本文目录一览:
- 1、物理实验声速的测量求助
- 2、示波器与声速测量实验报告
- 3、超声波声速的测定实验结果
- 4、声速测量实验报告
- 5、大学物理实验示波器的实验报告?
- 6、声速的测量实验报告
- 7、测量声速的实验报告
- 8、声速的测定实验报告思考题答案
- 9、空气中声速的测定
物理实验声速的测量求助
物理实验声速的测量求助
实验报告
声速的测量
【
实验目的】
1.
学会用共振干涉法、相位比较法以及时差法测量介质中的声速
2.
学会用逐差法进行数据处理;
3.
了解声速与介质参数的关系。
【
实验原理
】
由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行
声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常
见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制
成的换能器
(
探头
)
,这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:
v
f
?
?
?
(1)
由
(1)
式可知,测得声
波的频率和波长,就可以得到声速。同样,传播速度亦可用
/
v
L
t
?
(2)
表
示,若测得声波传播所经过的距离
L
和传播时间
t
,也可获得声速。
示波器与声速测量实验报告
示波器与声速测量实验报告
实验是科学研究的重要组成部分,对于专业学科而言更是必不可少的教学环节。本次实验我们使用了示波器和测量声速的方法,旨在通过实验的方式加深对物理学基本理论的理解和应用。本文将介绍实验步骤、实验结果和分析,以及对实验的总结和开展下一步研究的建议。
实验步骤
实验前我们需要准备实验材料和仪器,包括示波器、信号发生器、电路板以及电路线等。在实验时,我们首先根据实验要求,将需要测量的电路按照图纸连接,并与示波器和信号发生器相连。然后,我们使用信号发生器产生相应频率的信号,通过电路板中的电阻电容等元件,将信号通过电路板传输到示波器上。接着,我们对示波器进行调节,使其满足我们实验的测量要求。最后,我们根据实验结果进行记录和分析,得到需要的实验数据。
实验结果和分析
我们测量的第一个实验是使用示波器进行电路测量。在实验中,我们通过示波器观察到了实验电路的波形变化,并记录下了数据。通过数据的分析与计算,我们得到了该电路的相关参数,如电路频率、电压、电流等。这些参数可以进一步用于分析电路的特性和性能。
我们测量的第二个实验是测量声速。在实验中,我们需要将两个或多个测距器间隔一定距离并以一定时间间隔发声,从而测量声音在空气中的速度。我们通过对时间、声波频率以及距离的测量和计算,得到了声音在空气中的速度。这个实验的结果具有很大的实际意义,在需要对声速进行测量和分析的领域有着广泛的应用。
实验总结和建议
本次实验中,我们主要使用示波器和测量声速的方法进行实验。实验的过程相对简单,但需要熟练掌握各种仪器的使用方法和实验原理。通过实验,我们增强了对物理学基本理论的理解和应用,同时也提高了实验技能。
对于以后的实验,我们建议在实验的过程中更加注重数据的准确性和实验结果的分析,从而更好的理解实验原理与实际应用的联系。同时,在实验的过程中可以尝试使用更加先进的仪器和方法,以帮助我们更深入的研究物理学的领域。
总之,本次实验成果丰硕,为我们今后的研究和学习提供了很大的帮助。
超声波声速的测定实验结果
超声波声速的测定实验结果是发声距离93m。
实验原理:
1、声波的传播速度v与声波频率和波长之间的关系为。所以只要测出声波的频率和波长,就可以求出声速。
