×

欧拉数学家,欧拉是哪个世纪的数学家?

admin admin 发表于2024-03-30 08:01:02 浏览29 评论0

抢沙发发表评论

本文目录一览:

数学家欧拉简介

  我粘贴来的哈!
  莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。
  简介
  欧拉1707年4月15日出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时新发明的微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。 欧拉的一生很虔诚。然而,那个广泛流传的传说却不是真的。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼·狄德罗:“先生,(a+b)n/n = x;所以上帝存在,这是回答!” 欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了。 小行星欧拉2002是为了纪念欧拉而命名的。
  “欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样”(阿拉戈语),这句话对欧拉那无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为“分析的化身”。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。 欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了。
  欧拉的数学生涯开始于牛顿(Newton)去世的那一年。对于欧拉这样一个天才人物,不可能选择到一个更有利的时代了。解析几何(1637年问世)已经应用了90年,微积分大约50年,牛顿(Newton)万有引力定律这把物理天文学的钥匙,摆到数学界人们面前已40年。在这每一个领域之中,都已解决了大量孤立的问题,同时在各处做了进行统一的明显尝试。但是还没有像后来做的那样,对整个数学,纯粹数学和应用数学,进行任何有系统的研究。特别是笛卡儿(Descrates)、牛顿(Newton)和莱布尼茨(Leibniz)强有力的分析方法还没有像后来那样被充分运用,尤其在力学和几何学中更是如此。 那时代数学和三角学已在一个较低的水平土系统化并扩展了。特别是后者已经基本完善。在费马(Fermat)的丢番图分析和一般整数性质的领域里则不可能有任何这样的"暂时的完善"(甚至到现在也还没有)。但就在这方面,欧拉也证明了他确是个大师。事实上,欧拉多方面才华的最显著特点之一,就是在数学的两大分支--连续的和离散的数学中都具有同等的能力。 作为一个算法学家,欧拉从没有被任何人超越过。也许除了雅可比之外,也没有任何人接近过他的水平。算法学家是为解决各种专门问题设计算法的数学家。举个很简单的例子,我们可以假定(或证明)任何正实数都有实数平方根。但怎样才能算出这个根呢?已知的方法有很多,算法学家则要设计出切实可行的具体步骤来。再比如,在丢番图分析中,还有积分学里,当一个或多个变量被其他变量的函数进行巧妙的(常常是简单的)变换之前,问题往往不可能解决。算法学家就是自然地发现这种窍门的数学家。他们没有任何同一的程序可循,算法学家就像随口会作打油诗的人--是天生的,而不是造就的。 目前时尚轻视"小小算法学家"。然而,当一个真正伟大的算法学家像印度的罗摩奴阔一样不知从什么地方意外来临的时候,就是有经验的分析学者也会欢呼他是来自天国的恩赐:他那简直神奇的对表面无关公式的洞察力,会揭示出隐藏着的由一个领域导向另一个领域的线索。从而使分析学者得到为他们提供的弄清这些线索的新题目。算法学家是"公式主义者",他们为了公式本身的缘故而喜欢美观的形式。
