×

欧几里得,欧几里得是什么意思

admin admin 发表于2024-03-04 14:44:25 浏览20 评论0

抢沙发发表评论

本文目录一览:

欧几里得是什么意思

欧几里得
Euclid
古希腊数学家。生卒年不详,约活动于公元前 300年前后。以其所著的《几何原本》(简称《原本》)闻名于世 。早年大概就学于雅典,了解柏拉图的学说。公元前 300 年左右,在托勒密王的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家。据普罗克洛斯( 约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说:“在几何里,没有专为国王铺设的大道。”这句话后来成为传诵千古的学习箴言。
图片
欧几里得将公元前 7 世纪以后希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学,后世称为欧几里得几何学。除了《几何原本》之外,他还有不少著作 ,可惜大都失传 。《 已知数 》是除《原本》之外唯一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近 ,包括 94 个命题。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一。

欧几里得是什么国家的什么时代世界著名数学家

公元前三世纪古希腊雅典的数学家
亚历山大里亚的欧几里得(希腊文:Ευκλειδη? ,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)
国家∶希腊
时间∶公元前323年-公元前283年左右。

欧几里得和欧拉什么关系

两者没有关系。欧几里得是古希腊数学家,被称为“几何之父”,著作《几何原本》是欧洲数学的基础,被称为世界上第一个将圆周率精确到小数点后7位的人。欧拉是现代数学家,被誉为“数学之王”,是历史上发表论文数量第二多的数学家,他对数学、物理、工程、艺术等多个领域做出了巨大贡献,特别是在数学领域,他发明了欧拉公式、欧拉常数、欧拉线等众多数学概念和公式。两人是不同时代、不同国家的数学家。

欧几里得简介,欧几里得的故事

欧几里得(英文:Euclid;希腊文:Ευκλειδη?,约公元前330年—公元前275年),古希腊人,数学家,被称为“几何之父”。他最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何欧几里得简介,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。

身世
可惜的是欧几里德的身世我们知道得很少,他的《几何原本》大概是亚历山大大学的一个课本。亚历山大大学是希腊文化最后集中的地方,因为亚历山大自己到过亚历山大,因此就建立了当时北非的大城,靠在地中海。但是他远征到亚洲之后,我们知道他很快就死了。之后,他的大将托勒密管理当时的埃及区域。托勒密很重视学问,就成立了一个大学。这个大学就在他的王宫旁边,是当时全世界最优秀的大学,设备非常好,有许多书。很可惜由于宗教的原因以及众多的原因,现在这个学校已经被完全毁掉了。当时的基督教就不喜欢这个学校,已经被毁了, *** 人占领北非之后就大规模地破坏、并焚烧图书馆的书。所以现在这个学校完全不存在了。
懂几何者

欧几里得(Euclid)是古希腊着名数学家、欧氏几何学开创者。欧几里得出生于雅典,当时雅典就是古希腊文明的中心。浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入柏拉图学园学习。
一天,一群年轻人来到位于雅典城郊外林荫中的柏拉图学园。只见学园的大门紧闭着,门口挂着一块木牌,上面写着:“不懂几何者,不得入内!”这是当年柏拉图亲自立下的规矩,为的是让学生们知道他对数学的重视,然而却把前来求教的年轻人给闹糊涂了。有人在想,正是因为我不懂数学,才要来这儿求教的呀,如果懂了,还来这儿做什么?正在人们面面相觑,不知是进是退的时候,欧几里得从人群中走了出来,只见他整了整衣冠,看了看那块牌子,然后果断地推开了学园大门,头也没有回地走了进去。
编写巨着
最早的几何学兴起于公元前7世纪的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派系统奠基。在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。
因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。
他下定决心,要在有生之年完成这一工作,成为几何第一人。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专着和手稿,向有关学者请教,一边试着着书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。直到今天,他所创作的几何原本仍然是世界各国学校里的必修课,从小学到初中、大学、再到现代高等学科都有他所创作的定律、理论和公式应用。
没有捷径
在柏拉图学派晚期导师普罗克洛斯(约410~485)的《几何学发展概要》中,就记载着这样一则故事,说的是数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题(这与当今社会截然相反),以至于当时亚里山大国王托勒密一世也想赶这一时髦,学点儿几何学。
虽然这位国王见多识广,但欧氏几何却令他学的很吃力。于是,他问欧几里得“学习几何学有没有什么捷径可走?”,欧几里得笑道:“抱歉欧几里得简介,陛下!学习数学和学习一切科学一样,是没有什么捷径可走的。学习数学,人人都得独立思考,就像种庄稼一样,不耕耘是不会有收获的。在这一方面,国王和普通老百姓是一样的。”从此,“在几何学里,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。
量金字塔
又有则故事。那时候,人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔的高度,比登天还难!”这话传到欧几里得耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子有多长,那长度便等于金字塔的高度!”
没有好处
来拜欧几里得为师,学习几何的人,越来越多。有的人是来凑热闹的,看到别人学几何,他也学几何。斯托贝乌斯(约500)记述了另一则故事,一位学生曾这样问欧几里得:“老师,学习几何会使我得到什么好处?”欧几里得思索了一下,请仆人拿点钱给这位学生。欧几里得说:给他三个钱币,因为他想在学习中获取实利。

