×

傅里叶变换的性质,傅里叶变换的性质

admin admin 发表于2024-03-31 21:46:44 浏览29 评论0

抢沙发发表评论

本文目录一览:

傅里叶变换的性质有?

傅里叶变换的性质有?

A.旋转定理


B.位移定理


C.线性定理


D.卷积定理


正确答案:旋转定理;位移定理;线性定理;卷积定理

傅里叶变换的性质

傅里叶变换性质有线性、位移、微分、积分。
1、线性性质:函数线性组合的傅里叶变换=各函数傅里叶变换的线性组合。
2、位移性质(shift信号偏移,时移性)。
3、微分性质:一个函数导数的傅里叶变换等于这个函数傅里叶变换乘以因子iw。
4、积分性质:一个函数积分后的傅里叶变换等于这个函数傅里叶变换除以因子iw。
利用傅氏变换的这四条性质,可以将线性常系数微分方程转化成为代数方程,通过求解代数方程和求傅氏逆变换,可得到微 分方程的解。
位移性质:
f(t-t0)表示时间函数f(t)沿t轴向右平移t0,其傅里叶变换=f(t)的傅里叶变换乘以因子exp(-iwt0),类似f(t+t0)的傅里叶变换=f(t)的傅里叶变换乘以因子exp(iwt0)
而F(w-w0)的表示频谱函数沿w轴向右平移w0,其傅里叶逆变换=F(w)的傅里叶逆变换乘以因子exp(iw0t),反之乘以exp(-iw0t)

傅里叶变换的性质

总的来说,傅里叶变换有这样几个性质:
线性性质(Linearity)
平移性质(Shift)
对称性质(Symmetry)
卷积性质(Convolution)
线性性质:两个函数之和的傅里叶变换等于各自变换之和,反之亦然。
平移性质:在时域上对信号进行平移,那么等价于在频域的复平面上旋转一个角度,相反的,频域的复平面上旋转一个角度,等价于时域上的平移,可以证明平移只对DFT的相位有影响,并不会改变DFT的幅度。
详解请看原文链接:https://blog.csdn.net/weiwei9363/article/details/84431146

傅立叶变换有什么性质?

1,δ(t)函数的傅里叶变换等于常数;反过来常数的傅里叶变换等于δ(t)函数,它们之间的变换关系具有对称性。
2,傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
3,在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换”、“傅立叶转换”、“傅氏转换”、“傅氏变换”、等等。为方便起见,本文统一写作“傅里叶变换”。
傅立叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。
定义介绍:
f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个以2T为周期内f(X)连续或只有有限个第一类间断点,附f(x)单调或可划分成有限个单调区间,则F(x)以2T为周期的傅里叶级数收敛。
和函数S(x)也是以2T为周期的周期函数,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换。
F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。

傅立叶变换性质

傅立叶变换性质如下:
1、线性性质,一种常见的性质。
2、位移性质,主要应用与平移。
3、相似性质,通过一个常数来改变周期。
4、微分性质,描述导数与傅里叶变换后的函数之间的关系。
5、积分性质。
6、卷积定理,在物理模型变换中,经常使用这个方法。
7、帕萨瓦尔等式(parserval):主要应用于计算。
傅立叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。
要理解傅立叶变换,确实需要一定的耐心,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。
傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。

傅里叶变换的性质

齐次性: 如果 x[ ] 和 X[ ] 是傅里叶变换对,那么k[ ] 和 kX[ ] 也是傅里叶变换对

? ? ? ? ? ? ? 如果在直角坐标系下描述频域,kX[ ] 表示实部和虚部都要乘以k

? ? ? ? ? ? ? 若果是在极坐标系下描述频域,kX[ ] 表示幅值乘以k, 相位不发生变化



可加性 :





傅里叶变换不具备位移对称性,时域位移不能相应地引起频域位移。显然,时域信号位移,正弦函数们也发生相应的位移,正弦函数位移则是相位的改变。

if x[ n ] <-> Mag X[ f ]? & Phase X[ f ],那么时域位移结果是x [n+s] <-> Mag X[f] & Phase X[f] + 2 sf

如果一个信号是左右对称的,且关于零点对称,那么是零相位,如果不关于零点对称,则为线性相位,即相位曲线是一条直线。如果一个信号不是左右对称的,则为非线性相位。

时域波形向右移动,相位倾斜减少,向左位移,向上倾斜逐渐增大。位移对应着坡度改变

在一个域内的信号压缩会导致另一个域内的扩展,反之亦然。

如果X(f)是x(t)的傅里叶变换,那么 就是x(kt)的傅里叶变换。如果一个时域信号被压缩得非常厉害以致于变成脉冲,则相应地频谱会被一直延展成一个常量。同样的,如果频域一直扩展成常量,频域就会变成一个脉冲。

