×

祖冲之与圆周率的故事,数学名人故事:祖冲之和圆周率的故事

admin admin 发表于2024-03-24 20:50:26 浏览20 评论0

抢沙发发表评论

本文目录一览:

祖冲之与圆周率的故事

祖父经常给祖冲之讲一些科学家的故事,其中张衡发明地动仪的故事深深打动了祖冲之幼小的心灵.
祖冲之常随祖父去建筑工地,晚上,在那里他常同农村小孩们一起乘凉、玩耍.
天上星星闪烁,在祖冲之看来,这些星星很杂乱地散布着,而农村孩子们却能叫出星星的名称,如牛郎、织女以及北斗星等,此时,祖冲之觉得自己实在知道得很少.
祖冲之不喜欢读古书.5岁时,父亲教他学枟论语枠,两个月他也只能背诵十几句.气得父亲又打又骂.可是他喜欢数学和天文.
一天晚上,祖冲之躺在床上想白天老师说的“圆周是直径的3倍”这话似乎不对.
第二天早,他就拿了一段妈妈绱鞋子的绳子,跑到村头的路旁,等待过往的车辆.
一会儿,来了一辆马车,祖冲之叫住马车,对驾车的老人说:
“让我用绳子量量您的车轮,行吗?”老人点点头.
祖冲之用绳子把车轮量了一下,又把绳子折成同样大小的3段,再去量车轮的直径.量来量去,他总觉得车轮的直径没有1/3的圆周长.
祖冲之站在路旁,一连量了好几辆马车车轮的直径和周长,得出的结论是一样的.
这究竟是为什么?这个问题一直在他的脑海里萦绕.他决心要解开这个谜.
经过多年的努力学习,祖冲之研究了刘徽的“割圆术”.所谓“割圆术”就是在圆内画个正6边形,其边长正好等于半径,再分12边形,用勾股定理求出每边的长,然后再分24、48边形,一直分下去,所得多边形各边长之和就是圆的周长.
祖冲之非常佩服刘徽这个科学方法,但刘徽的圆周率只得到96边,得出3 .14的结果后就没有再算下去,祖冲之决心按刘徽开创的路子继续走下去,一步一步地计算出192边形、384边形 ?? 以求得更精确的结果.
当时,数字运算还没利用纸、笔和数码进行演算,而是通过纵横相间地罗列小竹棍,然后按类似珠算的方法进行计算.
祖冲之在房间地板上画了个直径为1丈的大圆,又在里边做了个正6边形,然后摆开他自己做的许多小木棍开始计算起来.
此时,祖冲之的儿子祖 ?? 已13岁了,他也帮着父亲一起工作,两人废寝忘食地计算了十几天才算到96边,结果比刘徽的少0 .000002丈.
祖 ?? 对父亲说:“我们计算得很仔细,一定没错,可能是刘徽错了.”祖冲之却摇摇头说:“要推翻他一定要有科学根据.”于是,父子俩又花了十几天的时间重新计算了一遍,证明刘徽是对的.
祖冲之为避免再出误差,以后每一步都至少重复计算两遍,直到结果完全相同才罢休.
祖冲之从12288边形,算到24567边形,两者相差仅0 .0000001.祖冲之知道从理论上讲,还可以继续算下去,但实际上无法计算了,只好就此停止,从而得出圆周率必然大于3 .1415926,而小于3 .1415927.
很多朋友知道了祖冲之计算的成绩,纷纷登门向他求教.之后,祖冲之又进一步得出圆周率的密率是355/113,约率是22/7.直到1000多年后,德国数学家鄂图才得出相同的结果.