欧几里德

欧几里德如下:
欧几里得是古希腊著名数学家。
欧几里德(Ευκλειδη?,Euclid,约前330年-约前275年),出生于雅典,古希腊著名数学家,欧氏几何学开创者。
年少时,进入柏拉图学院学习,在柏拉图思想影响下对几何产生兴趣。公元前300年,写出传世之作《几何原本》,开创了欧氏几何学,实现了几何学的系统化、条理化。
欧几里德的身世我们知道得很少,他的《几何原本》大概是亚历山大大学的一个课本。亚历山大大学是希腊文化最后集中的地方,因为亚历山大自己到过亚历山大,因此就建立了当时北非的大城,靠在地中海。
但是他远征到亚洲之后,我们知道他很快就死了。之后,他的大将托勒密管理当时的埃及区域。
欧几里得(Euclid)是古希腊著名数学家、欧氏几何学开创者。欧几里得出生于雅典,当时雅典就是古希腊文明的中心。浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入柏拉图学园学习。
欧几里得(Euclid, 约公元前325年—公元前265年)是古希腊数学家,以其所著的《几何原本》(简称《原本》)闻名于世。曾受业于柏拉图学园。后应埃及托勒密国王邀请,从雅典移居亚历山大,从事数学教学和研究工作。他一生治学严谨。所著《几何原本》共13卷,是世界上最早公理化的教学著作,影响着历代科学文化的发展和科技人才的培养。

欧几里得是哪里的数学家

欧几里得是古希腊的数学家。
人物简介
欧几里得(Ευκλειδη?,Euclid,约前330年-约前275年),出生于雅典,古希腊著名数学家,欧氏几何学开创者。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。
人物故事
身世
欧几里得的身世我们知道得很少,他的《几何原本》大概是亚历山大大学的一个课本。亚历山大大学是希腊文化最后集中的地方,因为亚历山大自己到过亚历山大,因此就建立了当时北非的大城,靠在地中海。但是他远征到亚洲之后,我们知道他很快就死了。之后,他的大将托勒密管理当时的埃及区域。
托勒密很重视学问,就成立了一个大学。这个大学就在他的王宫旁边,是当时全世界最优秀的大学,设备非常好,有许多书。很可惜由于宗教的原因以及众多的原因,现在这个学校已经被完全毁掉了。
当时的基督教就不喜欢这个学校,已经被毁了,回教人占领北非之后就大规模地破坏、并焚烧图书馆的书。所以现在这个学校完全不存在了。
量金字塔
当时,人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔的高度,比登天还难!”这话传到欧几里得耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子有多长,那长度便等于金字塔的高度!”
人物成就
完全数
此外,欧几里得在《几何原本》中还对完全数做了探究,他通过2^(n-1)·(2^n-1)的表达式发现头四个完全数的。
当n=2:2^1(2^2-1)=6。当n=3:2^2(2^3-1)=28。当n=5:2^4(2^5-1)=496。当n=7:2^6(2^7-1)=8128。一个偶数是完全数,当且仅当它具有如下形式:2^(n-1).(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。
其中2????1是素数,上面的6和28对应着n=2和3的情况。我们只要找到了一个形如2????1的素数(即梅森素数),也就知道了一个偶完全数。在手算时代梅森素数可使人们更方便的计算完全数,在计算机时代更是得到了广泛深入的应用,计算机的CPU可以更方便的计算各种数。
尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12p+1或36p+9的形式,其中p是素数。在103??以下的自然数中奇完全数是不存在的。
欧几里得算法
欧几里得算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
人物评价
欧几里得是古希腊最负盛名、最有影响的数学家之一。欧几里得的《几何原本》对于几何学、数学和科学的未来发展,对于西方人的整个思维方式都有极大的影响。
《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前7世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。