莱昂哈德·欧拉Leonhard Euler 1707年4月5日~1783年9月18日 是瑞士数学家和物理学家。他被称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。  "欧拉进行计算看起来毫不费劲儿,就像人进行呼吸,像鹰在风中盘旋一样°(阿拉戈语),这封伦纳德.欧拉(1707--1783)无与伦比的数学才能来说并不夸张,他是历史上最多产的数学家。与他同时代的人们称他为"分析的化身"。欧拉撰写长篇学术论文就像一个文思敏捷的作家给亲密的朋友写一封信那样容易。甚至在他生命最后17年间的完全失明也未能阻止他的无比多产,如果说视力的丧失有什么影响的话,那倒是提高了他在内心世界进行思维的想像力。?0?2
  欧拉到底为了多少著作,直至1936年人们也没有确切的了解。但据估计,要出版已经搜集到的欧拉著作,将需用大4开本60至80卷。1909年瑞士自然科学联合会曾着手搜集、出版欧拉散轶的学术论文。这项工作是在全世界许多个人和数学团体的资助之下进行的。这也恰恰显示出,欧拉属于整个文明世界,而不仅仅屈于瑞士。为这项工作仔细编制的预算(1909年的钱币约合80000美元)却又由于在圣彼得堡(列宁格勒)意外地发现大量欧拉手稿而被完全打破了。
  欧拉和丹尼尔·伯努利一起,建立了弹性体的力矩定律:作用在弹性细长杆上的力矩正比于物质的弹性和通过质心轴和垂直于两者的截面的惯性动量。?0?2
  他还直接从牛顿运动定律出发,建立了流体力学里的欧拉方程。这些方程组在形式上等价于粘度为0的纳维-斯托克斯方程。人们对这些方程的主要兴趣在于它们能被用来研究冲击波。?0?2
  他对微分方程理论作出了重要贡献。他还是欧拉近似法的创始人,这些计算法被用于计算力学中。此中最有名的被称为欧拉方法。?0?2
  在数论里他引入了欧拉函数。?0?2
  自然数的欧拉函数被定义为小于并且与互质的自然数的个数。例如,,因为有四个自然数1,3,5和7与8互质。?0?2
  在计算机领域中广泛使用的RSA公钥密码算法也正是以欧拉函数为基础的。?0?2
  在分析领域,是欧拉综合了莱布尼兹的微分与牛顿的流数。?0?2
  他在1735年由于解决了长期悬而未决的贝塞尔问题而获得名声:?0?2
  :其中是黎曼函数。?0?2
  欧拉将虚数的幂定义为如下公式:这就是欧拉公式,它成为指数函数的中心。?0?2
  在初等分析中,从本质上来说,要么是指数函数的变种,要么是多项式,两者必居其一。被理查德·费曼称为“最卓越的数学公'”的则是欧拉公式的一个简单推论(通常被称为欧拉恒等式):?0?2
  :在1735年,他定义了微分方程中有用的欧拉-马歇罗尼常数:?0?2
  :他是欧拉-马歇罗尼公式的发现者之一,这一公式在计算难于计算的积分、求和与级数的时候极为有效。?0?2
  在1739年,欧拉写下了《音乐新理论的尝试(Tentamennovaetheoriaemusicae)》,书中试图把数学和音乐结合起来。?0?2
  一位传记作家写道:这是一部"为精通数学的音乐家和精通音乐的数学家而写的"著作。?0?2
  在经济学方面,欧拉证明,如果产品的每个要素正好用于支付它自身的边际产量,在规模报酬不变的情形下,总收入和产出将完全耗尽。?0?2
  在几何学和代数拓扑学方面,欧拉公式给出了单联通多面体的边、顶点和-(zh-hans:面;zh-hant:面)-之间存在的关系::?0?2
  其中,F为给定多面体的面数之和,E为边数之和,V为顶点数之和。?0?2
  这个定理也可用于平面图。对非平面图,欧拉公式可以推广为:如果一个图可以被嵌入一个流形,则::其中χ为此流形的欧拉特征值,在流形的连续变形下是不变量。?0?2
  单联通流形,例如球面或平面,的欧拉特征值是2。?0?2
  对任意的平面图,欧拉公式可以推广为:,其中为图中连通分支数。?0?2
  在1736年,欧拉解决了柯尼斯堡七桥问题,并且发表了论文《关于位置几何问题的解法(Solutioproblematisadgeometriamsituspertinentis)》,对一笔画问题进行了阐述,是最早运用图论和拓扑学的典范。?0?2
  数独是欧拉发明的拉丁方块的概念,在当时并不流行,直到20世纪由平凡日本上班族锻治真起,带起流行

