本文目录一览:
- 1、高等数学,傅里叶收敛定理的内容是什么?
- 2、傅里叶级数的收敛定理是什么?
- 3、高数,傅里叶级数收敛定理有说:傅里叶级数收敛于12[f(x-0)+f(x+0)]
- 4、傅里叶级数的收敛性证明
- 5、傅里叶级数狄利克雷收敛定理
- 6、级数知识点小结3-傅里叶级数
- 7、高等数学傅里叶级数,求解答,求分析,谢谢!
- 8、高等数学 无穷级数 (2)为什么x=(2k+1)pi处不连续?
高等数学,傅里叶收敛定理的内容是什么?
根据是【收敛定理】 也称【狄里克雷收敛定理】 定理结论是【在f(x)的连续点x处,级数收敛到f(x); 在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2, 即f(x)在间断点处的左右极限的平均值
推荐于 2017-12-09
查看全部2个回答
高中方程例题_提高2020高考热点_抓住高考"考点"
值得一看的高中相关信息推荐
高中方程例题提高_ 选清北学霸讲解,紧扣考点,一句点拨胜过做题一百,高中方程例题效率快高中方程例题提高 没课都有相似题,每题都有提分点
study.ewhbx.com广告?
高中三角函数练习题-高中九科全套重难点知识汇总资料下载
高中三角函数练习题,内容涵盖语文/数学/英语/政治/历史/地理/物理/化学/生物各门学科;各类知识点/试卷/习题/视频应有尽有,作文,听力,阅读专项突破
umeng100.com广告?
— 你看完啦,以下内容更有趣 —
高中数学函数题,提高高中生成绩的方法
高中数学函数题,从高一到高三初期,我儿子就一直特别努力,可是成绩就是没提高,高中数学函数题,试过了这个方法,他的成绩真的提高了
广告2020-09-18
傅里叶级数收敛定理在第一类间断点有说:傅里叶级数收敛于1/2[f(x-0)+f(x+0)] ,为什么?
这个属于狄利克雷条件 如果不是数学专业的,是不要求证的,考试也不会涉及到你,只需要背下来,结论就可以了 因为这个证明是涉及到非常多东西的证明定理所需要的篇幅非常大,如果感兴趣的话,可以自己在网上搜索狄利克雷条件的证明 所以说,不需要知道为什么,只需要记住结论就可以了
1,912浏览2019-04-18
高等数学,傅里叶收敛定理的内容是什么?
定理(收敛定理,狄利克雷(Dirichlet)充分条件)设f(x)是周期为2π的周期函数,如果它满足: ①在一个周期内连续或只有有限个第一类间断点; ②在一个周期内至多只有有限个极值点; 那么f(x)的傅里叶级数收敛,并且 当x是f(x)的连续点时,级数收敛于f(x); 当x是f(x)的第一类间断点时,级数收敛于(1/2)*[f(x-)+f(x+)]; 收敛定理告诉我们:只要函数在[-π,π]上至多有有限个第一类间断点,并且不作无限次振动,函数的傅里叶级数在连续点处就收敛于该点的函数值,在间断点处收敛于该点的左极限与右极限的算术平均值。 可见,函数展开成傅里叶级数的条件比展开成幂级数的条件低得多。
56赞·2,665浏览2019-06-07
高数。。 如果一个函数满足了收敛定理,可以展开成傅里叶级数,那这个傅里叶级数是不是原函数的和函数?
和函数?没这个说法哈,傅里叶级数是对周其函数的扩展
1赞·784浏览
f(x)的傅里叶级数的和函数为什么可以写成f(x)?如题,红笔划线处?
