本文目录一览:
- 1、偏微分方程?
- 2、微分方程的公式
- 3、偏微分方程是什么
- 4、常微分方程,偏微分方程,全微分方程各是什么,有什么区别?
- 5、什么是偏微分方程?
- 6、偏微分方程是什么?
- 7、什么是常微分方程?什么是偏微分方程?
- 8、偏微分方程
- 9、微分方程和偏微分方程的区别?
- 10、偏微分方程
偏微分方程?
?f/?x=-f(x,y)
?f/f(x,y) =-?x
ln|f(x,y)| = -x +C'(y)
f(x,y) =e^(-x +C'(y)) = C(y).e^(-x)
解:关于y的微分方程为f'(0,y)/f(0,y)=
coty,有f'(0,y)/f(0,y)=cosy/siny,
两边同时积分有ln|f(0,y)|=ln|siny|
+ln|c|(c为任意非零常数),得:
f(0,y)=csiny,且当x=0时,c(x)=c
微分方程?f(x,y)/?x=-f(x,y),此时
把y看作常数,偏微分方程可以看作为
常微分方程df(x,y)/dx=-f(x,y),有
df(x,y)/f(x,y)=-dx,ln|f(x,y)|=-x+
ln|C|(此时C为关于y的方程,且C≠0),
得:f(x,y)=C(y)e^(-x)
则C(y)e^(-x)=c(x)siny,方程z=f(x,y)为
z=siny×e^(-x)
微分方程的公式
1 微分方程
要了解微分方程,得从微分说起,微分的核心是变化率。就比如速度v = d x d t v=\frac{dx}{dt}v=
dt
dx
,即每一时刻距离的变化;而加速度a = d v d t a=\frac{dv}{dt}a=
dt
dv
,即每一时刻速度的变化。
有了这个概念后,我们再来看微分方程,简单来说就是由变化率构成的一个方程。其使用场景为:描述相对变量比绝对量更容易时。
微分方程分为两部分:
常微分方程(Ordinary Differential Equations, ODE):函数自变量只有一个,如:y ′ ( x ) = p y + q y'(x)=py+qy
′
(x)=py+q。
偏微分方程(Partial Differential Equations, PDE):函数有多个自变量,如:? T ? t ( x , y , t ) = ? 2 T ? x 2 ( x , y , t ) + ? 2 T ? y 2 ( x , y , t ) \frac{\partial T}{\partial t}(x,y,t)=\frac{\partial^2T}{\partial x^2}(x,y,t)+\frac{\partial^2T}{\partial y^2}(x,y,t)
?t
?T
(x,y,t)=
?x
2
?
2
T
(x,y,t)+
?y
2
?
2
T
(x,y,t)
微分方程也可以分为一阶方程和高阶方程,具体的组成(解法)如下图:
微分方程
2 一阶方程
2.1 一阶线性微分方程
形如:
y ′ + p ( x ) y = q ( x ) y'+p(x)y=q(x)
y
′
+p(x)y=q(x)
若:
q ( x ) = 0 q(x)=0q(x)=0,则是一阶线性齐次微分方程;
q ( x ) ≠ 0 q(x)≠0q(x)
=0,则是一阶线性非齐次微分方程;
偏微分方程是什么
偏微分方程
partial differential equation
含有未知函数及其各阶偏导数的方程。如(余类此)
ut-a2(uxx+uyy+uzz)=0(1)其中u=u(x,y,z,t)为未知函数 ,x ,y,z,t 是自变 量。18 世纪 ,数学家们已开始用偏 微分方程来研究问题 。方程(1)便是用来描述热的传导规律的。1746年 ,J.LeR.达朗贝尔给出了一维波动方程(两端固定的弦的振动问题):
由于弦的两端固定,故在x=0和x=l处(l为弦的长度)应满足边界条件:
u(0,t)=0 u(l,t)=0
t≥0(3)又当t=0时的状态,即初始条件是
u(0,x)=j(x) ut(0,x)=ψ(x)(4)
一般,每个偏微分方程有许多解,且含有任意函数,一阶方程的解含有一个任意函数,二阶方程的解含有两个任意函数,例如(2)有解u=f(x-at)+ g( x+at ) ,其中f(x) 、g(η) 是二次可微的函数 。通常 ,更注重求满足某些附加条件的特解:未知函数在初始时刻所满足的条件叫初始条件 ,如(4),在所给区域边界上所满足的条件叫边界条件 ,如(3),初始条件和边界条件统称定解条件 ,这都要由实际问题来确定。求方程满足初始条件的定解问题叫初值问题或柯西问题,只含边界条件的定解问题叫边值问题,既有初始条件,又有边界条件的问题称为初边值问题或混合问题。如果某个解,当定解条件中的量变化不大时,解的变化也不大,就称解连续依赖于定解条件。若定解问题的解存在、唯一且连续依赖于定解条件,就称定解问题为适定的或称问题的提法是正确的。
常微分方程,偏微分方程,全微分方程各是什么,有什么区别?
常微分方程:解得的未知函数是一元函数的微分方程.
偏微分方程:解得的未知函数是多元函数的微分方程.