2、其中声波频率可由产生声波的电信号发生器的振荡频率读出,波长则可用共振法和相位比较法进行测量。时差法可通过测量某一定间隔距离声音传播的时间来测量声波的传播速度。
3、本实验采用压电陶瓷换能器来实现声压和电压之间的转换。它主要由压电陶瓷环片、轻金属铅(做成喇叭形状,增加辐射面积)和重金属(如铁)组成。
4、压电陶瓷片由多晶体结构的压电材料锆钛酸铅制成。在压电陶瓷片的两个底面加上正弦交变电压,它就会按正弦规律发生纵向伸缩,从而发出超声波。
实验内容:
1、将测试方法设置到连续方式,按下CH1开关,调节示波器,能清楚地观察到同步的正弦波信号。
2、调节专用信号源上的“发射强度”旋钮,使其输出电压在20VP-P左右,然后将换能器测试仪接线盒上的接收端接至示波器,将两声能转换探头靠近,按下CH2开关,调整信号频率,观察接收波的电压幅度变化,在某一频率点处电压幅度最大,此频率即是压电换能器S1、S2相匹配的频率点。
3、改变S1、S2的距离,使示波器的正弦波振幅最大,再次调节正弦信号频率,直至示波器显示的正弦波振幅达到最大值。记录此频率f。
声速测量实验报告
一、实验目的
熟悉水准仪的基本构造,初步掌握水准仪的使用方法。
二、实验内容
1、熟悉DS3型水准仪的基本构造,了解其主要部件的名称、作用和使用方法。 2、练习水准仪的安置、瞄准、精*和读数。 3、测量地面上两点间的高差。
三、仪器和工具
DS3型水准仪1台,水准尺2根,自备计算器、铅笔、小刀、记录板。
四、方法和步骤
1、安置仪器
将三脚架张开,使其高度适当,架头大致水*,并将脚尖踩入土中。再开箱取出仪器,将其固连在三脚架上。
2、认识仪器
指出仪器各部件的名称,了解其作用并熟悉其使用方法,同时弄清水准尺的分划与注记,掌握读尺方法。
3、粗略整*
粗略整*就是旋转脚螺旋使圆水准器气泡居中,从而使仪器大致水*。先用双手同时向内(或向外)转动一对脚旋钮,使圆水准器气泡移动到中间,再转动另一只脚旋钮使圆气泡居中,通常需反复进行。注意气泡移动的方向与左手拇指或右手食指运动的方向一致。
4、瞄准水准尺、精*与读数
(1)瞄准
转动目镜调焦螺旋进行对光,使十字丝分划清晰;然后竖立水准尺于某地面点上,松开水准仪制动螺旋,转动望远镜,用准星和照门粗略瞄准水准尺,旋紧制动螺旋;转动物镜调焦螺旋,使看清水准尺影像;再转动水*微动螺旋,使十字丝纵丝靠近水准尺一侧;若存在视差,则应仔细进行目镜调焦和物镜调焦予以消除。
(2)精*
转动微倾螺旋使符合水准器气泡两端的影像吻合成一圆弧抛物线形状,使视线在照准方向精确水*。
(3)读数
用中丝在水准尺上读取4位读数,即m,dm,cm及mm位。读数时应先估出mm数,然后按m,dm,cm及mm,一次读出4位数。
5、测定地面两点间的高差。
(1)在地面选定A、B两个较坚固的点作后视点和前视点,分别立尺。
(2)在A、B两点之间安置水准仪,使仪器至A、B两点的距离大致相等。
(3)每人独立安置仪器、粗*、照准后视点A点上的水准尺,精*后读数,此为后视读数,并记入附表中测点A一行的后视读数栏下;再照准前视点B点上的水准尺,精*后读取前视读数,并记入附表中测点B一行的前视读数栏下。
(4)计算A、B两点的高差hAB=后视读数-前视读数
(5)改变仪器高度,由同一小组其他成员再测,所测高差之差不应超过±6mm。
五、注意事项
1、水准尺应专人扶持,保持竖直,尺面正对。
2、中心连接螺旋不宜拧得太紧,以防破损。水准仪上各部位螺旋操作时用力不得过猛。 3、读数时要注意消除视差。要以十字丝的横丝读数,不要误用上、下丝。读数时应看清尺上的上下两个分米(dm)注记,从小到大进行。
4、读数前水准管气泡要严格居中,读数完毕检查确认气泡仍居中,读数方可记录。
声速的测量实验报告3篇(扩展2)
——密度的测量实验报告3篇
大学物理实验示波器的实验报告?
