×

复数概念及公式总结,复数的定义及运算公式大全

admin admin 发表于2024-03-02 15:08:30 浏览21 评论0

抢沙发发表评论

本文目录一览:

复数的几何意义以及运算公式

  知识就是力量,在于平时不断的积累,想要了解复数的小伙伴赶紧来看看吧!下面由我为你精心准备了“复数的几何意义以及运算公式”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!
  复数的几何意义是什么
  1、复数的几何意义是:复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。
  2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
  3、当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
  4、复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
  复数的运算公式
  (1)加法运算
  设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
  (2)乘法运算
  设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
  其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
  (3)除法运算
  复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
  运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。
  拓展阅读:复数与向量的关系是什么
  向量是复数的一种表示方式,而且只能是二维向量,即平面向量。复数仅仅限制在二维平面上。复数和复平面上以原点为起点的向量一一对应。
  1、向量:在数学与物理中,既有大小又有方向的量叫做向量,亦称矢量,在数学中与之相对应的是数量,在物理中与之相对应的是标量。
  2、复数:被定义为二元有序实数对。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。

复数概念及公式总结

形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,它的平方等于-1,即i2=-1;实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。

复数的定义及运算公式大全

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。接下来分享有关虚数的定义及运算公式,供参考。

虚数的定义 我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数的运算公式 (1)加法运算
设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
(2)乘法运算
设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(3)除法运算
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。

复数的定义和四则运算公式

我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。接下来分享复数的定义和四则运算公式。

复数的定义 复数是形如a+bi的数。式中a,b为实数,i是一个满足i^2=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数常用形式z=a+bi叫做代数式。
复数的四则运算公式 (1)加法运算
设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。
(2)乘法运算
设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其实就是把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
(3)除法运算
复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。
运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。
复数的基本性质 (1)共轭复数所对应的点关于实轴对称。
(2)两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
(3)在复平面上,表示两个共轭复数的点关于X轴对称。

什么是复数?如何计算?

复数的四则运算公式是复数相加则相加,相减则减,相乘则乘,相除则除。
复数的介绍
我们把形如z=a+bi(a、b均为实数)的数称为复数。其中,a称为实部,b称为虚部,i称为虚数单位。当z的虚部b=0时,则z为实数,当z的虚部 b≠0时,实部a=0时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数运算法则有,加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数,指数,真数时,其运算规则可由欧拉公式e^iθ=cosθ+i sinθ弧度制推导而得。

复数概念

复数概念:形如z=a+bi(a,beR)的数为复数
1.全体复数所成的集合叫做复数集,用字母C表示复数集与其它数集之间的关系:NCZCQCRcC ;
2.其中a为复数的实部,记法:Rez=a;b称为复数的虚部,记法:Imz=b;
3.当b=0时,复数z为实数;当b≠0,a=0时,复数为纯虚数;当b≠0,a≠0时,称复数为虚数;
4.z=a+bi(a,b∈ R)称为复数的代数形式;
5.复数z1=a1 +b1i(a1,b1 ∈R),z,2=a2+b2i(a2,b2∈ R)相等的充要条件为a1=a2,b1=b2;
6.虚数不能比较大小;
复数的起源如下:
16世纪意大利米兰学者卡当在1545年发表的《重要的艺术》一书中,公布了三次方程的一般解法,被后人称之为“卡当公式”。
他是第一个把负数的平方根写到公式中的数学家,并且在讨论是否可能把10分成两部分使它们的乘积等于40时,他把答案写成=40,尽管他认为和这两个表示式是没有意义的、想象的、虚无飘渺的但他还是把10分成了两部分,并使它们的乘积等于40。
给出“虚数”这一名称的是法国数学家笛卡尔,他在《几何学》中使“虚的数”与“实的数”相对应,从此,虚数才流传开来