根据是【收敛定理】 也称【狄里克雷收敛定理】 定理结论是【在f(x)的连续点x处,级数收敛到f(x); 在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2, 即f(x)在间断点处的左右极限的平均值。 只要按照定理结论【在f(x)的连续点x处,级数收敛到f(x);在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2】就是正确的。 【函数】是一个概念;【级数】是另一个概念。 现在有一个【函数】f(x),在一定条件下用一定的方法可以得到对应于这个函数的一个傅立叶【级数】。作为一个级数,它有是否收敛的问题,有收敛于谁、即和函数是谁的问题。狄里克雷收敛定理回答了这个问题。
1赞·455浏览2019-09-27
傅里叶级数有关狄利克雷收敛定理的问题
第一个问题,bn可以从零开始,但是b1等于零。 第二个问题,你把函数周期延拓一下,画图看下。你就发现一个周期的终点也对应另一个周期的起点。如果是x-0,x+0,不就等于在周期中间取值吗?那就不是中点了。
3赞·1,015浏览2019-10-25
双鸭山 高中数学函数,在家上辅导,成绩提升没烦恼
值得一看的高中数学相关信息推荐
掌门1对1高中数学函数,5层筛选全国优秀教师,紧扣各地教材,中小学全科在线辅导,1对1制定个性化教程,免费测评课,准确判断您孩子的学习水平
上海掌小门教育科技..广告?
高中函数知识点总结_高中高考提分经验分享
jy13.qianlin7.cn广告?
真心喜欢一个女生是什么感觉?
1、总是忍不住想找ta聊天,抱着手机偷偷傻笑。你或许是一个不太爱说话的人,可是自从遇见了他,你开始想
138条回答·3,180人在看
生姜洗发水哪个牌子好?
我属于头发细软,容易出油,而且换季的时候会出现掉发的情况,朋友向我推荐过许多洗发水,其中露华浓生姜洗
27条回答·8,423人在看
“数学王子”高斯:他的成果如果全部发表,能让数学进步100年
李宗盛有一句话我非常赞同:任何一个领域站在顶峰的,靠的都是天赋,你不需要找,他就站在那里,闪闪发光。“数学王子”高斯就是这样的一个人。数学界有这样一句话叫,这个世界上数学界分为两类:其他数学家与高斯。
48,031人在看·107赞
东南大学怎么样?
东南大学不是三本,而是国家重点大学,985、211的高校。之所以江苏三百多分那是因为总分值不一样,接
570条回答·165,711人在看
宇宙尺度下的波函数;动物同性性行为或有进化益处|一周科技速览
目 录 1. 宇宙尺度下的波函数 2. 美国人信任科学家胜过法官和议员 3. 喝到一起的人更容易过到一起? 4. “消失”30年的中子星找到了! 5. 动物同性性行为或有进化益处? 6.
10,323人在看·60赞
保时捷718为什么便宜?有什么缺点么?
保时捷718要比其他同系品牌的车便宜一点。因为保时捷718推出时所用的时间比较短,制作技术并没有多么
21条回答·22,090人在看
困扰数学界300年的五次方程难题,被仅21岁的伽罗瓦成功解决
从我们上小学开始,我们就已经接触方程,什么是方程呢?方程是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,如x+9=7,这个就属于方程,方程这个词来源于中国清代
6,045人在看·47赞
该不该为了孩子复婚?
北京家理律师
TA获得超过3791个认可
关注
20,453播放
成龙电影《十二生肖》评价如何?
一部“如果始终热爱成龙的粉丝,可以去瞅瞅”的电影。据说是成龙的第101部电影,但是却没有创造票房与口
11条回答·568人在看
怎么评价星爷开拍功夫2?
