×

光的全反射原理,光的全反射本质上的原理是什么?

admin admin 发表于2024-03-01 12:22:30 浏览23 评论0

抢沙发发表评论

本文目录一览:

关于光的全反射

全反射:又称全内反射,指 光由光密介质射到光疏介质的界面时,全部被反射回原介质内的现象。

原理:光由光密介质进入光疏介质时,要离开法线折射。当入射角增加到某种情形时,折射线延表面进行,即折射角为90度,该入射角称为临界角。若入射角大于临界角,则无折射,全部光线均反回光密介质,此现象称为全反射。当光线由光疏介质射到光密介质时,因为光线靠近法线而折射,故这时不会发生全反射。

产生全反射的条件是:光必须由光密介质射向光疏介质;入射角必须大于或等于临界角。

光的全反射原理是怎么回事?

从光密介质进入光疏介质时入射角增大到某临界角时,会产生全反射。
所谓光密介质和光疏介质是相对的。两物质相比,折射率较小的,光速在其中较快的,就为光疏介质;折射率较大的,光速在其中较慢的,就为光密介质。
例如,水折射率大于空气,所以相对于空气而言,水就是光密介质;而玻璃的折射率比水大,所以相对于玻璃而言,水就是光疏介质。
临界角是折射角为90度时对应的入射角(只有光线从光密介质进入光疏介质且入射角大于或等于临界角时,才会发生全反射。)
扩展资料:
一、全反射概念理解
1、全反射现象是光的折射的特殊现象,只有光从光密介质射向光疏介质并且入射角大于等于临界角时全反射 现象才会发生。
2、全反射现象符合反射定律,光路可逆。
3、全反射发生之前,随着入射角的增大,折射角和反射角都增大,但折射角增大的快,在入射光的强度一定的情况下,折射光越来越弱,反射光越来越强,发生全发射时,折射光消失,反射光的强度等于入射光的强度。
二、相关应用
1、海市蜃楼
由于空中大气的折射和全反射,会在空中出现“海市蜃楼”,在海面平静的日子,站在海滨,有时可以看到远处的空中出现了高楼耸立,街道棋布,山峦重叠等现象。
这种景象的出现是有原因的。当大气层比较平静时,空气的密度随温度的升高而减小,海面上的空气温度比空中低,空气的折射率下层比上层大。我们可以粗略的把空中的大气分成许多水平的空气层所示,下层的折射率较大。
远处的景物发出的光线射向空中时,不断被折射,射向折射率较低的上一层的入射角越来越大,当光线的入射角大到临界角时,就会发生全反射现象。
光线就会从高空的空气层中通过空气的折射逐渐返回折射率较大的下一层。在地面附近的观察者就可以观察到由空中射来的光线形成的虚象,这就是海市蜃楼的景象。
2、光纤通信
现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
3、潜水镜
潜水镜是用来保护潜水者免于呛水、保护眼睛免受水的刺激、看清水下物的防护镜。
参考资料来源:百度百科-全反射
参考资料来源:百度百科-全反射原理

什么是光的全反射啊?为什么会发生全反射?