高三数学复数知识点

  高三数学复数知识点1   1.复数及其相关概念:
  (1)虚数单位i,它的平方等于-1,即i2=-1。
  (2)复数的代数形式:z=a+bi,(其中a,bR)
  ①实数当b=0时的复数a+bi,即a;
  ②虚数当b0时的复数a+
  ③纯虚数当a=0且b0时的复数a+bi,即bi。
  ④复数a+bi的实部与虚部a叫做复数的实部,b叫做虚部(注意a,b都是实数)
  ⑤复数集C全体复数的集合,一般用字母C表示。
  ⑥特别注意:a=0仅是复数a+bi为纯虚数的必要条件,若a=b=0,则a+bi=0是实数。
  2.复数的四则运算
  若两个复数z1=a1+b1i,z2=a2+b2i,
  (1)加法:z1+z2=(a1+a2)+(b1+b2)i;
  (2)减法:z1-z2=(a1-a2)+(b1-b2)i;
  (3)乘法:z1z2=(a1a2-b1b2)+(a1b2+a2
  (4)除法
  (5)四则运算的交换率、结合率;分配率都适合于复数的情况。
  注意:复数的加法、减法、乘法运算与实数的运算基本上没有区别,最主要的是在运算中将i2=-1结合到实际运算过程中去。
  如(a+bi)(a-bi)=a2+b2
  3.共轭复数:两个实部相等,虚部互为相反数的复数互为共轭复数
  4.复数的模
  根据两个复数相等的定义,设a,b,c,dR,两个复数a+bi和c+di相等规定为a+bi=c+dia=c且b=d,特别地a+bi=0a=b=0。
  两个复数不能比较大小,只能由定义判断它们相等或不相等。
  高三数学复数知识点2   复数的概念:
  形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。
  复数的表示:
  复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。
  复数的几何意义:
  (1)复平面、实轴、虚轴:
  点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数
  (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即
  这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。
  这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。
  复数的模:
  复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|=
  虚数单位i:
  (1)它的平方等于-1,即i2=-1;
  (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立
  (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。
  (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
  复数模的性质:
  复数与实数、虚数、纯虚数及0的关系:
  对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。
  两个复数相等的定义:
  如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等,即:如果a,b,c,d∈R,那么a+bi=c+di
  a=c,b=d。特殊地,a,b∈R时,a+bi=0
  a=0,b=0。
  复数相等的充要条件,提供了将复数问题化归为实数问题解决的途径。
  复数相等特别提醒:
  一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小,也只有当两个复数全是实数时才能比较大小。
  解复数相等问题的方法步骤:
  (1)把给的复数化成复数的标准形式;
  (2)根据复数相等的充要条件解之。
  学好初中数学的方法
  1、重视课本的内容
  书本知识是初中生学习数学最根本的一部分了,初中生一定要重视书本上的知识点,不管是概念还是公式以及书本上的练习题,初中生一定要熟练掌握。初中生要想更熟练的掌握书本的知识点,可以将数学课本的每一章节,从头到尾的仔细阅读,这样可以增加自己对容易忽略的知识点的了解。有很多学生常常会忽略课本的习题,虽然课本的习题很简单,但是考察的知识点却特别有针对性,所以一定要引起学生的重视。
  2、通过联系对比进行辨析
  在数学知识中有不少是由同一基本概念和方法引申出来的种属及其他相关知识,或看来相同,实质不同的知识,学习这类知识的主要方法,是用找联系、抓对比进行辨析。如直线、射线、线段这些概念,它们既有联系又有区别。
  3、多做练习题
  要想学好初中数学,必须多做练习,我们所说的“多做练习”,不是搞“题海战术”。只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广等等。
  4、课后总结和反思
  在进行单元小结或学期总结时,要做到以下几点:一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
  数学加法心算技巧
  1、分裂再凑整数加法;
  比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
  2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
  3、变整数再减去
  比如,26+18=44,把“18”变成“20-2”,那么就是26+20-2=44;
  4、比如;387+983=1370,把“983”变成“1000-17”,那么就是387+1000-17=1370;
  5、错位数相加
  比如,个位加十位得数是个位的;
  51+15=66;这样算:5+1得6;1+5得6;两6合拼
  72+27=99;这样算:7+2得9;2+7得9;两9合拼
  63+36=99;这样算:6+3得9;3+6得9;两9合拼
  52+25=77;这样算:5+2得7;2+5得7;两7合拼
  6、比如,个位加十位得数是十位的;
  78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”;
  67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”;
  高三数学复数知识点3   定义
  数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围。形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b是任意实数)我们将复数z=a+bi中的实数a称为复数z的实部(real part)记作Rez=a 实数b称为复数z的`虚部(imaginary part)记作 Imz=b。已知:当b=0时,z=a,这时复数成为实数 当a=0且b0时,z=bi,我们就将其称为纯虚数。
  运算法则
  加法法则
  复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
  即 (a+bi)+(c+di)=(a+c)+(b+d)i。
  乘法法则
  复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i^2 = 1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
  即(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
  除法法则
  复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,yR)叫复数a+bi除以复数c+di的商运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,
  即 (a+bi)/(c+di)
  =[(a+bi)(c-di)]/[(c+di)(c-di)]
  =[(ac+bd)+(bc-ad)i]/(c^2+d^2)。
  开方法则
  若z^n=r(cos+isin),则
  z=nr[cos(2k)/n+isin(2k)/n](k=0,1,2,3n-1)
  高三数学复数知识点5   1、知识网络图
  2、复数中的难点
  (1)复数的向量表示法的运算。对于复数的向量表示有些学生掌握得不好,对向量的运算的几何意义的灵活掌握有一定的困难。对此应认真体会复数向量运算的几何意义,对其灵活地加以证明。
  (2)复数三角形式的乘方和开方。有部分学生对运算法则知道,但对其灵活地运用有一定的困难,特别是开方运算,应对此认真地加以训练。
  (3)复数的辐角主值的求法。
  (4)利用复数的几何意义灵活地解决问题。复数可以用向量表示,同时复数的模和辐角都具有几何意义,对他们的理解和应用有一定难度,应认真加以体会。
  3、复数中的重点
  (1)理解好复数的概念,弄清实数、虚数、纯虚数的不同点。
  (2)熟练掌握复数三种表示法,以及它们间的互化,并能准确地求出复数的模和辐角。复数有代数,向量和三角三种表示法。特别是代数形式和三角形式的互化,以及求复数的模和辐角在解决具体问题时经常用到,是一个重点内容。
  (3)复数的三种表示法的各种运算,在运算中重视共轭复数以及模的有关性质。复数的运算是复数中的主要内容,掌握复数各种形式的运算,特别是复数运算的几何意义更是重点内容。
  (4)复数集中一元二次方程和二项方程的解法。

