标对时间的导数的方程。
参考资料来源:百度百科-动力学
动量矩定理:F=ma(合外力提供物体的加速度);
动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);
动量定理:Ft=mV-mv(合外力的冲量等于物体动量的变化量)。
动力学普遍定理是质点系动力学的基本公式,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。
动量、动量矩和动能是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩,与这些物理量之间的关系构成了动力学普遍定理。
扩展资料:
动力学普遍定理是质点系动力学的基本定理,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。动量、动量矩和动能是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩,与这些物理量之间的关系构成了动力学普遍定理。
刚体的特点是其质点之间距离的不变性。欧拉动力学方程是刚体动力学的基本方程,刚体定点转动动力学则是动力学中的经典理论。
动力学普遍定理是质点系动力学的基本定理,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。
动量、动量矩和动能(见能)是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩与这些物理量之间的关系构成了动力学普遍定理。二体问题和三体问题是质点系动力学中的经典问题。
参考资料来源:百度百科——动力学
动力学普遍定理是质点系动力学的基本公式,它包括动量定理、动量矩定理、动能定理以及由这三个基本定理推导出来的其他一些定理。动量、动量矩和动能是描述质点、质点系和刚体运动的基本物理量。作用于力学模型上的力或力矩,与这些物理量之间的关系构成了动力学普遍定理。
动量矩定理:F=ma(合外力提供物体的加速度);
动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量);
动量定理:Ft=mV-mv(合外力的冲量等于物体动量的变化量)。
动力学是研究物体的运动与力的关系;运动学是只研究物体的运动而不研究与力之间的关系。
楼主说的运动学公式楼上的已给出。。。
望采纳。
牛二定律:F=ma(合外力提供物体的加速度); 动能定理:W=1/2mV^2-1/2mv^2(合外力做的功等于物体的动能的改变量); 动量定理:Ft=mV-mv(合外力的冲量等于物体动量的变化量)
1、动量矩定理
动力学普遍定理之一,它给出质点系的动量矩与质点系受机械作用的冲量矩之间的关系。
2、动能定理
动能具有瞬时性,是指力在一个过程中对物体所做的功等于在这个过程中动能的变化。动能是状态量,无负值。
合外力(物体所受的外力的总和,根据方向以及受力大小通过正交法能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化,即末动能减初动能。
动能定理一般只涉及物体运动的始末状态,通过运动过程中做功时能的转化求出始末状态的改变量。但是总的能是遵循能量守恒定律的,能的转化包括动能、势能、热能、光能(高中不涉及)等能的变化。
3、动量定理
如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。
F指合外力,如果为变力,可以使用平均值;=既表示数值一致,又表示方向一致;矢量求和,可以使用正交分解法;只适用于惯性参考系,若对于非惯性参考系,必须加上惯性力的冲量。且v?,v?必须相对于同一惯性系。
扩展资料:
质点动力学有两类基本问题:
1、已知质点的运动,求作用于质点上的力。
2、已知作用于质点上的力,求质点的运动。
求解第一类问题时只要对质点的运动方程取二阶导数,得到质点的加速度,代入牛顿第二定律,即可求得力;求解第二类问题时需要求解质点运动微分方程或求积分。
参考资料来源:百度百科-动量矩定理
参考资料来源:百度百科-动能定理
参考资料来源:百度百科-动量定理
参考资料来源:百度百科-动力学
动量定理公式
角动量定理公式:
L = Jω,J 是转动惯量,ω(欧米伽)是角速度。
角动量在经典力学中表示为到原点的位移和动量的叉乘,通常写做L 。角动量是矢量。
L= r×p
其中,r表示质点到旋转中心(轴心)的距离(可以理解为半径),L表示角动量。p 表示动量。
角动量:角动量在物理学中是与物体到原点的位移和动量相关的物理量。角动量描述物体转动状态的量。又称动量矩。如质点的质量为m,速度为v,它关于O点的矢径为r,则质点对O点的角动量L=r×mv。角动量是矢量,它通过O 点某一轴上的投影就是质点对该轴的角动量(标量)。质点系或刚体对某点(或某轴)的角动量等于其中各质点的动量对该点(或该轴)之矩的矢量(或代数)和。
角动量的方向:角动量的方向:角动量是r(参考点到质点的距离矢量)叉乘动量,是两个矢量的叉乘,在右手坐标系里遵循右手螺旋法,即右手四指指向r的方向,转过一个小于180度的平面角后四指指向动量的方向,则大拇指所指的方向。
关于动量矩定理,转动刚体的动量矩,等于转动惯量乘以角速度,对吧? 那转动惯量乘以角加速度等于什么?