欧拉是不是数学家 欧拉是数学家

1、莱昂哈德·欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔·弗里德里克·高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。
2、欧拉1707年4月15日出生于瑞士,在那里受教育。他一生大部分时间在俄罗斯帝国和普鲁士度过。欧拉是一位数学神童.他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多遗产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时的新发明微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。

欧拉是哪个世纪的数学家?

  欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。
  事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"
  欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?
  他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。
  在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。
  回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,幻娑潦椤K?恋氖橹校?胁簧偈??椤?
  爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。
  小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。
  父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。
  小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"
  父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。
  父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学家欧拉的故事?

数学家欧拉的故事:
18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科。值得提出的是,偏微分方程的纯数学研究的第一篇论文是欧拉写的《方程的积分法研究》 。欧拉还研究了函数用三角级数表示的方法和解微分方程的级数法等等。
欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达式。1766年他出版了《关于曲面上曲线的研究》,建立了曲面理论。这篇著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的一个里程碑。欧拉在分析学上的贡献不胜枚举。
如他引入了Γ函数和B函数,证明了椭圆积分的加法定理,最早引入了二重积分等等。数论作为数学中一个独立分支的基础是由欧拉的一系列成果所奠定的。他还解决了著名的组合问题:柯尼斯堡七桥问题。在数学的许多分支中都常常见到以他的名字命名的重要常数、公式和定理。
扩展资料欧拉是18世纪数学界的中心人物。他是继牛顿(Newton)之后最重要的数学家之一。在他的数学研究成果中,首推第一的是分析学。欧拉把由伯努利家族继承下来的莱布尼茨学派的分析学内容进行整理,为19世纪数学的发展打下了基础。
他还把微积分法在形式上进一步发展到复数范围,并对偏微分方程,椭圆函数论,变分法的创立和发展留下先驱的业绩。在《欧拉全集》中,有17卷属于分析学领域。他被同时代的人誉为“分析的化身”。
欧拉将数学分析方法用于力学,在力学各个领域中都有突出贡献;他是刚体动力学和流体力学的奠基者,弹性系统销定性理论的开创人。
在1736年出版的两卷集《力学或运动科学的分析解说》中,他考虑了自由质点和受约束质点的运动微分方程及其解。欧拉在书中把力学解释为“运动的科学”,不包括“平衡的科学”即静力学。
参考资料来源:百度百科-莱昂哈德·欧拉

欧拉是什么意思?

欧拉(莱昂哈德·欧拉)一般指莱昂哈德·欧拉。
莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。
13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。
他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。
欧拉评价:
欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。十八世纪瑞士数学家和物理学家伦哈特·欧拉始终是世界最杰出的科学家之一。他的全部创造在整个物理学和许多工程领域里都有着广泛的应用。
欧拉的数学和科学成果简直多得令人难以相信。他写了三十二部足本著作,其中有几部不止一卷,还写下了许许多多富有创造性的数学和科学论文。总计起来,他的科学论著有七十多卷。欧拉的天才使纯数学和应用数学的每一个领域都得到了充实,他的数学物理成果有着无限广阔的应用领域。

大数学家欧拉出生于哪里?

大数学家欧拉出生于瑞士巴塞尔。
拓展资料:
1、欧拉是18世纪欧洲最著名的数学家之一,被誉为“现代数学之父”。他在数学领域发表了大量的论文和著作,包括多个数学分支,如微积分、数论、代数、几何、力学等领域,留下了深刻而广泛的影响。
2、欧拉生于1707年,出生在瑞士一个牧师家庭。在他还是孩子的时候,就表现出了惊人的数学才能。他在13岁时,已经开始研究欧几里得几何,并在几年内阅读了当时所有可得到的数学著作。
3、在欧拉的一生中,他发表了超过800篇论文和著作,其中包括一些开创性的工作。他曾提出许多著名的公式和定理,如欧拉公式($e^{ix}=\cos(x)+i\sin(x)$)、欧拉定理、欧拉-马斯刻罗尼定理等等,这些公式和定理在今天仍然被广泛应用。
4、在微积分方面,欧拉的贡献也非常显著。他发现了许多微积分中的重要概念,如导数、积分、微分方程等等。他还在微积分方面发表的文章中,提出了著名的“欧拉常数”$e$,这个常数在科学计算和应用中非常有用。
5、除了微积分,欧拉还发表了大量的数论论文,其中一个著名的成果是欧拉定理。该定理指出,在模下,如果a和n互质,则$a^{\phi(n)}\equiv1(\modn)$,其中$\phi(n)$是小于n且与n互质的正整数的个数。欧拉定理是现代加密技术的基础之一。
6、此外,欧拉在代数、几何、力学等领域也取得了很多成就。他提出了数学路易斯张量的概念,并对多项式理论做出了重要贡献。在几何方面,他阐述了“欧拉曲线”的概念,这是一种具有特殊形状的曲线。在物理学中,欧拉也是一个杰出的数学家,他的成就包括解决三体问题和建立刚体动力学的数学理论等。
7、总之,欧拉是一个杰出的数学家,他的作品广泛应用于数学和科学的各个领域,并且对后世数学家的研究也起到了重要的推动作用。他不仅在他自己的时代被赞誉为一个杰出的数学家,而且在今天,他的贡献和成就依然被广泛认可和推崇。