光的反射
1、光源:能够自行发光的物体叫光源
2、光在均匀介质中是沿直线传播的
大气层是不均匀的,当光从大气层外射到地面时,光线发了了弯折(海市蜃楼、早晨看到太阳时,太阳还在地平线以下、星星的闪烁等)
3、光速
光在不同物质中传播的速度一般不同,真空中最快
光在真空中的传播速度:V = 3×108 m/s,在空气中的速度接近于这个速度,水中的速度为3/4V,玻璃中为2/3V
4、光直线传播的应用
可解释许多光学现象:激光准直,影子的形成,月食、日食的形成、小孔成像等
5、光线
光线:表示光传播方向的直线,即沿光的传播路线画一直线,并在直线上画上箭头表示光的传播方向(光线是假想的,实际并不存在)
6、光的反射
光从一种介质射向另一种介质的交界面时,一部分光返回原来介质中,使光的传播方向发生了改变,这种现象称为光的反射
7、光的反射定律
反射光线与入射光线、法线在同一平面上;反射光线和入射光线分居在法线的两侧;反射角等于入射角
可归纳为:“三线共面,两线分居,两角相等”
理解:
由入射光线决定反射光线,叙述时要“反”字当头
发生反射的条件:两种介质的交界处;发生处:入射点;结果:返回原介质中
反射角随入射角的增大而增大,减小而减小,当入射角为零时,反射角也变为零度
8、两种反射现象
镜面反射:平行光线经界面反射后沿某一方向平行射出,只能在某一方向接收到反射光线(反射面是光滑平面)
漫反射:平行光经界面反射后向各个不同的方向反射出去,即在各个不同的方向都能接收到反射光线(反射面是粗糙平面或曲面)
注意:无论是镜面反射,还是漫反射都遵循光的反射定律
9、在光的反射中光路可逆
10、平面镜对光的作用
(1)成像 (2)改变光的传播方向
11、平面镜成像的特点
(1)成的是正立等大的虚像 (2)像和物的连线与镜面垂直,像和物到镜的距离相等
理解:平面镜所成的像与物是以镜面为轴的对称图形,即平面镜是物像连线的中垂线。
12、实像与虚像的区别
实像是实际光线会聚而成的,可以用屏接到,当然也能用眼看到。
虚像不是由实际光线会聚成的,而是实际光线反向延长线相交而成的,只能用眼看到,不能用屏接收。
13、平面镜的应用
(1)水中的倒影 (2)平面镜成像 (3)潜望镜
【全反射】 光由光密(即光在其中传播速度较小的)媒质射到光疏(即光在其中传播速度较大的)媒质的界面时,全部被反射回原媒质内的现象。光由光密媒质进入光疏媒质时,要离开法线折射,如图4-5所示。当入射角θ增加到某种情形(图中的e射线)时,折射线延表面进行,即折射角为90°,该入射角θc称为临界角。若入射角大于临界角,则无折射,全部光线均反回光密媒质(如图f、g射线),此现象称为全反射。当光线由光疏媒质射到光密媒质时,因为光线靠近法线而折射,故这时不会发生全反射。
公式为n=sin90`/sinc=1/sinc
sinc=1/n
(c为临界角)
当光射到两种介质界面,只产生反射而不产生折射的现象.当光由光密介质射向光疏介质时,折射角将大于入射角.当入射角增大到某一数值时,折射角将达到90°,这时在光疏介质中将不出现折射光线,只要入射角大于上述数值时,均不再存在折射现象,这就是全反射.所以产生全反射的条件是:①光必须由光密介质射向光疏介质.②入射角必须大于临界角(C).
所谓光密介质和光疏介质是相对的,两物质相比,折射率较小的,就为光疏介质,折射率较大的,就为光密介质。例如,水折射率大于空气,所以相对于空气而言,水就是光密介质,而玻璃的折射率比水大,所以相对于玻璃而言,水就是光疏介质。
临界角是折射角为90度时对应的入射角(只有光线从光密介质进入光疏介质且入射角大于临界角时,才会发生全反射)
全反射的应用:光导纤维是全反射现象的重要应用。蜃景的出现,是光在空气中全反射造形成的

光的全反射原理是怎么回事?

光从光密介质射入光疏介质.当入射角 增大到某一角度,使折射角达到90°时,折射光完全消失,只剩下反射光,这种现象叫做全反射.
发生全反射的条件:(1)光从光密介质射入光疏介质;(2)入射角大于或等于临界角.
临界角:当光线从光密介质射向光疏介质时,入射角大于或等于某一角度C时,折射光线消失,发生了全反射现象.角度C就被称为临界角.当入射角等于临界角时,折射角等于90°,由折射定律和光路可逆可得:sin90:sinC=n,C=arcsin(1/n)

光的全反射本质上的原理是什么?

光从光密介质射入光疏介质。当入射角 增大到某一角度,使折射角达到90°时,折射光完全消失,只剩下反射光,这种现象叫做全反射。
发生全反射的条件:(1)光从光密介质射入光疏介质;(2)入射角大于或等于临界角。
临界角:当光线从光密介质射向光疏介质时,入射角大于或等于某一角度C时,折射光线消失,发生了全反射现象。角度C就被称为临界角。当入射角等于临界角时,折射角等于90°,由折射定律和光路可逆可得:sin90:sinC=n,C=arcsin(1/n)
实质就是光的折射!
光的波粒二象性。
全内反射(又称全反射)是指当光线从高折射率的介质入射到低折射率介质,且入射角大於或等于临界角的时候所发生的折射光线沿着界面方向射出或反射回高折射率的介质中去的现象,因为没有折射而都是反射,故称之为全反射或全内反射。
光导纤维就是利用了这一原理,由于反射时没有光线损失,因此信号可以传输到极远的距离。