实验报告实验题目:
实验目的:了解超声波的产生,发射和接收的方法,用干涉法和相位法测声速.实验内容1
测量实验开始时室温.2
驻波法(1)
将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)将函数信号发生器接超声声速测定仪的发射端,示波器接接收端.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)通过示波器观察讯号幅度,调整移动尺改变测定仪两端的距离找到使讯号极大的位置,在极大值附近应该使用微调,即固定移动尺螺丝,使用微调螺母调整.(4)从该极大位置开始,朝一个方向移动移动尺,依次记下每次讯号幅度极大(波腹)时游标的读数,共12个值.3
相位法(1)
将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)
将函数信号发生器接超声声速测定仪的发射端,的CH1接在接收端,CH2接在发射端.选择CH1,CH2的X-Y叠加.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)
通过观察李萨如图形,调整移动尺改变测定仪两端的距离找到使图形为一条斜率为正的直线的位置.(4)从该位置开始,朝一个方向移动移动尺,依次记下每次图形是斜率为正的直线时游标的读数,共10个值.4
测量实验结束时室温,与开始时室温取平均值作为温度t.收拾仪器,整理实验台.5
对上面两组数据,分别用逐差计算出l,然后算出声速v,并计算不确定度.与通过t计算出的理论值计算相对误差.数据处理1
理论计算实验开始时温度23.0℃,实验结束时温度21.8℃,所以认为实验时温度t=22.4℃.根据理论值计算2
驻波法游标读数(mm)95.42100.50105.70110.66115.88120.90126.16131.34136.20141.44146.52151.60逐差=3(mm)30.7430.8430.5030.7830.6430.70相邻游标相减的2倍=i(mm)10.1610.409.8810.4410.0410.5210.369.7210.4810.1610.16标准差的A类不确定度查表得:当n=11,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定查表得,当P=0.95时,=1.96.所以的不确定度选取声
一、实验目的
1. 了解双踪示波器显示波形的工作原理;
2. 学会利用双踪示波器观测电压信号;
3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。
二、实验仪器
信号发生器、双踪示波器、探头。
三、实验原理
1. 示波器
2. 双踪示波器的原理
3. 示波器显示波形原理
如果在 YCH1 或 CH2 端口加上正弦波,在示波器的 X 偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的周期相等时,则显示完整周期的正弦波形,如图 3 ,若在 YCH1 和 YCH2 同时加上正弦波,在示波器的 X 偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。
4. 李萨如图形的基本原理
在示波器的 Y 偏转板和 X 偏转板上分别加上正弦波,当信号的频率比值为简单整数比时,得到李萨如图形。 fx 、 fy 为 x,y 偏转板上信号频率, nx 、 ny 为李萨如图形与假想水平线、垂直线的切点数目。
四、实验内容
1. 做好准备工作,设置好示波器;
2. 观察各种波形;
3. 测量正弦波的电压峰值、周期和频率,测四组数据。
六、思考题
1. 简述示波器显示电压——时间图形(即电信号波形)的原理。
答:高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点, Y 偏转板是水平放置的两块电极, X 偏转板是垂直放置的两块电极,在 Y 偏转板和 X 偏转板上分别加电压,可在荧光屏上得到相应的图形。当然电压不同,周期不同,所得到的图形会不一样。
五、数据处理与分析
1. 测正弦波的电压峰值
次数 Vp-p 测量值( V ) Vp-p 真实值( V ) 误差( V )
1 3.68 4 0.32
2 8.56 10 1.44
3 13.3 15 1.7
4 18.8 20 1.2
2. 测正弦波的周期、频率
次数 T 真实值( S ) f 真实值( HZ ) f 测量值 (HZ) f 误差 (HZ)
1 1×10-2 100 100 0
2 1×10-4 104 10010 10
3 1×10-6 106 106 0
4 1×10-7 107 9.963×106 3.7×104
3. 利用李萨如图形测频率
李萨如图形 fx(HZ) ny nx fy= nx*fx/ ny (HZ) 实际测量值 (HZ)
90 1 1 90 89.9
90 1 2 180 180.1
90 2 1 45 45.2
90 3 2 60 60.7
六、思考题
1. 简述示波器显示电压——时间图形(即电信号波形)的原理。
答:高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点, Y 偏转板是水平放置的两块电极, X 偏转板是垂直放置的两块电极,在 Y 偏转板和 X 偏转板上分别加电压,可在荧光屏上得到相应的图形。当然电压不同,周期不同,所得到的图形会不一样。
七、注意事项
1. 荧光屏上光点(扫描线)亮度不可调得过亮,并且不可将光点(或亮线)固定在荧光屏上某一点时间过久,以免损坏荧光屏。