扩展资料
祖冲之(429-500),字文远。出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县),中国南北朝时期杰出的数学家、天文学家。
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
由他撰写的《大明历》是当时最科学最进步的历法,对后世的天文研究提供了正确的方法。其主要著作有《安边论》《缀术》《述异记》《历议》等。
答:祖冲之和圆周率的故事
祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。直到16世纪,阿拉伯数学家阿尔·卡西才打破了这一纪录。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。
一位德国数学家讲得好:在数学发展的历史上,许多国家的数学家都曾寻找过更加精密的圆周率,因此圆周率的精密程度可以作为衡量这个国家数学发展水平的标志。根据这种说法,我们就能认识到祖冲之的辉煌成就,具有多么巨大的意义,从中看出我国古代数学发展的高水平。
  祖冲之(公元429~500),字文远,范阳遒县(今河北省涞水县北)人,生活于南朝的宋、齐之间,是我国古代杰出的数学家、天文学家和机械发明家。祖冲之卓越的数学成就,在世界数学史上闪耀着光芒,是中华民族的骄傲。南朝时期,经济繁荣,文化发达,因而也对科学技术进步提出较为迫切的要求。这为祖冲之的科学成就创造了良好的社会基础。祖氏家族世代掌管历法。祖冲之从小受到很好的家庭教育,对于自然科学、文学和哲学都有浓厚的兴趣。他尤其酷爱数学、天文学、机械制造,苦心钻研。当时宋朝政府中有一个研究学术的机关,叫华林学省,祖冲之青年时期就被吸收在这里从事研究工作。祖冲之一面研究继承家学,一面学习我国古代及外国传入的科学成就。他博览群书,兼学百家,为后来的科研工作奠定了深厚的基础。
  祖冲之小时候酷爱数学和天文,学习非常刻苦,他“专攻数术,搜炼古今”,把从古代到6世纪所保存的观测记录和有关文献,几乎全部搜集来作为参考。他对圆周率的研究开始得很早,后来达到了如醉如痴的地步。相传,有一天,夜已经很深了,他翻来覆去睡不着,《周髀算经》上说,圆周的长是直径的3倍,这个说法对吗?天还没亮,他就把妈妈叫醒,要了一根绳子,跑到大路上,等候着马车。突然,来了一辆马车,祖冲之喜出望外,要求量马车的轮子,经过再三测量,他总觉得圆周长大于直径的3倍,究竟大多少?这个问题一直盘旋在他的脑子里,直到40多岁,才解开了这个谜。
  祖冲之最突出的成就是对圆周率的精确推算。现在都知道,圆周率是圆的周长与直径的比。这是一个常数,一般用希腊字母π表示。已经证明,π不但是一个无理数,而且是一个超越数,就是说,既不能用有限的数字精确地表示它,也不能用有限的代数式精确地表示它。祖冲之对圆周率的研究,包含在与他儿子祖恒合著的《缀术》中。这是一部什么样的著作呢?
  原来,为了传播我国历代的数理精华,唐朝选定10部具有代表性的算书作为课本,称为《算经十书》,即《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《张丘建算经》、《五曹算经》、《夏侯阳算经》、《五经算术》、《缀术》、《辑古算经》。在这10部鸿篇巨著中,内容最丰富的是《九章算术》。魏晋时数学家刘徽作注以后,才使人们能够理解它的内容。后来,祖冲之感到刘徽的注意犹未尽,就写了数十篇专题论文,称为《缀术》。作为对刘徽注的补充。《缀术》是一部很有价值的科学巨著,内容博大精深,连当时的“学官”也看不懂。到了唐朝被列为国立学校的必读教材,需学4年,是学习时间最长的算书。日本和朝鲜在12世纪也把《缀术》作为教科书。后来在北来中期失传,这是数学界的重大损失。《缀术》究竟包括哪些内容呢?在唐朝魏徵等编著的《隋书·律历志》中有一些记载:“宋末,南徐州人从事史祖冲之更开密法。以圆径一亿为一丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽;朒(nù,不足)数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三、圆周三百五十五。约率:圆径七,周二十二。”
  这里,“开”是开创,“以圆径一亿为一丈”,是分直径一丈为一亿等分:“盈数”是圆周的过剩近似值,“朒数”是不足近似值;“正数”是正确数值,即真值。
  上面的记载,包含了三点意思:
  1.3.1415926<π<3.1415927;这一光辉的数据,使我国在数学上又创造了一个世界第一,在圆周率计算这个领域遥遥领先世界长达1000年。1000年后,相继又有法国数学家韦达取得以上结论一,德国数学家渥脱重新取得结论二,并由亚西亚阿尔、卡西打破祖冲之创造的结论一的世界纪录。
  日本的数学家三上义夫将祖冲之的“密率”称为“祖率”。莫斯科大学礼堂前的廊壁上,用彩色大理石镶嵌着的世界著名科学家肖像中有我国两位,其中之一就是祖冲之。60年代初,人类探索太空奥秘时,曾将月球背后的一个山脉命名为祖冲之山。祖冲之为中华民族赢得了光荣,世界人民将永远缅怀这位科学巨人。
祖冲之(公元429~500),字文远,范阳遒县(今河北省涞水县北)人,生活于南朝的宋、齐之间,是我国古代杰出的数学家、天文学家和机械发明家.祖冲之卓越的数学成就,在世界数学史上闪耀着光芒,是中华民族的骄傲.南朝时期,经济繁荣,文化发达,因而也对科学技术进步提出较为迫切的要求.这为祖冲之的科学成就创造了良好的社会基础.祖氏家族世代掌管历法.祖冲之从小受到很好的家庭教育,对于自然科学、文学和哲学都有浓厚的兴趣.他尤其酷爱数学、天文学、机械制造,苦心钻研.当时宋朝政府中有一个研究学术的机关,叫华林学省,祖冲之青年时期就被吸收在这里从事研究工作.祖冲之一面研究继承家学,一面学习我国古代及外国传入的科学成就.他博览群书,兼学百家,为后来的科研工作奠定了深厚的基础.