最简单的欧拉公式

最简单的欧拉公式:e^ix=cosx+isinx。
欧拉公式
欧拉公式在不同的学科中有着不同的含义。
复变函数中,e^(ix)=(cosx+isinx)称为欧拉公式,e是自然对数的底,i是虚数单位。
拓扑学中,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则 R+V-E=2,这就是欧拉定理,它于1640年由笛卡尔首先给出证明,后来欧拉于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为笛卡尔定理。
欧拉
莱昂哈德·欧拉,瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。
欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,我们将过着完全不一样的生活。
欧拉公式的意义即建立了三角函数和指数函数的关系,它不仅出现在数学分析里,而且在复变函数论里也占有非常重要的地位,更被誉为“数学中的天桥”。
最简单的欧拉公式:e^ix=cosx+isinx。
欧拉公式
欧拉公式在不同的学科中有着不同的含义。
复变函数中,e^(ix)=(cosx+isinx)称为欧拉公式,e是自然对数的底,i是虚数单位。
拓扑学中,在任何一个规则球面地图上,用R记区域个数,V记顶点个数,E记边界个数,则 R+V-E=2,这就是欧拉定理,它于1640年由笛卡尔首先给出证明,后来欧拉于1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其为笛卡尔定理。
欧拉
莱昂哈德·欧拉,瑞士数学家、自然科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。欧拉出生于牧师家庭,自幼受父亲的影响。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。
欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。此外欧拉还涉及建筑学、弹道学、航海学等领域。瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,我们将过着完全不一样的生活。”

“数学英雄”欧拉的天才之作—欧拉公式,为啥被称为宇宙第一公式?

欧拉公式是数学中当之无愧的最美公式,公式中包含着深刻的数学思想,也隐含了宇宙的哲学原理,其形式相当优美和迷人。
  e^iπ+1=0
  这个恒等式叫做欧拉公式,最早是由瑞士数学家莱昂哈德·欧拉在1740年发现,高斯曾说:“如果一个人第一次看到这个公式而不感受到它的魅力,那么他不可能成为数学家。”
  
  这个欧拉公式的神奇之处在于,它把数学中最基本的五个常数,以非常优美的形式结合了起来:
  e——自然对数,代表了大自然
  π——圆周率,代表了无限
  i——虚数单位,代表了想象
  1——数字一,代表了起点
  0——数字零,代表了终点
  乘法代表结合,指数代表加成,加法代表累计,等号代表统一。
  欧拉公式暗示着:大自然充满无限想象,但是最终都会归于终点。
  我们宇宙诞生于138亿年前的一次暴涨,那么138亿年前发生了什么事?或许在我们宇宙诞生之前,宇宙就经历了无数次的暴涨和收缩,宇宙未来也会坍缩为奇点,期间充满着无数可能,但是最终都会归于终点。
  
  另外,虚数在物理学中还隐含了时间的属性,比如广义相对论的四维时空(闵可夫斯基时空)中时间就是虚数;而广义的欧拉公式e^ix=cosx+isinx,随着x的增长,该公式的数学图形是绕着原点旋转,定义域在[-1,1]中往复,或许暗示了宇宙的无限膨胀和收缩。
  简简单单的一个数学公式,也只使用了最基本的运算符号,不仅把数学中最基本的五个常数联系了起来,还包含了如此深奥的宇宙哲学原理,被称作“宇宙第一公式”一点不过分。
  在数学中,你再也找不到能与之媲美的公式了,或许只有物理学中的质能方程还能一较高下;比如下图这个数学公式,虽然也包含了数学的基本常数,但是与欧拉公式相差甚远。
  