1、平动中的牛顿第二定律 F = ma,合外力 = 质量 × 线加速度
转动中,就成了 M = I β;合外力矩 = 转动惯量 × 角加速度
2、平动中,牛顿第二定律的动量表述是:合外力 = 线动量的变化率;
线动量 = 质量 × 速度
转动中,牛顿第二定律的角动量表述:合外力矩 = 角动量的变化率
角动量 = 转动惯量 × 角速度
3、平动中的动能 Ek = ? mv2 = ? 质量 × 线速率的平方,
转动中的动能 Ek = ? mv2 = ? 转动惯量 × 角速率的平方。
于动量矩定理,转动刚体的动量矩,等于转动惯量乘以角速度,对的那转动惯量乘以角加速度等动量距
等于合外力矩M
相当于动量矩求导,等于力矩
1、平动中的牛顿第二定律 F = ma,合外力 = 质量 × 线加速度。转动中,就成了 M = I β;合外力矩 = 转动惯量 × 角加速度。
2、平动中,牛顿第二定律的动量表述是:合外力 = 线动量的变化率;线动量 = 质量 × 速度。转动中,牛顿第二定律的角动量表述:合外力矩 = 角动量的变化率;角动量 = 转动惯量 × 角速度。
3、平动中的动能 Ek = ? mv2 = ? 质量 × 线速率的平方。 转动中的动能 Ek = ? mv2 = ? 转动惯量 × 角速率的平方。
扩展资料
一个质量为m、速度为v、矢径为r的质点对r的原点的动量矩为L=r×mv。动量矩是个矢量,它在某一轴上的投影就是对该轴的动量矩。对轴的动量矩是个标量。质点系或刚体对某点(或某轴)的动量矩等于其中所有质点的动量对该点(或该轴)之矩的矢量和(或代数和)。
平动的刚体,由于它的各点的速度都相同(见刚体的平动),所以它对某点的动量矩等于刚体质心以该点为原点的矢径与刚体动量的矢量积。一个作半径r的匀速圆周运动的质点绕圆心O转动的角速度为),则质点对O的动量矩即质点的角动量为
,其中I为质点对圆心的转动惯量。绕定轴转动的刚体对定轴的动量矩即刚体的角动量,其中I为刚体对该轴的转动惯量,ω为刚体绕该轴转动的角速度。
参考资料来源:百度百科-动力矩
动量矩定理
AB物体和圆盘分开计算
A、B动量矩=m1vr
圆盘动知量矩=1/2mr^2
ω
方向相同,相加即可。
(2)相当于平面投影上,一根均质杆,长度2l
sinθ道,质量m
两端质点m1,
计算方法同上,
杆动量矩=1/3m(lsinθ)^2*ω
最低0.27元/天开通百度文库会员,可在文库查看完整内容>
原发布者:TT_heting
第三章动力学普遍定理:动量矩定理动量定理描述了外力系主矢量引起质心运动的M变化,反映了质点系随e799bee5baa6e79fa5e9819331333433623737质心平动的动力学规律。但是,它不能完全描述质点系的运动状态。如一C均质的圆轮绕不动的质心转动时,无论圆轮转动的快慢如何,无论转动状态有什么变化,它的动量恒等于0。动量矩定理会描述外力系主矩引起质点系如何运动?§3-1动量矩§3-2动量矩定理动量矩§3-3刚体的定轴转动微分方程定理§3-4相对于质心的动量矩定理§3-5刚体的平面运动微分方程§3-1动量矩1.质点动量矩的计算◆质点对一点的动量矩:MO(mv)r(mv)◆质点对轴的动量矩Mx(mv)[MO(mv)]xy(mvz)z(mvy)My(mv)[MO(mv)]yz(mvx)x(mvz)Mz(mv)[MO(mv)]zx(mvy)y(mvx)即:质点对点的动量矩是矢量,大小为DOMD面积的两倍,矢量从矩心O画出,其方位垂直于质点矢径r和动量mv所组成的平面,指向按右手规则确定;质点对轴的动量矩等于对点的动量矩矢量在相应轴上的投影,对轴的动量矩是代数量。2.质点系动量矩的计算◆质点系对点的动量矩:LOMO(mivi)◆质点系对轴的动量矩LxMx(mivi)LyMy(mivi)LzMz(mivi)质点系对点O的动量矩为质点系内各质点对同一点O的动量矩的矢量和,一般用Lo表示。质点系内各质点对某轴的动量矩的代数和称为质点系对该轴