全反射原理

全反射是一种光线在从密介质射入到稀介质中时,如果入射角度超过一定阈值,那么光线就会完全反射回原来的密介质中,而不会再继续进入稀介质中的现象。
全反射原理是基于光的折射率(即介质的光密度)及入射角度的,当入射角度越来越大时,光线会被反射,并且只有当入射角度达到一定值——也就是临界角时——全反射才会发生。这个临界角的大小取决于两个介质的折射率,一个折射率较大,一个折射率较小。
这个原理可以从光线在不同介质中传播的折射定律来解释。当光线从密介质(如水或玻璃)射入到稀介质(如空气)时,光线会发生折射,这是由于在不同的介质中光速不同引起的。折射光线与入射光线的夹角是由折射定律所决定的。
当入射角度越来越大时,折射角度也会逐渐增大,直到达到一定角度时,折射角等于90度,这时光线不会再穿透稀介质,而是被全部反射回原来的介质中,这就是全反射现象。
全反射理论的应用场景:
1、光纤通信:光纤通信依赖于光线在光纤内部的全反射。光线从一个玻璃束射入到光纤中,因为光线穿过玻璃束的入射角度很小,所以它不会从光纤中出来,在光纤内部反复反射,最终在另一端进入相同的玻璃束。
2、全反射镜:全反射镜是一种利用全反射制成的反光镜,能够把光线反射回原来的方向。这种全反射镜可以用于察看深水面上、地下隧道内和深海中的物体,或者将隧道内的光线引导到某个角落或位置。
3、激光技术:全反射可以用来控制激光束的反射路径。在激光技术中,通过将激光束从反射器中反射回来,形成光波在同一方向的一系列束,进行加工、镀膜和检测等工作。
4、人眼的视觉:全反射在人眼的视觉中也起着至关重要的作用,例如使水中的物体看起来更清晰、波纹看起来更波浪型等。

光的全反射的原理 求解释 求高手

光从光密介质射入光疏介质。当入射角
增大到某一角度,使折射角达到90°时,折射光完全消失,只剩下反射光,这种现象叫做全反射。
发生全反射的条件:(1)光从光密介质射入光疏介质;(2)入射角大于或等于临界角。
临界角:当光线从光密介质射向光疏介质时,入射角大于或等于某一角度c时,折射光线消失,发生了全反射现象。角度c就被称为临界角。当入射角等于临界角时,折射角等于90°,由折射定律和光路可逆可得:sin90:sinc=n,c=arcsin(1/n)
用麦克斯韦方程组可推导