说到《功夫》,大家都是知道的,这是周星驰早期的作品,也是一部经典之作,而在近期,周星驰接下《功夫2》
19条回答·1,252人在看
正在加载
评论
定理(收敛定理,狄利克雷(Dirichlet)充分条件)设f(x)是周期为2π的周期函数,如果它满足:
①在一个周期内连续或只有有限个第一类间断点;
②在一个周期内至多只有有限个极值点;
那么f(x)的傅里叶级数收敛,并且
当x是f(x)的连续点时,级数收敛于f(x);
当x是f(x)的第一类间断点时,级数收敛于(1/2)*[f(x-)+f(x+)];
收敛定理告诉我们:只要函数在[-π,π]上至多有有限个第一类间断点,并且不作无限次振动,函数的傅里叶级数在连续点处就收敛于该点的函数值,在间断点处收敛于该点的左极限与右极限的算术平均值。
可见,函数展开成傅里叶级数的条件比展开成幂级数的条件低得多。
根据是收敛定理,也称狄里克雷收敛定理;定理结论是:在f(x)的连续点x处,级数收敛到f(x); 在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2, 即f(x)在间断点处的左右极限的平均值;
定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|
1、全局收敛
对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。
2、局部收敛
若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。
傅里叶级数的收敛定理是什么?
f(x)=e^x求傅里叶级数
法国数学家傅里叶发现,任何周期函数都可以用正弦函数和余弦函数构成的无穷级数来表示(选择正弦函数与余弦函数作为基函数是因为它们是正交的),后世称傅里叶级数为一种特殊的三角级数,根据欧拉公式,三角函数又能化成指数形式,也称傅立叶级数为一种指数级数。
收敛性
傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:
在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值。
在任何有限区间上,x(t)只能有有限个第一类间断点。
吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。
高数,傅里叶级数收敛定理有说:傅里叶级数收敛于12[f(x-0)+f(x+0)]
根据是【收敛定理】 也称【狄里克雷收敛定理】 定理结论是【在f(x)的连续点x处,级数收敛到f(x); 在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2, 即f(x)在间断点处的左右极限的平均值
x-0,是x从负半轴趋向于0
x+0,是x从正半轴趋向于0
x=±π+2kπ(k=0,±1,±2,...) ,是无穷多个间断点,是指±π、±3π、±5π等等
代入要看你那个是什么类型的间断点,第一类还是第二类间断点
肯定是一个端点啊,你书上那个我没见过,不合逻辑啊,一个趋向π,一个趋向-π,加起来没意义啊应该是1/2[f(π+)+f(π-)]把
x-0,是x从负半轴趋向于0。
x+0,是x从正半轴趋向于0。
x=±π+2kπ(k=0,±1,±2,...) ,是无穷多个间断点,是指±π、±3π、±5π等等。
根据是【收敛定理】 也称【狄里克雷收敛定理】 定理结论是【在f(x)的连续点x处,级数收敛到f(x); 在f(x)的间断点x处,级数收敛到(f(x+0)+f(x-0))/2, 即f(x)在间断点处的左右极限的平均值。
收敛性
傅里叶级数的收敛性:满足狄利赫里条件的周期函数表示成的傅里叶级数都收敛。狄利赫里条件如下:
在任何周期内,x(t)须绝对可积;在任一有限区间中,x(t)只能取有限个最大值或最小值;
在任何有限区间上,x(t)只能有有限个第一类间断点。
吉布斯现象:在x(t)的不可导点上,如果我们只取(1)式右边的无穷级数中的有限项作和x(t),那么x(t)在这些点上会有起伏。一个简单的例子是方波信号。
傅里叶级数的收敛性证明
第一步:计算傅里叶系数
根据周期函数的定积分性质,由以下公式计算函数f(x)在任意区间长度为2π的区间上的定积分.一般取为直接定义函数的一个周期区间。常取为[-π, π],即
第二步:以傅里叶系数为系数,写出三角级数
第三步:基于狄利克雷收敛定理判定傅里叶级数的收敛性
狄利克雷收敛定理:如果周期为2π的周期函数f(x)在一个周期上分段连续,并且在一个周期上只有有限个极值点和有限个第一类间断点,则函数f(x)的傅立叶级数收敛,并且有
期函数f(x)在一个周期上分段连续,并且在一个周期上只有有限个极值点和有限个第一类间断点,则函数f(x)的傅立叶级数收敛,并且有
其中f(x+0)和f(x-0)分别为函数f(x)在点x处的右极限与左极限.即在连续点处傅里叶级数收敛于函数本身S(x)=f(x);在间断点处收敛于该点左、右极限的算术平均值.