复数的概念与运算?

一、复数的概念:把形如z=a+bi(a,b均为实数)的数称为复数,a称为实数的实部,b称为实数的虚部,i称为实数的虚数单位。
二、复数的运算:
1、加法法则:
设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。
2、乘法法则:
把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。
3、除法法则:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,
三、复数的性质:
1、共轭复数所对应的点关于实轴对称。
2、两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
3、在复平面上,表示两个共轭复数的点关于X轴对称,
扩展资料我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
①当虚部等于零时,复数可以视为实数;
②当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
参考资料:百度百科-复数
我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
扩展资料最早有关复数方根的文献出于公元1世纪希腊数学家海伦,他考虑的是平顶金字塔不可能问题。
16世纪意大利米兰学者卡尔达诺(Jerome Cardan,1501—1576)在1545年发表的《重要的艺术》一书中,
公布了一元三次方程的一般解法,被后人称之为“卡当公式”。
数系中发现一颗新星——虚数,于是引起了数学界的一片困惑,很多大数学家都不承认虚数。德国数学家莱布尼茨(1646—1716)在1702年说:“虚数是神灵遁迹的精微而奇异的隐避所,它大概是存在和虚妄两界中的两栖物”。然而,真理性的东西一定可以经得住时间和空间的考验,最终占有自己的一席之地。
参考资料:百度百科——复数运算法则 百度百科——复数
复数是形如 a + b i的数。式中a,b 为 实数,i是一个满足i^2 =-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。
复数有多种表示形式,常用形式 z = a + b i叫做代数式。此外有下列形式。
①几何形式。复数 z = a + b i 用直角坐标平面上点 Z ( a , b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式。复数 z = a + b i用一个以原点 O 为起点,点 Z ( a , b )为终点的向量 O Z 表示。这种形式使复数的加、减法运算得到恰当的几何解释。
③三角形式。复数 z= a + b i化为三角形式
z =| z |(cos θ +isin θ ) 式中| z |= ,叫做复数的模(或绝对值); θ 是以 x 轴为始边;向量 O Z 为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。
④指数形式。将复数的三角形式 z =| z |(cos θ +isin θ )中的cos θ +isin θ 换为 e i q ,复数就表为指数形式
z =| z | e i q , 复数的乘、除、乘方、开方可以按照幂的运算法则进行。
复数集不同于实数集的几个特点是:开方运算永远可行;一元 n 次复系数方程总有 n 个根(重根按重数计);复数不能建立大小顺序。
一、复数的概念:把形如z=a+bi(a,b均为实数)的数称为复数,a称为实数的实部,b称为实数的虚部,i称为实数的虚数单位。二、复数的运算:1、加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。2、乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。3、除法法则:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,三、复数的性质:1、共轭复数所对应的点关于实轴对称。2、两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。3、在复平面上,表示两个共轭复数的点关于x轴对称,
我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
复数是形如 a + b i的数。式中a,b 为 实数,i是一个满足i^2 =-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。
在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。由上可知,复数集包含了实数集,因而是实数集的扩张。复数有多种表示形式,常用形式 z = a + b i叫做代数式。此外有下列形式。
①几何形式。复数 z = a + b i 用直角坐标平面上点 Z ( a , b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。
②向量形式。复数 z = a + b i用一个以原点 O 为起点,点 Z ( a , b )为终点的向量 O Z 表示。这种形式使复数的加、减法运算得到恰当的几何解释。
③三角形式。复数 z= a + b i化为三角形式
z =| z |(cos θ +isin θ ) 式中| z |= ,叫做复数的模(或绝对值); θ 是以 x 轴为始边;向量 O Z 为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。
④指数形式。将复数的三角形式 z =| z |(cos θ +isin θ )中的cos θ +isin θ 换为 e i q ,复数就表为指数形式
z =| z | e i q , 复数的乘、除、乘方、开方可以按照幂的运算法则进行。
复数集不同于实数集的几个特点是:开方运算永远可行;一元 n 次复系数方程总有 n 个根(重根按重数计);复数不能建立大小顺序。
扩展资料:
根据定义,若 (a,b∈R),则 =a-bi(a,b∈R)。共轭复数所对应的点关于实轴对称。两个复数:x+yi与x-yi称为共轭复数,它们的实部相等,虚部互为相反数。
在复平面上,表示两个共轭复数的点关于X轴对称,而这一点正是"共轭"一词的来源----两头牛平行地拉一部犁,它们的肩膀上要共架一个横梁,这横梁就叫做"轭"。如果用z表示x+yi,那么在z字上面加个"一"就表示x-yi,或相反。
1 加法法则
复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。两个复数的和依然是复数。