  欧拉公式不仅仅是形式优美,而且还有着巨大的实用价值,比如在研究交流电时少不了它,信号分析时的必备数学工具,量子力学的重要数学工具,极坐标切换需要它,求反常积分需要它,研究任何圆周运动使用欧拉公式都能大大得到简化。
欧拉,数学四大国王之一,一直被誉为天才中的天才。他发明了一系列对人类有深远影响的符号,如π、f(x)、sin、cos、tg等。欧拉可以说自己成功地为中国数学教科书贡献了许多知识点。让中国学生在高考数学地狱中努力奋斗。
然而,大学生并无法逃脱欧拉的折磨。从初等几何的欧拉线、多面体的欧拉定理、固体解析几何的欧拉变换公式、数论中四次方程到欧拉函数的欧拉解、微分方程的欧拉方程、级数理论的欧拉常数、变分法的欧拉方程、复变函数的欧拉公式都是他给理科大学生的礼物。
顺便说一下,他还创立了几个全新的学科:拓扑学、弹道学和分析力学。他的家庭被一场大火烧毁了他的大部分成就。他晚年失明了,但这并不妨碍他在数学方面取得更多成就。他可以依靠心算将复杂收敛系列的17个项目加到第50位。
他最著名的是欧拉公式(Euler formula),它非常简单,但被称为宇宙中的第一个公式,包含所有数学真理。然而,即使许多数学界过了一生都无法理解,这个公式也很难计算出来。你可以用任何方式证明它,你可以用许多不同的方式证明它,你可以用数学归纳法、推理、分数导数、复变函数甚至平面几何、物理学和拓扑学来证明它。这就是为什么据说他包含了所有的数学真理,甚至宇宙中最合理的法则。
物理学家查德·费曼(Chad Feynman)惊呼:欧拉恒等式不仅是“数学中最奇妙的公式”,也是现代物理学的量化脚跟。高斯曾经说过:“如果一个人第一次看到这个公式时没有感受到它的魅力,他就不可能成为数学家。”
因为这个公式的五个参数,是数学中最常用的常数,将此参数归纳到一个数学公式里面,非常有魅力!
中国周易,伏义,鲁班,袁天罡,鬼谷子,刘伯温。经典之哲学。写稿创作,那个不超过欧拉,费马,哥德巴赫,爱因斯坦,黎曼猜想!小学生知识思维时钟编程AⅠ制。
这个欧拉公式创立于1984年!欧拉、高斯、莱布尼兹、笛卡尔、欧几里德等皆为化名,实为同一人,其本尊以一已之力贡献了数字史之2/3!
欧拉公式对于学习数学的人来说都不会陌生,他被数学家们称为“最美公式”、“上帝创造的公式”,甚至还有人说它是宇宙第一公式。这个公式不仅蕴含着数学思想,并且还包含了宇宙的哲理,欧拉将最基本的五个常数组在一起,却形成了如此优美的公式。它可能是让高中生甚至大学生最为头疼的,但是它是每个数学领域的财富。
数学英雄--莱昂哈德欧拉
欧拉是著名的数学家、自然科学家。1707年在瑞士出生的欧拉,在13岁就入读了巴塞尔大学,16岁就获得了硕士学位,年轻有为。
而且他在数学界的成就是无人能及的,每一个数学领域都可以看到欧拉的影子,欧拉也是解析数论的奠基人,就是我们所了解的欧拉公式,建立了数论和分之间的联系,同时欧拉也是历史最多产的数学家,现存的欧拉所留下的数学笔记就要比很多数学家一起写的还多,甚至还有的手稿在意外中丢失,不得不说欧拉是数学界中数一数二的天才。
欧拉公式--e^iπ+1=0
在这个公式里,都是平日里我们所见的常数,可以说有学习过数学的人见了都不会陌生。
了解两个超越数:自然对数的底e和圆周率Π,两个单位:虚数单位i和自然数的单位1,还有就是我们最最常见甚至幼儿园小朋友都认识的0,就是这些最为基础且普通的常数,在欧拉的手下成为几个世纪以来最美的发现。
这个公式不仅仅代表着数学思想,也有欧拉对自然的思考,e代表着自然,Π代表着无限循环的可能,i代表着虚拟的想象,1是万物的起点,0则是万物的终点。大自然充满着无限的想象,但最后都会回归终点,想必这才是欧拉公式中最想表达的。
为啥欧拉公式就是宇宙第一公式?
虽然这种说法比较夸大,毕竟宇宙的奥秘我们还有很多没有探索,但是这也说明了在几个世纪中,欧拉带给人们的影响是多么的深刻。欧拉公式最大的成功就在于,它涉及的方面、领域广泛,它不仅推动了数学的发展,而且让人们有了哲学方面的思考。更是有数学家高斯曾说:“一个人第一次看到这个公式如果感受不到它的魅力,他不可能时数学家”。
总之,我们对宇宙的了解是有无限可能的,所以我们现在科技的发展,都是在探索奥秘的路上,在未来的某一天我们可能会看到宇宙的尽头,看到宇宙的终点,那时也许我们也就回归到了最初的起点,看到了一切诞生时的样子。