欧几里德有哪些故事?

  欧几里得是希腊亚历山大大学的数学教授,是古希腊著名数学家、欧氏几何学开创者。被称为“几何之父”。下面是我蒐集整理的欧几里德的故事,希望对你有帮助。
  欧几里德的故事
  欧几里得不仅是一位学识渊博的数学家,同时还是一位有“温和仁慈的蔼然长者”之称的教育家。在著书育人过程中,他始终没有忘记当年挂在“柏拉图学园”门口的那块警示牌,牢记着柏拉图学派自古承袭的严谨、求实的传统学风。他对待学生既和蔼又严格,自己却从来不宣扬有什么贡献。对于那些有志于穷尽数学奥秘的学生,他总是循循善诱地予以启发和教育,而对于那些急功近利、在学习上不肯刻苦钻研的人,则毫不客气地予以批评。在柏拉图学派晚期导师普罗克洛斯的《几何学发展概要》中,就记载着这样一则故事,说的是数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题***这与当今社会截然相反***,以至于当时亚里山大国王托勒密一世也想赶这一时髦,学点儿几何学。虽然这位国王见多识广,但欧氏几何却令他学的很吃力。于是,他问欧几里得“学习几何学有没有什么捷径可走?”,欧几里得笑到:“抱歉,陛下!学习数学和学习一切科学一样,是没有什么捷径可走的。学习数学,人人都得独立思考,就像种庄稼一样,不耕耘是不会有收获的。在这一方面,国王和普通老百姓是一样的。”从此,“在几何学里,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。
  来拜欧几里得为师,学习几何的人,越来越多。有的人是来凑热闹的,看到别人学几何,他也学几何。斯托贝乌斯***约500***记述了另一则故事,一位学生曾这样问欧几里得:“老师,学习几何会使我得到什么好处?”欧几里得思索了一下,请仆人拿点钱给这位学生。欧几里得说:给他三个钱币,因为他想在学习中获取实利。
  一天一群年轻人来到位于雅典城郊外的林荫中的“柏拉图学院”。只见大门紧闭着,门口挂著一块木块,上面写着:“不懂数学者,不得入内!”这是柏拉图亲自立下的规矩,为的是让学生们知道他重视数学,然而却把前来求教的年轻人们给闹糊涂了。有人在想正是因为我不懂数学才前来求教的啊,如果懂了,还来这儿干什么?正当人们面面相觑,不只是退还是进的时候,欧几里得从人群中走了出来,只见他整了整衣冠,看那块牌子,然后果断的推开了学院大门,头也没回就走了进去。