2 乘法法则
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2= -1,把实部与虚部分别合并。两个复数的积仍然是一个复数。

3 除法法则
复数除法定义:满足 的复数 叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算,

4 开方法则
若zn=r(cosθ+isinθ),则 (k=0,1,2,3…n-1)
我们把数学分析中基本的实变初等函数推广到复变初等函数,使得定义的各种复变初等函数,当z变为实变数x(y=0)时与相应的实变初等函数相同。
注意根据这些定义,在z为任意复变数时,
①.哪些相应的实变初等函数的性质被保留下来
②.哪些相应的实变初等函数的性质不再成立
③.出现了哪些相应的实变初等函数所没有的新的性质。
复数运算法则有:加减法、乘除法。两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。复数的加法满足交换律和结合律。此外,复数作为幂和对数的底数、指数、真数时,其运算规则可由欧拉公式e^iθ=cos θ+i sin θ(弧度制)推导而得。
加法法则
复数的加法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,
即对任意复数z1,z2,z3,有: z1+z2=z2+z1;(z1+z2)+z3=z1+(z2+z3)。
减法法则
复数的减法按照以下规定的法则进行:设z1=a+bi,z2=c+di是任意两个复数,
则它们的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
两个复数的差依然是复数,它的实部是原来两个复数实部的差,它的虚部是原来两个虚部的差。
参考资料:百度百科-复数

复数的公式

复数的公式如下:
一、公式解答
加法交换律:z1+z2=z2+z1乘法交换律:z1×z2=z2×z1加法结合律:(z1+z2)+z3=z1+(z2+z3)乘法结合律:(z1×z2)×z3=z1×(z2×z3)分配律:z1×(z2+z3)=z1×z2+z1×z3。
二、定义
形如a+bi(a、b均为实数)的数为复数,其中,a被称为实部,b被称为虚部,i为虚数单位。复数通常用z表示,即z=a+bi,当z的虚部b=0时,则z为实数;当z的虚部b≠0时,实部a=0时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。复数是由意大利米兰学者卡当在16世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
三、拓展资料
数集拓展到实数范围内,仍有些运算无法进行(对负数开偶数次方),为了使方程有解,我们将数集再次扩充。在实数域上定义二元有序对z=(a,b),并规定有序对之间有运算“+”、“×”(记z1=(a,b),z2=(c,d))。z1+z2=(a+c,b+d),z1×z2=(ac-bd,bc+ad)。
容易验证,这样定义的有序对全体在有序对的加法和乘法下成一个域,并对任何复数z,我们有:z=(a,b)=(a,0)+(0,1)×(b,0)。
令f是从实数域到复数域的映射,f(a)=(a,0),这个映射保持了实数域上的加法和乘法,因此实数域可以嵌入复数域中,可以视为复数域的子域。记i=(0,1),则根据我们定义的运算,(a,b)=(a,0)+(0,1)×(b,0)=a+bi,i×i=(0,1)×(0,1)=(-1,0)=-1,这就只通过实数解决了虚数单位i的存在问题。