瑞士数学家欧拉生平简介

  莱昂哈德·欧拉,瑞士 数学 家、 自然 科学家。1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。下面是我为大家整理的瑞士数学家欧拉生平简介,希望大家喜欢!


  欧拉生平简介
  欧拉是瑞士非常有名的数学家和各种大家,据说他是个天才 儿童 ,还没有成年就获得了很高的学位证书。他在同龄人中的确是非常突出的一位天才。欧拉在数学方面是一位不折不扣的高手,他是数学 历史 上有史以来学术 论文 产出最多的一位才子,而且他的论文都是长篇大论的。他还编写了好多的数学课本,有好几本都成为了数学中的经典著作。相比其他研究领域,欧拉对计算的研究尤其之多,在数学的很多定理只是中都能经常见到他的名字。

  欧拉出生在瑞士这片国土上,瑞士培育出了如此伟大的欧拉。从小他就很有天赋。他的一生为数学领域付出了一切,也收获了很多成果,为数学这一门 学科 做出了很大的成就。欧拉也涉足其他的领域,也为其他领域做出了很多贡献。欧拉的一生是非常虔诚的,每次在研究数学问题时,总是把上帝放在嘴边或者心上。

  欧拉是一个无论是在什么环境下都能够保持静心工作的人,他的专注令人惊讶到就算他的周围围着好几个吵闹的孩子,他依然能够很清晰的写自己的论文。他的优秀不是别人给的,而是他本身就拥有的。

  欧拉把自己所有的心血都献给了自己所从事的研究工作上。甚至死他都要想着和自己的事业在一起。欧拉在离世前本来是在和亲朋好友参加聚会的,但是他却提早回去工作了,最后是在自己的书房里离开的。
  欧拉的贡献
  首先,欧拉的贡献在于微积分方面的研究,他在整理前人研究内容的基础上,还先后发表了自己的研究文章,从中对于 函数 进行了比较系统的研究和探讨,由此发现了函数的新解释,并且给出了新的概念和定义。从此之后,欧拉的研究更多深入,并且引进了超越函数的概念,对函数学产生极大影响。

  而在微分方程这一方面,欧拉的研究和贡献也是非常大的,1727年,他用一阶方程的概念来替换一类二阶方程,这是关于此类研究的系统性开拓,而在数论的研究方面,欧拉的贡献无疑在于他首次提出了二次互反律,同时还产生了著名的欧拉函数。

  欧拉的贡献远远不止前面提到的几个方面,在几何领域,他对于曲线的研究也是颇有成就的,当时,欧拉关于曲面理论的研究,文章一经发表就引起很大轰动,而对于微积分方程的研究,欧拉还通过独特的理论 成功 地找到了欧拉方程,也就是极值函数所满足的方程,产生了极大的影响。

  欧拉在数学领域所作出的贡献,无论从哪个方面来说都是巨大的,而他的成就和贡献还对现代的数学有着很大的作用。
  数学家欧拉的 故事
  欧拉是世界上特别著名的数学家,他为数学领域做出了非常大的贡献。那么数学家欧拉有哪些比较经典的故事呢。