2. 示波器和函数信号发生器上所有开关及旋钮都有一定的调节限度,调节时不能用力太猛。
3. 双踪示波器的两路输入端 CH1 , CH2 有一公共接地端,同时使用 CH1 和 CH2 时,接线时应防止将外电路短路。
实验报告实验题目:
声速的测量实验目的:了解超声波的产生,发射和接收的方法,用干涉法和相位法测声速.实验内容1
测量实验开始时室温.2
驻波法(1)
将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)将函数信号发生器接超声声速测定仪的发射端,示波器接接收端.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)通过示波器观察讯号幅度,调整移动尺改变测定仪两端的距离找到使讯号极大的位置,在极大值附近应该使用微调,即固定移动尺螺丝,使用微调螺母调整.(4)从该极大位置开始,朝一个方向移动移动尺,依次记下每次讯号幅度极大(波腹)时游标的读数,共12个值.3
相位法(1)
将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)
将函数信号发生器接超声声速测定仪的发射端,的CH1接在接收端,CH2接在发射端.选择CH1,CH2的X-Y叠加.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)
通过观察李萨如图形,调整移动尺改变测定仪两端的距离找到使图形为一条斜率为正的直线的位置.(4)从该位置开始,朝一个方向移动移动尺,依次记下每次图形是斜率为正的直线时游标的读数,共10个值.4
测量实验结束时室温,与开始时室温取平均值作为温度t.收拾仪器,整理实验台.5
对上面两组数据,分别用逐差计算出l,然后算出声速v,并计算不确定度.与通过t计算出的理论值计算相对误差.数据处理1
理论计算实验开始时温度23.0℃,实验结束时温度21.8℃,所以认为实验时温度t=22.4℃.根据理论值计算2
驻波法游标读数(mm)95.42100.50105.70110.66115.88120.90126.16131.34136.20141.44146.52151.60逐差=3(mm)30.7430.8430.5030.7830.6430.70相邻游标相减的2倍=i(mm)10.1610.409.8810.4410.0410.5210.369.7210.4810.1610.16标准差的A类不确定度查表得:当n=11,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定查表得,当P=0.95时,=1.96.所以的不确定度选取声波输出频率为34.3KHz,已知不确定度.声速对,有不确定度传递公式:空气中的声速v=(350.99±1.20)m/s
(P=0.95)相对误差=3
相位法游标读数(mm)110.80121.04131.14141.36151.58161.72171.88182.02192.10202.26逐差=5(mm)50.9250.8450.8850.7450.68相邻游标相减=i(mm)10.2410.1010.2210.2210.1410.1610.1410.0810.16标准差的A类不确定度查表得:当n=9,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定度查表得,当P=0.95时,=1.96.所以的不确定度选取声波输出频率为34.3KHz,已知不确定度声速对,有不确定度传递公式:空气中的声速v=(348.57±1.09)m/s
(P=0.95)相对误差=误差分析:1
仪器本身的系统误差和由于老化引起的误差.2
室温在实验过程中是不断变化的.3
无论是驻波法中在上找极大值,还是相位法在上找斜率为正的直线,都是测量者主观的感觉,没有精确测量.思考题1
固定两换能器的距离改变频率,以求声速,是否可行答:不可行.因为在声速一定时,频率改变了,波长也会随之改变.所以无法同时测量出频率和波长,也就无法求出声速.不对
声速的测量实验报告
打开示波器和函数发生器电源(一般一分钟即可达到工作温度),在这个期间对正换能器的两个压电陶瓷片。
将声速测定仪预设在 10\\sim 12{\\rm cm} 左右。
调节示波器到工作状态,调节函数发生器到 30{\\rm kHz} ,连接电路。
在示波器上调处稳定波形(需要按下 {\\times}5{\\rm MAG} ,扩大振幅来减小读数带来的相对误差),微调频率和换能器距离知道显示出一个谐振态,调节声速测定仪上的旋钮减小两个换能器之间的距离,得到一系列谐振态对应的距离 x_i,\\ (i=1, 2, 3, \\cdots) 。
与原理所说相同,在换能器距离很近时,谐振状态下示波器屏幕上的正弦波振幅会变得很大,一般已经无法显示全,于是再慢慢增大距离,得到另一组数据 x_i^{\\prime} (这次实验我没有这么做,可以看到结果基本和实际复合,但从理论上来说应该这样),这样做可以减小一定的误差。
注意在减小或增大距离时要消除回程差。
处理数据。
整理器材,关闭电源。
测量声速的实验报告
1.提出问题
如何测出声音的速度?
2.猜想与假设
如果在一定距离内听到声音要多少时间?
3.实验步骤
步骤应该就是实施实验,第三是实验器材的话,就是要秒表.
4.实施实验
在一个山谷中,站在距离峭壁680M的地方大叫一声,同时按下秒表计时.
然后在听到第一声回声时按下秒表得到听到回声的时间.
5.结论
就是用距离680M*2除以时间就可以得出声音的速度了.
声速的测定实验报告思考题答案
测声速的实验装置可以做温度计使用吗?如果距离L精确到0.002mm,在频率不变的条件下,能够测量的最小温度变化是多少?