祖冲之小时候酷爱数学和天文,学习非常刻苦,他“专攻数术,搜炼古今”,把从古代到6世纪所保存的观测记录和有关文献,几乎全部搜集来作为参考.他对圆周率的研究开始得很早,后来达到了如醉如痴的地步.相传,有一天,夜已经很深了,他翻来覆去睡不着,《周髀算经》上说,圆周的长是直径的3倍,这个说法对吗?天还没亮,他就把妈妈叫醒,要了一根绳子,跑到大路上,等候着马车.突然,来了一辆马车,祖冲之喜出望外,要求量马车的轮子,经过再三测量,他总觉得圆周长大于直径的3倍,究竟大多少?这个问题一直盘旋在他的脑子里,直到40多岁,才解开了这个谜.
祖冲之最突出的成就是对圆周率的精确推算.现在都知道,圆周率是圆的周长与直径的比.这是一个常数,一般用希腊字母π表示.已经证明,π不但是一个无理数,而且是一个超越数,就是说,既不能用有限的数字精确地表示它,也不能用有限的代数式精确地表示它.祖冲之对圆周率的研究,包含在与他儿子祖恒合著的《缀术》中.
祖冲之(公元429~500),字文远,范阳遒县(今河北省涞水县北)人,生活于南朝的宋、齐之间,是我国古代杰出的数学家、天文学家和机械发明家.祖冲之卓越的数学成就,在世界数学史上闪耀着光芒,是中华民族的骄傲.南朝时期,经济繁荣,文化发达,因而也对科学技术进步提出较为迫切的要求.这为祖冲之的科学成就创造了良好的社会基础.祖氏家族世代掌管历法.祖冲之从小受到很好的家庭教育,对于自然科学、文学和哲学都有浓厚的兴趣.他尤其酷爱数学、天文学、机械制造,苦心钻研.当时宋朝政府中有一个研究学术的机关,叫华林学省,祖冲之青年时期就被吸收在这里从事研究工作.祖冲之一面研究继承家学,一面学习我国古代及外国传入的科学成就.他博览群书,兼学百家,为后来的科研工作奠定了深厚的基础.
  祖冲之小时候酷爱数学和天文,学习非常刻苦,他“专攻数术,搜炼古今”,把从古代到6世纪所保存的观测记录和有关文献,几乎全部搜集来作为参考.他对圆周率的研究开始得很早,后来达到了如醉如痴的地步.相传,有一天,夜已经很深了,他翻来覆去睡不着,《周髀算经》上说,圆周的长是直径的3倍,这个说法对吗?天还没亮,他就把妈妈叫醒,要了一根绳子,跑到大路上,等候着马车.突然,来了一辆马车,祖冲之喜出望外,要求量马车的轮子,经过再三测量,他总觉得圆周长大于直径的3倍,究竟大多少?这个问题一直盘旋在他的脑子里,直到40多岁,才解开了这个谜.