傅里叶变换的11个性质公式

傅里叶变换是:F(ω)=∫(∞,-∞) f(t)e^(-iωt)dt f(t) = (1/2π) ∫(∞,-∞) F(ω)e^(iωt)dω 令:f(t)=δ(t),那么:∫(∞,-∞) δ(t)e^(-iωt)dt = 1 而上式的反变换。
傅立叶变换的主要作用就是让函数在时域和频域可以相互转化,最显而易见的应用就是:当输入函数和单位冲激响应函数都被转化为频域函数后,两个频域函数直接做乘法,就可以得到输出的频域函数,最后再反变换回时域,就可以得到输出的时域函数。
傅立叶变换:
傅里叶变换的作用主要是将函数转化成多个正弦组合(或e指数)的形式,本质上变换之后信号还是原来的信号只是换了一种表达方式 这样可以更直观的分析一个函数里的频率、幅值、相位成分,所以分析一个复杂的信号只需经过傅里叶变换后可以轻易的看出其频率和相位、幅度分量。

傅立叶变换的性质

傅里叶变换的本质,就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。这与积分的线性性是一致的。
线性性质可用图1来概括。先变换再求和,与先求和再变换,结果是一致的。
一般情况下,N点的傅里叶变换对为:
其中,WN=exp(-2pi/N)。X(k)和x(n)都为复数。与之相对的快速傅里叶变换有很多种,如DIT(时域抽取法)、DIF(频域抽取法)、Cooley-Tukey和Winograd等。对于2n傅里叶变换,Cooley-Tukey算法可导出DIT和DIF算法。本文运用的基本思想是Cooley-Tukey算法,即将高点数的傅里叶变换通过多重低点数傅里叶变换来实现。
虽然DIT与DIF有差别,但由于它们在本质上都是一种基于标号分解的算法,故在运算量和算法复杂性等方面完全一样,而没有性能上的优劣之分,所以可以根据需要任取其中一种,本文主要以DIT方法为对象来讨论。
N=8192点DFT的运算表达式为:
式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可取0,1,2,3。

傅里叶变换及其性质

对函数x(t)进行如下积分,并记为X(ω):
地球物理数据处理基础
其中 这称为傅里叶正变换,X(ω)是x(t)的傅里叶变换。利用X(ω)可以重构信号函数x(t),即
地球物理数据处理基础
称为傅里叶反变换。两式组成一个傅里叶变换对。若t代表空间坐标变量,则ω就代表空间频率域的频率变量,因此称X(ω)为x(t)的频谱函数。
傅里叶变换的性质:设f(x),g(x)的傅里叶变换分别是F(ξ),G(ξ),那么
(1)线性 af(x)+bg(x)的傅里叶变换是aF(ξ)+bG(ξ)(a,b是常数);
(2)褶积(或卷积)f(x)*g(x)=∫∞-∞f(u)g(x-u)du的傅里叶变换是F(ξ)·G(ξ);
(3)翻转 f(-x)的傅里叶变换是F(-ξ);
(4)共轭 的傅里叶变换是
(5)时移(延迟) f(x-x0)的傅里叶变换是eix0ξF(ξ);
(6)频移(调频) F(ξ-ξ0)是f(x)e-iξ0x的傅里叶变换(ξ0是常数)。
上面的定义都是连续型傅里叶变换,然而在地球物理实际计算中都是离散型数据,因此我们感兴趣的是数据是离散的情况,需要将上述傅里叶变换化为有限离散傅里叶变换对:
地球物理数据处理基础
其中N是数据点数。两个公式除了系数和指数的符号不同外,结构基本相同,式(8-3)为离散傅里叶变换(DFT),式(8-4)为离散傅里叶反变换(IDFT)。

傅里叶变换性质

傅里叶变换的本质,就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。
傅里叶变换的本质,就是用各种频率不同的周期函数(频域)线性表示原始函数(时域),必然具有线性性。这与积分的线性性是一致的。
线性性质可用图1来概括。先变换再求和,与先求和再变换,结果是一致的。
傅里叶变换 1、傅里叶变换是线性算子,若赋予适当的范数,它还是酉算子。 2、傅里叶变换的逆变换容易求出,而且形式与正变换非常类似。 3、正弦基函数是微分运算的本征函数,从而使得 线性微分方程 的求解可以转化为常系数的代数方程的傅里叶求解。