在《空气中声速的测定》这一试验中,有一道思考题:如何得知信号源输出频率很简单的嘛!!!你保持两个超声转换器(一个是发射,一个是接收)的距离
声速的测量 思考题及解答
1.为什么需要在驻波系统共振状态下进行声速的测量
因为当驻波偏离共振状态时,驻波的形状不稳定且声压腹的振幅比共振时达到的
最大值小得多,当驻波系统处于共振,这时驻波腹出现稳定的最大振幅。
2.用“驻波共振法”测波长时,如何调出示波器上正弦波形?
⑴示波器“Y轴衰减”旋钮应置于较小数值档。
⑵移动接收器S2时,荧光屏上宽带的宽度应变化。如不变,可交换输入到示波
器的两接线柱位置,或交换输入到发射器S1的两接线柱位置。
⑶调节扫描频率即可调出正弦波。
3.用“相位比较法”测波长时,如何调出椭圆或直线?
⑴接收器S2接收到的信号应从示波器“X输入”端输入,发射器S1信号应输入到示波器“Y轴输入”端,且“Y轴衰减”旋钮应置于较大数值档。
⑵如果还不能出现椭圆或直线,可交换S1或S2两接线柱位置。
4.用“驻波共振法”和“相位比较法”测波长时,如严格按上述方法操作,还是调不出应有波形,怎么办?
此时可能是连接导线断路或接头接触不好,应用万用电表欧姆档对每根导线进行检查,确保每根导线无断裂,各个接头接触良好。
5.为什么在实验过程中改变S1、S2间距离时,压电换能器S1和S2两表面应保持互相平行且正对?不平行会产生什么问题?
因为只有当S1S2表面保持互相平行且正对时,S1S2间才可能形成驻波,才会出现波腹和波节,S2表面才会出现声压极大值,屏幕上才会出现正弦波振幅发生变化,由此可测超声声波波长。
如果S1、S2表面不平行,则S1、S2间形不成驻波,屏幕上正弦波振幅不会发生变化,就能用驻波共振法测波长,故实验中必须使S1、S2表面平行。
6.如何调节与判断测量系统是否处于共振状态?
使用驻波共振法,当示波器上出现振幅最大正弦波时,表示S1、S2间处于驻波共振状态。调节方法是移动S2,观察示波器上正弦波振幅变化。
7.使用“驻波共振法”测声速时,为什么示波器上观察到的是正弦波而不是驻波?
因为驻波是在发射器S1与接收器S2间形成,接收器S2接收到的是一个声压信号,在驻波波节位置,声压信号最强,输入到示波器Y偏转板,经X偏转板扫描,故示波器上观察到的是正弦波。
8.使用“驻波共振法”测声速时,示波器上观察到的正弦波振幅为什么随S1S2间距增大而越来越小?
这是因为超声波在空气中传播时,由于波动能量总有一部分会被空气吸收,波的
机械能会不断减少,波强逐渐减弱,振幅逐渐减少。
9.用“相位比较法”测声速时,为什么只有当李萨如图为直线时才读数?
因为李萨如图形为椭圆时,由于椭圆形状、大小不确定,接收器S2位置难以确定。只有当李萨如图形为直线时,图形直观唯一,容易确定S2位置。
10.测声速时,“驻波共振法”与“位相比较法”两种电路可交换吗?
不能。因为驻波共振法只把接收器S2接收到的信号输入到示波器Y偏转板,观
察到的是正弦波信号。而位相比较法把接收器S2信号输入示波器X偏转板,发射器S1
信号输入到Y偏转板,观察到的是李萨如图形。
11.为何两种方法均测半波长值而不直接测波长值?
因为超声波在空气中有衰减,如果直接测波长值,测得数据个数少,由于衰减,
后面数据测不出来。而测半波长,数据个数多,又便于用逐差法处理数据,减少
测量误差。
空气中声速的测定
测量声速最简单、最有效的方法之一是利用声速v 、振动频率f和波长λ之间的基本关系,即实验时用结构相同的一对(发射器和接收器)超声压电陶瓷换能器,来作声压与电压之间的转换。
利用示波器观察超声波的振幅和相位,用振幅法和相位法测定波长,由示波器直接读出频率f。
谐振频率:超声压电陶瓷换能器是实验的关键部件,每对超声压电陶瓷换能器都有其固有的谐振频率,当换能器系统的工作频率处于谐振状态时,发射器发出的超声波功率最大,是最佳工作状态。
声学中的基本量
在声学中,或描述一声源及其产生的声场的特性,或在某些声学现象、效应中起主导作用的一些量,为声学中的基本量。表1所列为这些基本量及其相互关系。在前四个量中,声强是最容易测量的,而且可以量得很准确,另三个量又能由声强导出,因此,过去一直误认为只有声强才是声学中的基本量。