  虽然欧拉在他所从事的领域里面做出了很多惊人的成就,但是这位大数学家在小学的时候却是个令老师们特别头疼的孩子。他曾经还是个被学校开除过的小学生,欧拉小的时候是在教会里面读的书,有一次他就问老师,天上有多少颗星星。当然,老师肯定是不知道的,但是出于作为一个老师威严,他不懂装懂的而且答非所问的告诉欧拉说星星是上帝镶嵌在上面的。但欧拉又追问上帝是怎么把那么多星星镶上去的,要是弄错了怎么办。老师自然是不知道要怎么去回答他的这个问题,而且欧拉竟然还质疑了万能的上帝。老师很生气,欧拉就这样被勒令回家。

  在家的日子,欧拉一边放羊,一边读书,其中包括了很多数学书。在这一期间,因为羊的数量增加了,父亲想要再建羊圈,但是欧拉却想了个方便又实惠的法子。父亲觉得孩子很聪明,就想方设法让他认识了一位数学家。这位数学家也发现他是个数学方面的小天才,于是通过推荐,欧拉成为了一名年纪最小的大学生。从此之后,欧拉就踏上了他伟大的人生之路。

  从数学家欧拉的故事中可以看出,他从小就是个与众不同的孩子,长大了自然会有大成就的。

猜你喜欢:

1. 数学家欧拉的历史贡献有哪些

2. 高一语文课本阅读题

3. 关于一站到底最全题库

4. 有关数学史方面的论文参考范文

5. 圆周率的历史资料800字

欧拉是怎样开始研究数学的?