  祖冲之最突出的成就是对圆周率的精确推算.现在都知道,圆周率是圆的周长与直径的比.这是一个常数,一般用希腊字母π表示.已经证明,π不但是一个无理数,而且是一个超越数,就是说,既不能用有限的数字精确地表示它,也不能用有限的代数式精确地表示它.祖冲之对圆周率的研究,包含在与他儿子祖恒合著的《缀术》中.
祖冲之是世界上第一个把圆周率的准确数值计算到小数点以后七位数字的人。直到一千年后,这个记录才被阿拉伯数学家阿尔·卡西和法国数学家维叶特所打破。
祖冲之提出的它研究和计算的结果,证明圆周率应该在3.1415926和3.1415927之间,也是直到一千年以后,才由德国称之为“安托尼兹率”,还有别有用心的人说祖冲之圆周率是在明朝末年西方数学传入中国后伪造的,这是有意的捏造。
记载祖冲之对圆周率研究情况的古籍是成书于唐代的史书《隋书》,而现传的《隋书》有元朝大德丙午年(公元1306年)的刊本,其中就有和其他现传版本一样的关于祖冲之圆周率的记载,事在明朝末年前三百余年。而且还有不少明朝之前的数学家在自己的著作中引用过祖冲之的圆周率,这些事实都证明了祖冲之在圆周率研究方越的成就。
那么,祖冲之是如何取得这样重大的科学成就呢?可以肯定,他的成就是建立在前人研究的基础之上的。从当时的数学水平来看,祖冲之很可能是继承了刘徽所创立和面卓首先使用的割圆术,并且加以发展,因此获得了超越前人的重大成就。
在前面,我们提到割圆术时已经知道了这样的结论:圆内接正n边形的边数越多,各边长的总和就越接近圆周的实际长度。但因为它是内接的,又不可能把边数增加到无限多,所以边长总和永远小于圆周。
祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接一百九十二边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了三百八十四边形、七百六十八边形……一直切割到二万四千五百七十六边形,依次求出每个内接正多边形的边长。最后求得直径为一丈的圆,它的圆周长度在三丈一尺四寸一分五厘九毫二秒七忽到三丈一尺四寸一分五厘九毫二秒六忽之间,上面的那些长度单位我们现在已不再通用,但换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。
要作出这样精密的计算,是一项极为细致而艰巨的脑力劳动。我们知道,在祖冲之那个时代,算盘还未出现,人们普遍使用的计算工具叫算筹,它是一根根几寸长的方形或扁形的小棍子,有竹、木、铁、玉等各种材料制成。
通过对算筹的不同摆法,来表示各种数目,叫做筹算法。如果计算数字的位数越多,所需要摆放的面积就越大。用算筹来计算不象用笔,笔算可以留在纸上,而筹算每计算完一次就得重新摆动以进行新的计算;只能用笔记下计算结果,而无法得到较为直观的图形与算式。
因此只要一有差错,比如算筹被碰偏了或者计算中出现了错误,就只能从头开始。要求得祖冲之圆周率的数值,就需要对九位有的小数进行15927加、减、乘、除和开方运算等十多个步骤的计算,而每个步骤都要反复进行十几次,开方运算有50次,最后计算出的数字达到小数点后十六、七位。
今天,即使用算盘和纸笔来完成这些计算,也不是一件轻而易举的事。让我们想一想,在一千五百多年前的南朝时代,一位中年人在昏暗的油灯下,手中不停地算呀、记呀,还要经常地重新摆放数以万计的算筹,这是一件多么艰辛的事情,而且还需要日复一日地重复这种状态,一个人要是没有极大的毅力,是绝对完不成这项工作的。
这一光辉成就,也充分反映了我国古代数学高度发展的水平。祖冲之,不仅受到中国人民的敬仰,同时也受到世界各国科学界人士的推崇。1960年,苏联科学家们在研究了月球背面的照片以后,用世界上一些最有贡献的科学家的名字,来命名那上面的山谷,其中有一座环形山被命名为“祖冲之环形山”。
祖冲之在圆周率方面的研究,有着积极的现实意义,适应了当时生产实践的需要。他亲自研究过,并用最新的圆周率成果修正古代的量器容积的计算。
古代有一种量器叫做“釜”,一般的是一尺深,外形呈圆柱状,那这种量器的容积有多大呢?要想求出这个数值,就要用到圆周率。祖冲之利用他的研究,求出了精确的数值。
他还重新计算了汉朝刘歆所造的“律嘉量”(另一种量器,与上面提到的 都是类似于现在我们所用的“升”等量器,但它们都是圆柱体。),由于刘歆所用的计算方法和圆周率数值都不够准确,所以他所得到的容积值与实际数值有出入。祖冲之找到他的错误所在,利用“祖率”校正了数值。为人们的日常生活提供了方便。
以后,人们制造量器时就采用了祖冲之的“祖率”数值。祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数,并得出了圆周率分数形式的近似值。
祖冲之究竟用什么方法得出这一结果,现在无从查考;如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要花费多少时间和付出多么巨大的劳动啊!