  欧几里德的贡献是什么
  最早的几何学兴起于公元前7世纪的古埃及,后经古希腊等人传到古希腊的都城,又借毕达哥拉斯学派系统奠基。在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联络性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,随着社会经济的繁荣和发展,特别是随着农林畜牧业的发展、土地开发和利用的增多,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓,成为科学进步的大势所趋。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。
  欧几里德的著作有哪些
  《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作。传到今天的欧几里得著作并不多,然而我们却可以从这部书详细的写作笔调中,看出他真实的思想底蕴。
  全书共分13卷。书中包含了5条“公理”、5条“公设”、23个定义和467个命题。在每一卷内容当中,欧几里得都采用了与前人完全不同的叙述方式,即先提出公理、公设和定义,然后再由简到繁地证明它们。这使得全书的论述更加紧凑和明快。而在整部书的内容安排上,也同样贯彻了他的这种独具匠心的安排。它由浅到深,从简至繁,先后论述了直边形、圆、比例论、相似形、数、立体几何以及穷竭法等内容。其中有关穷竭法的讨论,成为近代微积分思想的来源。仅仅从这些卷帙的内容安排上,我们就不难发现,这部书已经基本囊括了几何学从公元前7世纪的古埃及,一直到公元前4世纪——欧几里得生活时期——前后总共400多年的数学发展历史。这其中,颇有代表性的便是在第1卷到第4卷中,欧几里得对直边形和圆的论述。正是在这几卷中,他总结和发挥了前人的思维成果,巧妙地论证了毕达哥拉斯定理,也称“勾股定理”。即在一直角三角形中,斜边上的正方形的面积等于两条直角边上的两个正方形的面积之和。他的这一证明,从此确定了勾股定理的正确性并延续了2000多年。《几何原本》是一部在科学史上千古流芳的钜著。它不仅储存了许多古希腊早期的几何学理论,而且通过欧几里得开创性的系统整理和完整阐述,使这些远古的数学思想发扬光大。它开创了古典数论的研究,在一系列公理、定义、公设的基础上,创立了欧几里得几何学体系,成为用公理化方法建立起来的数学演绎体系的最早典范。照欧氏几何学的体系,所有的定理都是从一些确定的、不需证明而礴然为真的基本命题即公理演绎出来的。在这种演绎推理中,对定理的每个证明必须或者以公理为前提,或者以先前就已被证明了的定理为前提,最后做出结论。这一方法后来成了用以建立任何知识体系的严格方式,人们不仅把它应用于数学中,也把它应用于科学,而且也应用于神学甚至哲学和伦理学中,对后世产生了深远的影响。尽管欧几里得的几何学在差不多2000年间,被奉为严格思维的范例,但实际上它并非那么完美。人们发现,一些被欧几里得作为不证自明的公理,却难以自明,越来越遭到怀疑。比如“第五平行公设”,欧几里得在《几何原本》一书中断言:“通过已知外一已知点,能作且仅能作一条直线与已知直线平行。”这个结果在普通平面当中尚能够得到经验的印证,那么在无处不在的闭合球面之中***地球就是个大曲面***这个平行公理却是不成立的。俄国人罗伯切夫斯基和德国人黎曼由此创立了球面几何学,即非欧几何学。
  此外,欧几里得在《几何原本》中还对完全数做了探究,他通过2^***n?1***·***2^n?1***的表示式发现头四个完全数的。
  当=2:2^1***2^2?1***=6当=3:2^2***2^3?1***=28当=5:2^4***2^5?1***=496当=7:2^6***2^7?1***=8128一个偶数是完全数,当且仅当它具有如下形式:2^***n?1***.***2^n?1***,此事实的充分性由欧几里得证明,而必要性则由尤拉所证明。
  其中2^n?1是素数,上面的6和28对应着=2和3的情况。我们只要找到了一个形如2^n?1的素数***即梅森素数***,也就知道了一个偶完全数。
  尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12+1或36+9的形式,其中p是素数。在10^18以下的自然数中奇完全数是不存在的。

欧几里德简介

欧几里德的亚历山大(寿命℃。公元前300年)系统化古老的希腊文和近东数学和几何学。他写了《元素》,这是历史上使用最广泛的数学和几何教科书。较旧的书籍有时将他与墨加拉的欧几里得混淆。现代经济学被称为“亚当·斯密的一系列脚注”,他是《国富论》(公元 1776 年)的作者。同样,西方数学的大部分内容都是欧几里德的一系列脚注,要么发展他的思想,要么挑战他的思想。
欧几里得的生活
几乎没有人知道欧几里得的生平。公元前 300 年左右,他在埃及的亚历山大市开办了自己的学校。我们不知道他出生和死亡的年份或地点。他好像写了十几本书,现在大部分都丢了。
生活在七个世纪之后的雅典哲学家普罗克勒斯(公元 412-485 年)说,欧几里得“将元素组合起来,收集了欧多克索斯的许多定理,完善了泰阿泰德的许多定理,并带来了无可辩驳的证明由他的前任。” 学者斯托巴厄斯与普罗克洛斯生活在同一时期。他收集了有丢失危险的希腊手稿。他讲了一个关于欧几里得的故事,这个故事有真理之环:
已经开始[学习]几何的人问欧几里得:“学习这些东西我能得到什么?” 欧几里得给他的奴隶打电话说:“给他[一些钱],因为他必须从他学到的东西中获利”。