全反射详细资料大全

全反射:又称全内反射,指光由光密介质(即光在此介质中的折射率大的)射到光疏介质(即光在此介质中折射率小的)的界面时,全部被反射回原介质内的现象。
基本介绍 中文名 :全反射 外文名 :total internal reflection 又称 :全内反射 条件 :入射角大于临界角 条件 :光密到光疏 简介,原理,套用,光导纤维(光纤),液晶背光,潜水镜,脚踏车尾灯,条件,全反射的证明, 简介 英文名称: total internal reflection(TIR) 光由光密介质进入光疏介质时,要离开法线折射,如图所示。当入射角θ增加到某种情形(图中e射线)时,折射线延表面进行,即折射角为90°,该入射角θ称为临界角。若入射角大于临界角,则无折射,全部光线均返回光密介质(如图f、g射线),此现象称为全反射。当光线由光疏介质射到光密介质时,因为光线靠近法线而折射,故这时不会发生全反射。 全反射 原理 从光密介质进入光疏介质时入射角增大到某临界角时,会产生全反射。 临界角公式为 (n2为图1中n',n1为图1中n)。 (C为临界角)当光射到两种介质界面,只产生反射而不产生折射的现象.当光由光密介质射向光疏介质时,折射角将大于入射角。当入射角增大到某一数值时,折射角将达到90°,这时在光疏介质中将不出现折射光线,只要入射角大于或等于上述数值时,均不再存在折射现象,这就是 全反射 .所以产生全反射的条件是:①光必须由光密介质射向光疏介质;②入射角必须大于或等于临界角(C)。 全反射 所谓光密介质和光疏介质是相对的。两物质相比,折射率较小的,光速在其中较快的,就为光疏介质;折射率较大的,光速在其中较慢的,就为光密介质。例如,水折射率大于空气,所以相对于空气而言,水就是光密介质;而玻璃的折射率比水大,所以相对于玻璃而言,水就是光疏介质。 临界角 是折射角为90度时对应的入射角(只有光线从光密介质进入光疏介质且入射角大于或等于临界角时,才会发生全反射。) 套用 光导纤维(光纤) 全反射的套用:光导纤维是全反射现象的重要套用。蜃景的出现,是光在空气中全反射形成的。 全反射是一种特殊的折射现象,当光线从一种介质1射向另一种介质2时,本来应该有一部分光进入介质2,称为折射光,另一部分光反射回介质1,称为反射光。但当介质1的折射率大于介质2的折射率,即光从光密介质射向光疏介质时,折射角是大于入射角的,所以当增大入射角,折射角也增大,但折射角先增大到90度,此时(入射角叫临界角)折射光消失,只剩下反射光,称为全反射现象。 光纤通信利用的就是全反射的道理。光纤在结构上有中心和外皮两种不同介质,光从中心传播时遇到光纤弯曲处,会发生全反射现象,而保证光线不会泄漏到光纤外。光在均匀透明的,即使是弯曲的玻璃棒的光滑内壁上,借助于接连不断地全反射,可以从一端传导到另一端,如图2a所示。当棒的截面直径很小,甚至到数微米数量级,传导的效果也不变,这种导光的细玻璃丝称为光学纤维。光在纤维中的传导有专门的波导理论来论述,但是也不妨用光的全反射来作一般的解释。 全反射 构想图2b所示为一根放大了的光学纤维的一段断面,它的内芯的折射率为 ,外皮层的折射率为 ,并且 > 。入射光线从折射率为 的媒质射到A点,进入玻璃芯后直射到芯与外皮层的分界面上。由于 > ,所以当在分界面上的入射角 大于 就产生全反射,也就是只要光线在A端的入射角不大于一固定值就能连续不断地产生全反射,从而由纤维的A端传导到另一端。人们通常称 为光学纤维的数值孔径。 如果玻璃纤维弯曲得很厉害,以致于某些光线在弯曲处在芯与外皮层的分界面上的入射角小于临界角,则相应的光线会透过分界面,由外皮层漏掉。不过,只要弯曲的曲率半径比纤维的截面半径大10倍以上,则所述的漏光并不严重。所以,一般弯曲的光学纤维,只要它的玻璃芯的透明度高、均匀,并且芯与外皮层之间的分界面光滑,就是一根好的光导管。数以万计的光学纤维构成的光学纤维束不仅能传导光能,也能将图像从一端传到另一端。仅限于传光能的纤维束称传光束,同时能传图像的纤维束称传像束,两者之不同处,就在于后者要求纤维束中的光学纤维在两端面上的位置需有严格的几何相似关系。 公式 光学纤维束已成为一种新的光学基本元件,在光通信、光学窥视及光学特殊照明等方面有很重要的套用;也是某些新型光学系统和某些特殊雷射器的组成部分。 ①传导光束。 ② 改变光的方向。在许多光学仪器和光学技术装置中,经常用光在棱镜中的全反射来改变光的进行方向(见反射元件)。 ③ 测量折射率。利用全反射构成测媒质折射率的折射计(见折射率测量)。 液晶背光 背光是电子工业中一种常用的照明形式,常被用于LCD显示器上。背光是从显示器的侧边或是背后提供照射,其光源可能是电光面板,发光二极体等。电光面板提供整个表面均匀的发光。与光纤的要求不同,在边缘型LED背光中,要求破坏发光管(Lighting Pipe)表面的全反射条件,使得光线可以从发光管中泄漏出来而产生照明的效果。其结构和表面形貌图如下。 边缘照亮LED背光 破坏表面的全反射条件 潜水镜 潜水镜是用来保护潜水者免于呛水、保护眼睛免受水的 *** 、看清水下物的防护镜。 脚踏车尾灯 它是由互成直角的一些小平面镜组成的,由于光的反射,会把车子、霓虹、路灯等光源发出光反射到司机,使司机能看到前面骑脚踏车的人,从而避免交通事故。 条件 ①光从光密介质射到它与光疏介质的界面上;②入射角大于或等于临界角。 全反射的证明 在用 Huygens 原理推导 Snell 定律时最重要的一点是: 在介质边界处波的相位连续. 之所以会发生全反射, 就是两个介质的折射率相差太大, 无论折射角如何变化, 都无法形成一个等相面. 可以从微观角度理解等相面要求的合理性: 固体中的电偶极子在外电磁场中振荡从而辐射出电磁波. 只有当原子辐射出的电磁波在某方向上等相位时, 这些电磁波才能干涉相长. 这就是折/反射光.如果辐射出的电磁波在任何方向都无法等相位, 这些电磁波就会干涉相消. 这个干涉相消就是全反射后出现的衰逝波. 这种干涉的图像就是路径积分的物理基础, 也是 Fermat 原理的一个很好诠释. 可以参考:光是如何知道哪条路线最快的,费马原理是不是违背常理呢?中许可和胡鞍钢的回答. 当然 Huygens 原理是电磁波的散射理论的一个近似结果, 其物理图像如上所说, 基本上是正确的. 但其数学上不严格. 有关 Huygens 原理的改进和修正请参考:惠更斯原理,波前每一点相当于新的波源,产生的子波会回传不会与原波不停减弱抵消,为什么不会?

光的全发射原理是什么东西?

光从光密媒质射到光疏媒质的界面时,全部被反射回原媒质的现象。光从光密媒质n向光疏媒质n′(即n>n′)折射时,折射角i′总大于入射角i;与i′=90°相对应的入射角ic称临界角,入射角大于临界角ic的光线不能进入分界面的另一侧而发生全反射(图1)。其他波(如声波、X 射线)也会发生全反射。