据《隋书·律历志》记载,祖冲之以一忽(一丈的一亿分之一)为单位,求直径为一丈的圆的周长,求得盈数为3.1415927、肭数为3.1415926,圆周率的真值介于盈肭两数之间。
《隋书度量衡》没有具体说明祖冲之是用什么方法计算出盈肭两数的。一般认为,祖冲之采用的是刘徽的割圆术,但也有别的多种猜测。这两个近似值准确到小数第7位,是当时世界上最先进的成就。
直到一千多年以后,15世纪阿拉伯数学家卡西和16世纪法国数学家F.韦达才得到更精确的结果。祖冲之确定了π的两个渐近分数,约率22/7和密率355/113。
其中密率355/113(≈3.1415929)西方直到16世纪才由德国人V.奥托发现。它是三个成对奇数113355再折两段组成,优美、规整、易记。为了纪念祖冲之的杰出贡献,有些外国数学史家把圆周率π的密率叫做“祖率”。
祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。

祖冲之有关圆周率的故事是什么?

故事:一天早上,祖冲之正在家中读书,读的就是那刘徽做了注的《九章算术》,看到“割圆术”处,心想:将那正多边形的边数算到96个并不算多,多边形的周长与圆周长相差还甚远,为何不再多算一些。
正多边形的边长愈多,多边形的周长不就更接近圆周长了吗?那算出的周率不就更精确了吗?想着想着,抬头一看,正见儿子在外玩耍,便叫道:“暅儿,你且去后山砍两根竹子来。”
祖冲之的儿子叫祖暅,聪明伶俐,受祖冲之的影响,耳濡目染,也喜欢了数学,后来也成了数学家,提出了著名的“祖暅定理”。听见父亲唤自己,急忙跑了进来问道:“爹,唤儿有什么事情?”
祖冲之说道:“你去后山砍一根毛竹来。”
暅儿问道:“又要做算筹?”
祖冲之答道:“不错,你去砍了与我拿来。”
成就:
祖冲之在数学上的杰出成就,是关于圆周率的计算。三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。
祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

圆周率祖冲之名人故事

  故事:在现实认知观的基础上,对其描写成非常态性现象。是文学体裁的一种,侧重于事件发展过程的描述。强调情节的生动性和连贯性,较适于口头讲述。已经发生事。或者想象故事。下面是我给大家带来的圆周率祖冲之名人故事,希望大家喜欢!
  圆周率祖冲之名人故事 篇1   提起圆周率,人们自然就会想到南北朝时代南朝的科学家祖冲之。
  祖冲之的贡献不仅仅在数学,他还精通天文地理,编制过《大明历》,改造过指南车。
  祖冲之小时候,喜欢皎洁的月亮,常常和农家孩子们一起到场院赏月。
  刚开始,他只是看着玩而已。后来,一首儿歌引起了他的深思。儿歌唱道:“初一看不见,初二一根线,初三初四镰刀月,初七初八月半边,一天更比一天胖,直到十五月团圆。十七、十八月迟出,廿二半夜见半圆。一天更比一天瘦,廿九、三十月难见。”他这才知道,原来月亮的圆缺是有规律的。
  为了验证这首儿歌,祖冲之每天晚上都要看几次月亮,半夜里,他独自一人站在院里,仰望天空,一看就是一、两个时辰。经过几个月的精心观察,祖冲之终于相信了儿歌中的说法。
  可月亮为什么会有圆缺呢?祖冲之百思不得其解,只好去问爷爷祖昌。
  爷爷笑着说:“这里面的道理很复杂,小孩子是搞不明白的。”可祖冲之有个犟脾气,什么事情弄不出个水落石出是不肯罢休的。他缠住爷爷,问了一次又一次。爷爷没办法,只好找来几本天文书,让祖冲之自己去读。
  祖冲之如获至宝,贪婪地读了起来,其中张衡写的那本《灵宪》,他一连读了五六遍。
  这天,祖冲之显得格外高兴,他摇晃着爷爷的身子直喊:“我明白了!