(Heath, 1981, loc. 8625)
欧几里得之前的几何
在The Elements 中,Euclid 收集、组织并证明了已经用作应用技术的几何思想。除了欧几里得和他的一些希腊前辈,如泰勒斯(公元前 624-548 年)、希波克拉底(公元前 470-410 年)、泰阿泰德(公元前 417-369 年)和欧多克索斯(公元前 408-355 年),几乎没有人试图计算弄清楚为什么这些想法是正确的,或者它们是否普遍适用。泰勒斯甚至在埃及成为名人,因为他可以看到特定问题规则背后的数学原理,然后将这些原理应用于其他问题,例如确定金字塔的高度。
古埃及人知道很多几何学,但只是作为基于测试和经验的应用方法。例如,为了计算圆的面积,他们制作了一个正方形,其边长是圆直径的九分之一。正方形的面积与圆的面积非常接近,以至于他们无法检测到任何差异。他们的方法暗示 pi 的值为 3.16,与 3.14 的真实值略有不同……但对于简单的工程来说已经足够接近了。我们对古埃及数学的了解大部分来自于公元 19 世纪中叶发现的 Rhind 纸莎草纸,现在保存在大英博物馆。
古代巴比伦人也知道很多应用数学,包括勾股定理。尼尼微的考古发掘发现了具有满足勾股定理的三元组数的粘土片,例如 3-4-5、5-12-13,并且具有相当大的数字。截至 2006 年,已有 960 块石板被破译。
元素
Euclid 并不是The Elements 中的大部分想法的发起者。他的贡献有四方面:
他在一本书中收集了重要的数学和几何知识。元素是教科书而不是参考书,因此它没有涵盖已知的所有内容。
他给出了定义、假设和公理。他称公理为“共同概念”。
他将几何视为一个公理系统:每一个陈述要么是一个公理、一个假设,要么被公理和假设的清晰逻辑步骤所证明。
他给出了他自己的一些原始发现,例如第一个已知的关于存在无限多个素数的证据。
元素有 13 章(通常称为“书籍”),分为三个主要部分:
第 1-6 章:平面几何。
第 7-10 章:算术和数论。
第 11-13 章:实体几何。
每一章都以定义开始。第 1 章还包括假设和“共同概念”(公理)。例子是:
定义: “一个点是没有部分的。”
假设: “从任何一点到任何一点画一条直线。” (这是欧几里得说直线存在的方式。)
共同的观念: “等于同一事物的事物也彼此相等。”
如果这些想法看起来很明显,那就是重点。(Www.lishixinzhi.Com)欧几里得想将他的几何学建立在如此明显以至于没有人可以合理怀疑它们的想法上。欧几里得从他的定义、假设和常见概念中推导出几何的其余部分。他的几何描述了我们在我们周围看到的正常空间。现代“非欧几里得”几何描述了天文距离、近光速或因重力而扭曲的空间。
欧几里得的其他作品
欧几里得大约一半的作品丢失了。我们只知道它们,因为其他古代作家提到它们。丢失的作品包括关于圆锥曲线、逻辑谬误和“pori *** s”的书籍。我们不确定什么是pori *** s。欧几里得仍然存在的作品有《元素》、《数据》、《图形的划分》、《现象》和《光学》。在他关于光学的书中,欧几里得主张与基督教哲学家圣奥古斯丁相同的视觉理论。
欧几里得的影响
从古代到公元 19 世纪后期,人们认为《元素》是正确推理的完美典范。已经出版了一千多个版本,使其成为继圣经之后最受欢迎的书籍之一。17世纪CE荷兰哲学家巴鲁克斯宾诺莎去模仿他的书道德上的元素,采用的定义,公设,公理,和证明的格式相同。20世纪,奥地利经济学家路德维希·冯·米塞斯(Ludwig von Mises)在其著作《人的行动》中采用欧几里得的公理化方法来写经济学。

数学家的故事:几何之父欧几里德

我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。
  欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。
  古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。
  《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。
  欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”
  欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
  欧氏还有《已知数》《图形的分割》等著作。