1707年4月15日,瑞士巴塞尔城附近的里恩村,有一位叫保尔·欧拉的牧师家里诞生了一个男孩,这就是后世称其为“百科全书式的数学家”欧拉。
小欧拉自幼聪颖,7岁那年,父亲把他送到巴塞尔神学校去学习神学。起初,他对上帝创世深信不疑。一次,他问老师:“天上有多少颗星?”老师答不出来,只是说:“天上的星星都是上帝亲手嵌上去的。”于是,小欧拉问:“既然上帝亲手制作了星星,为什么记不住它们的数目呢?”他对上帝的信仰开始动摇,也不专心听课了。不久,学校开除了他。
父亲保尔通数学,见儿子不愿学神学,就开始向他传授数学知识。小欧拉如鱼得水,立刻入了迷。
1719年,欧拉12岁。父亲为了考一考儿子的能力,正赶上家里要修羊圈。于是,他给出了一个固定长度,让欧拉围成一个面积最大的方形羊圈。欧拉想来想去,把它围成了一个正方形。于是,小欧拉“巧围羊圈”的故事不胫而走,被巴塞尔大学的著名数学教授伯努利约翰知道了。这位教授竟亲自出城,找到欧拉的父亲,说要保举小欧拉去大学学数学。老欧拉却说:“教授,我希望他将来是一位神学家,而不是数学家。”约翰说:“可你知道吗,这孩子是个数学天才。如果你固执己见,会葬送这孩子的前程。”
在约翰教授的劝说下,老欧拉终于点头了,13岁的小欧拉被巴塞尔大学破格收录了。欧拉不负老师厚望,入学后勤奋好学,广闻博览,又善于独立思考,不久就可以与那些年龄大的同学比肩。他的老师约翰则根据他的特点因材施教,循循善诱,每周六的下午都挤出时间为他个别辅导,使他的学业突飞猛进。17岁时,欧拉便成为巴塞尔大学第一位最年轻的硕士。1726年,欧拉发表了讨论船桅最佳位置选择的论文,荣获巴黎科学院的奖金。
1727年,欧拉由丹尼尔推荐,受俄罗斯女王叶卡特琳娜的聘请,来到彼得堡科学院任院长,做丹尼尔的助手。1733年,丹尼尔回国,欧拉接替丹尼尔的工作,成为数学教授及彼得堡科学院的学部领导人。由于当时俄国统治集团长期陷入权力之争,无心科学事业,科学院的生存岌岌可危。1733年至1741年,欧拉的工作条件相当艰苦。他的许多不朽著作,都是在“膝上坐着孩子,肩上趴着猫”的情况下写出来的。欧拉还担负着许多社会责任,如承担菲诺运河的改造方案,宫廷排水设施的设计审定,为俄国学校编写教材,帮助政府绘制地图,制定度量衡标准,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析……由于他长期疲劳工作,又长期观测太阳,使他的视力迅速衰退。1735年,年仅28岁的欧拉右眼失明了。就在这时,有关“七桥问题”传入彼得堡科学院,欧拉出于对数学的热爱,又潜心研究起“七桥问题”。“七桥问题”是古希腊人留下的一道难题。18世纪初,波罗的海沿岸的古城哥尼斯堡(今加里宁格勒),普雷格尔河横贯市区。这条河在市区内分成两个支流,把奈发夫岛截成两段并把两岛环抱起来,形成了一个美妙的“8”字。有好事者根据古人的“七桥问题”,就在这里建起了七座桥,把两个小岛和两岸连接起来。于是,这个问题直观地摆在游人面前:一个人怎样才能一次走过七座桥,而且每座桥只经过一次,最后又回到出发点。
从此,无论是稚气未退的少年还是白发苍苍的老者,都想试一试自己的智力。他们在这七座桥上穿来走去,但都没有一个人能成功过。因此,这七座桥便很快地名扬欧洲,又把来一批批游客。但是,又有多少年过去了,还是没人成功。
这时,29岁的独眼青年欧拉也来到了哥尼斯堡,他在桥上走了几次之后,想道:“千百万人的无数次失败,是不是说明这样的走法根本就不存在呢?”
猜想是需要证明的。于是,欧拉埋头对这个猜想进行证明。他先用“穷举法”,即把所有可能的走法列成表格,逐一检查哪种走法能行得通。结果他发现这是一件相当繁琐的事情,要列出7×6×5×4×3×2=5040条路线来!这太困难。另外,他又想到,如果存在更多的桥,或一个城市有更多的街道,那可如何列呀?于是,他换了一种思维方式,想到了莱布尼茨的“位置几何学”。经过细心推想,他把两个小岛和两岸陆地看成A、B、C、D四个点,而把7座桥看成是7条线,就画成了一幅图:
由于此图有点像蝉,所以后人称之为“欧拉金蝉”。通过这个图形,欧拉严谨地证明:不可能不重复地一次走遍这7座桥。
很明显,“七桥问题”是一个几何图形问题。但是,在此之前的传统几何学却把它排除在外,因为人们所熟知的几何理论,都是与“量”(长短、大小等)有关,而这个问题居然与“量”无关。“七桥问题”提出了一个新的几何学的分支——“拓扑学”。欧拉一举证明了“七桥问题”一时引起人们的敬慕和惊叹,求教的人络绎不绝。后人称他为“拓扑学的鼻祖”。接着,欧拉又继续研究,他的几何学超出了欧几里得的范围,从而奠定了“网络论”几何学科的基石。
1741年,欧拉不能忍受俄国统治者的昏庸腐败,离开了生活14年的彼得堡,踏上了普鲁士国土。1759年,他成为柏林科学院的领导人,为普鲁士王国解决了大量的社会实际问题。如社会保险、运河水力、造币规划等。他成功地将数学应用到各种实际的科学和技术领域。
1762年,俄国的叶卡特琳娜二世继位。在这位有为的女王敦请下,欧拉重返彼得堡,继续他的研究和工作。1766年,欧拉的左眼又失明了,使他完全成了一个盲人。但他仍以顽强的毅力,采用口述,由别人记录的方法,坚持他的研究。
1777年,更大的不幸降临,欧拉的家里不慎失火,他的著述几乎全都变为灰烬。这对于70岁高龄的欧拉来说,是一个致命的打击。然而,欧拉却以惊人的毅力,重新开始他的著述。他的头脑里如一卷百科全书,他不停地口述,助手为其记录,居然把他葬身火海的著作全都重新写了出来,而且还进行了一次订正!
1783年9月18日,欧拉走过了76年的历程与世长辞。他死后,数学家们把他的著作编成全集出版,竟达72卷之多。
在欧拉的著作中,“无限小分析”方法是从欧拉开始的;变分学基础是欧拉方程;拓扑学中有欧拉数;刚体力学有欧拉角;复变函数中有欧拉函数;数论中有欧拉定理……后人称欧拉为“数学分析的化身”。在世界数学发展史上,人们把18世纪称为“欧拉时代”。