  我明白了!”
  圆周率祖冲之名人故事 篇2   祖冲之( 公元429年4月20日─公元500年)是我国杰出的数学家,科学家。南北朝时期人,汉族人,字文远。生于宋文帝元嘉六年,卒于齐昏侯永元二年。祖籍范阳郡遒县(今河北涞水县)。为避战乱,祖冲之的祖父祖昌由河北迁至江南。祖昌曾任刘宋的“大匠卿”,掌管土木工程;祖冲之的父亲也在朝中做官。祖冲之从小接受家传的科学知识。青年时进入华林学省,从事学术活动。一生先后任过南徐州(今镇江市)从事史、公府参军、娄县(今昆山市东北)令、谒者仆射、长水校尉等官职。其主要贡献在数学、天文历法和机械三方面。
  祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。 名人故事
  祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。
  宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
  我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
  公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说: “你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。名人故事
  尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
  祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。
  圆周率祖冲之名人故事 篇3   祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方。 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究。在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。
  在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误。以后他继续钻研,在科学技术方面作出极有价值的贡献。精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一。在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证。他指出当时所流行的何承天(公元370—447年)编定的历法有许多严重的错误。因此他便开始编制另一种新的历法。
  宋大明6年(公元462年),33岁的祖冲之编好了新的历法“大明历”。这是一部最好的历法,但是却遭到了当时朝廷中最得势人物戴法兴的反对。许多官员惧怕戴法兴的势力,不敢对祖冲之新历作公正的评定。祖冲之为了坚持真理,勇敢地与戴法兴展开了辩论,他写了一篇有名的'《驳议》,逐条驳斥了戴法兴的无理责难。这场辩论,实际上反映了当时科学发展过程中科学和反科学、进步和保守之间的尖锐斗争。戴法兴等人认为:历代流传下来的东西,都是古制,是不可革的,是“万世不易”的,他们认为天文历法不是“凡人”可以修改的,他们说:“非冲之浅虑妄可穿凿”,甚至进一步责骂祖冲之是“诬天背经”。祖冲之对他们提出了尖锐的反驳。他认为日月五星的运行“非出神怪”,“是有形可检,有数可推”,只要进行细心的观测和推算。孟子早先所说“千年之日至(夏至、冬至)可生而致”的话是完全可以做到的。祖冲之在《驳议》中写了两句非常有名的话“愿闻显据,以覆理实”,“浮词虚贬,窃非所惧”。他希望双方都拿出真实的证据,辨明真正的是非,至于造谣和中伤,那是他丝毫不怕的。由于种种阻碍,大明历一直到他死后十年,在梁朝才得以颁行(公元510年)。
  祖冲之除天文历法和数学之外,对机械方面也有研究,他制造过“指南车”和“千里船”,此外,他对音律也很精通,对古代的许多书籍进行过注释,他还写过十卷小说,他真称得上是一个多才多艺的科学家。关于他在数学方面的著作,最著名的要算是《缀术》,此外还有《九章算术译注》、《重差注》等等,但这些也都失传了。
  祖冲之的儿子祖暅也是一位杰出的数学家,他继承了祖冲之在数学和天文历法方面的工作,并进一步发扬光大了他父亲的成就。祖冲之的“大明历”就是经过祖暅三次建议之后才被梁朝采用的。关于球体体积的计算也是作为祖暅的工作流传下来的。祖暅终生好学不倦。传说他小的时候,专心读书,连打雷也不觉得,走路时思考问题,曾经撞到别人身上。
  祖冲之父子的名字,不仅在国内已是受到称道,在世界上也受到了应有的重视。