全微分方程:一个一阶微分方程写成P(x,y)dx+Q(x,y)dy=0的形式后,它的左端恰好是某个函数u=u(x,y)的全微分,则该微分方程叫全微分方程.
什么是偏微分方程?
什么是偏微分
1. 在多元函数中,函数对每个自变量的导数是偏导数。因此,每个自变量的微分称为偏微分。
2. 例如,如果z=f (x, y),那么偏z偏x就是z对x的导数,也就是z对x的偏导数。此时,y被视为常数。z关于y的偏导数也可以用同样的方法求出来。偏导数是偏导数乘以dx或dy,全微分是两个偏微分的和。
3.偏微分方程是含有未知函数偏导数(或偏微分)的方程。方程中未知函数的偏导数的最高阶称为方程的阶。二阶偏微分方程是数学、物理和工程技术中应用最广泛的一类方程。它们通常被称为数学物理方程。
偏微分方程是什么?
微分方程
指含有未知
函数
以及它的
导函数
的方程
如果未知函数为
一元函数
,则称为
常微分方程
未知函数为
多元函数
,导函数为它的偏导,则称为
偏微分方程
根本上来讲,就是为了解偏微分方程。
具体方法就是把二阶的偏微分方程化成一阶的常微分方程。
根本上来讲,就是为了解偏微分方程。
具体方法就是把二阶的偏微分方程化成一阶的常微分方程。
科普中国·科学百科:偏微分方程
什么是常微分方程?什么是偏微分方程?
1、定义不同
凡含有参数,未知函数和未知函数导数 (或微分) 的方程,称为微分方程,有时简称为方程,未知函数是一元函数的微分方程称作常微分方程,未知函数是多元函数的微分方程称作偏微分方程。微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶。
2、解决方法不同
对于偏微分方程问题的讨论和解决,往往需要应用泛函分析、代数与拓扑学、微分几何学等其它数学分支的理论和方法。
大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。
3、应用范围不同
偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。
常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。
参考资料来源:百度百科-常微分方程
参考资料来源:百度百科-偏微分方程
偏微分方程
偏微分方程包含未知函数的偏导数(或偏微分)的方程。
包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。在数学、物理及工程技术中应用最广泛的,是二阶偏微分方程,习惯上把这些方程称为数学物理方程。
客观世界的物理量一般是随时间和空间位置而变化的,因而可以表达为时间坐标t和空间坐标函数,这种物理量的变化规律往往表现为它关于时间和空间坐标的各阶变化率之间的关系式,即函数u关于t。
设Ω是自变数空间R中一个区域,u是在这个区域上定义的具|α|阶连续导数的函数。如果它能使方程(2)在Ω上恒等成立,那么就称u是该方程在Ω中的一个经典意义下的解,简称为经典解。在不致误会的情况下,就称为解。
偏微分方程理论研究一个方程(组)是否有满足某些补充条件的解(解的存在性),有多少个解(解的惟一性或自由度),解的各种性质以及求解方法等等,并且还要尽可能地用偏微分方程来解释和预见自然现象以及把它用之于各门科学和工程技术。
偏微分方程理论的形成和发展都与物理学和其他自然科学的发展密切相关,并彼此促进和推动。其他数学分支,如分析学、几何学、代数学、拓扑学等理论的发展也都给予偏微分方程以深刻的影响。
微分方程和偏微分方程的区别?
两者不存在区别之分,因为两者是包含与被包含的关系。微分方程包括常微分方程。
微分方程指含有未知函数及其导数的关系式。解微分方程就是找出未知函数。
未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。
含有未知函数的导数,如 的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。
微分方程是伴随着微积分学一起发展起来的。
扩展资料
微分方程的应用:
是重要工具之一。流体力学、超导技术、量子力学、数理金融中的稳定性分析、材料科学、模式识别、信号(图像)处理 、工业控制、输配电、遥感测控、传染病分析、天气预报等领域都需要它。
微分方程的解:
偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。
在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,维数是很小的。
高阶方程中,线性方程仍可以用叠加原理求解,即n阶齐次方程的通解是它的n个独立特解的线性组合,其系数是任意常数。非齐次方程的通解等于相应齐次方程的通解加上非齐次方程的特解,这个特解并且可以用常数变易法通过求积分求得。
求齐次方程的特解,当系数是常数时可归结为求一代数方程的根,这个代数方程的次数则是原方程的阶数;当系数是变数时,则只有二种极特殊的情况(欧拉方程、拉普拉斯方程)可以求得。
至于非线性高阶方程则除了少数几种可降阶情形(如方程(1)就是这几种情形都有的一个方程)之外,可以求得通解的为数就更小了。n阶方程也可以化为一阶方程组(未知函数的个数和方程的个数都等于 n)早已为人们所知,并且在此后起着一定作用,但对通解的寻求仍无济于事。
参考资料来源:百度百科-微分方程
偏微分方程
包含未知函数的偏导数(或偏微分)的方程。方程中所出现未知函数偏导数的最高阶数,称为该方程的阶。
微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。不过这些著作当时没有引起多大注意。
1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。
数学应用
在数学上,初始条件和边界条件叫做定解条件。
偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。
求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。