第四步:函数展开成傅里叶级数
依据定理得到和函数等于被展开函数f(x)的集合I,最终写出附带集合I的等式
注意点:
傅立叶级数的部分和有很好的整体逼近性质,幂级数的局部逼近性质比较好.幂级数展开需要函数有很好的“光滑性”,傅里叶级数对“光滑性”的要求较低。
如果函数为奇函数,则函数的傅里叶级数仅仅包含正弦项,则这样傅里叶级数称之为正弦级数,此时只需要计算傅里叶级数的系数bn(1,2,…);如果函数为偶函数,则函数的傅里叶级数仅仅包含余弦项和常数项,则这样傅里叶级数称之为余弦级数,此时只需要计算傅里叶级数系数an(0,1,2,…)。
以上资料参考百度百科-傅里叶级数
傅里叶级数狄利克雷收敛定理
在数学分析中,狄利克雷定理(或若尔当—狄利克雷定理,狄利克雷条件)是关于傅里叶级数逐点收敛的一个结果。这个定理的最初版本是由德国科学家狄利克雷在公元1829年证明的。由于当时还没有出现适合的积分理论,狄利克雷的证明只能适用于足够规则的函数(除了在有限点以外都单调的函数)。 扩展资料 在数论中,狄利克雷定理说明对于任意互质的`正整数a,d,有无限多个质数的形式如a+nd,其中n为正整数,即在等差数列a+d,a+2d,a+3d,...中有无限多个质数——有无限个质数模d同余a。
级数知识点小结3-傅里叶级数
概念 :形如 的级数,其中 都是常数,称为三角级数。
三角函数系的正交性 :三角函数系 中任意不同的两个函数的乘积在区间 上的积分等于零。
概念 :如果 是周期为 的周期函数,且能展开成上述三角级数,当 积分都存在,这时它们定出的系数 叫做函数 的傅里叶系数,带入所得的三角级数叫做函数 的傅里叶级数。
收敛定理,狄利克雷充分条件 :设 是周期为 的周期函数,如果它满足:
那么 的傅里叶级数收敛,并且当 是 的连续点时,级数收敛于 ;当 是 的间断点时,级数收敛于 。
周期延拓 :把一个定义域为有限区间的函数拓展为周期函数,按这种方式拓广函数的定义域的过程称为周期延拓。
正弦级数 :奇函数的傅里叶级数是只含有正弦项的正弦级数。 余弦级数 :偶函数的傅里叶级数是只含有余弦项的余弦级数。
奇(偶)延拓 :设函数 定义在区间 上并且满足收敛定理的条件,我们在开区间 内补充函数 的定义,得到定义在 上的函数 ,使它在 上成为奇(偶)函数。按这种方式拓广函数定义域的过程称为奇(偶)延拓。
对周期为 的周期函数做变量代换 得到以下定理:
定理 :设周期为 的周期函数 满足收敛定理的条件,则它的傅里叶级数展开式为 其中
高等数学傅里叶级数,求解答,求分析,谢谢!
1、 高等数学傅里叶级数解答见上图。2、这道 高等数学傅里叶级数,用的是狄里克莱收敛定理。3、在端点出, 傅里叶级数收敛于(左端点的右极限+右端点的左极限)/2。具体的 高等数学傅里叶级数,解答分析求的过程见上。
高等数学 无穷级数 (2)为什么x=(2k+1)pi处不连续?
按照收敛定理,函数f(x)在区间两个端点处函数值不等,作周期延拓时就会出现间断点。你发的图片我看不到f(x)的定义,所以无法说得太清楚。我只能说,是否连续,取决于函数在一个周期内的连续性及两个端点处的函数值是否相等。
傅里叶级数收敛定理,说明:
在间断点处不连续。它是以2π为周期的函数,只要找到一个间断点,
比如x=π
然后全部加上2kπ,即
x=2kπ+π处不连续。