  圆周率祖冲之名人故事 篇4   祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是“古率”。后来发现古率误差太大,圆周率应是“圆径一而周三有余”,不过究竟余多少,意见不一。
  直到三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。
  祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。
  祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做“祖率”。
  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。
  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:“幂势既同,则积不容异。”意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为“祖暅原理”。
  圆周率祖冲之名人故事 篇5   祖冲之出生在公元429年,正当南北朝刘宋王朝时代。他是个伟大的数学家、天文学家和物理学家,有许多卓越的成就,其中之一就是圆周率的计算。
  圆周率就是圆周的长度和直径的长度的比。这是一个无限不循环的小数,也就是说它是个没完没了的小数,各位数字的变化又没有规律。通常在计算的时候,我们把圆周率定为31416,这个数字实际上比圆周率稍微大一点。祖冲之在一千五百年以前就确定,圆周率在31415926至31414927之间,比31416精确得多。在他之后一千年,阿拉伯数学家才打破了这个精确程度的记录。
  计算圆周率是一件很不容易的事。我们知道,在一个圆里内接正多边形,计算这个正多边形的总的边长,就可以得到圆周的近似值。正多边形的边数越多,总的长跟圆周就越是接近。祖冲之必须从圆的内接正六边形开始,先算内接正十二边形的边长,再算出内接正二十四边形的边长,再算内接正四十八形的边长……边数一倍又一倍地增加,一共翻十一翻,直到算出了内接正一万二千二百八十边形的边长,才能得到这样精密的圆周率。
  内接正多边形的边数翻十翻,看起来好像还简单,其实不然。边数每翻一翻,至少要进行七次运算,其中除了加和减,有两次是乘方、两次是开方。祖冲之算出来的结果有六位小数点,估计他在运算的过程中,小数至少要保留十二位。加和减还好办,十二位小数的乘方、尤其是开方,运算起来极其麻烦。祖冲之要是没有熟练的技巧和坚强的毅力,是无法完成这上百次的繁难复杂的运算的。
  在祖冲之以前,已经有人提出圆周率跟π相近似。祖冲之把π叫做“疏率”,提出了另一个圆周率的近似值π,作为“密率”,因为它更加精密,跟圆周率更相接近了。过了一千年,德国人奥托和荷兰人安托尼兹才先后提出π这个圆周率的近似值,欧洲人当时不知道祖冲之已经提出了“密率”,在他们写的数学史上,把它叫做“安托尼兹”。日本数学家主张把π称为“祖率”,这是十分公允的。
  祖冲之计算出圆周率后名声响了起来,结果被宋明帝派到一个落后的穷县当县令。祖冲之上任后经常外出观察,一次他看到农民用脚踏碓舂米的情形,觉得既累又慢,便立即与老农商量,请来木匠、石匠,做了一个以立式水轮为动力的水碓。
  试车成功了,村民们在一旁欢呼雀跃。祖冲之却在一旁思考:如果能做个水碓磨,既能舂米又能磨面不是更好吗?经过反复实践,改进,水碓磨车终于试制成功了,这其中包含着力水、杠杆、凸轮的原理。
  后来,祖冲之又被调到京城任职。当时的达官贵人为出门显示排场与威风,纷纷指令手下工匠制造指南车。祖冲之经过精心研究和设计,再利用精确圆周率计算,在车前做了个铜铸齿轮盘,随便车子怎么转,车上的铜人总是指着南方。
  祖冲之就是这样不断地进行科学探索。他的科学成就,在我国科学技术发展史上,将永远放射光芒。他的刻苦学习、认真钻研、勇于创造和坚持真理的精神,是值得我们学习的。
  边读边想:祖冲之是谁?他最早计算出了什么,比其他国家早了多少年,他涉猎了哪几个科学领域,他有哪方面是值得我们学习的?
  圆周率祖冲之名人故事 篇6   祖冲之是南朝伟大的数学家和天文学家,他是世界上把圆周率算到第七位的第一人,所以圆周率又被称为“祖率”。他在数学和天文学上的贡献,对后世的发展有着很深远的影响。
  祖冲之生于429年,卒于500年,是中国南北朝时期有名的数学家和天文学家。其祖父乃是祖昌,主管土木工程;其父祖朔,学识渊博,受人尊重。所以祖冲之有一个很好的成长环境,来自家庭的熏陶和自己的努力,使他很早就有了博学的美誉。
  祖冲之能在科学上取得巨大的成就,这和他执着、勤奋的研究态度有着莫大的关系。他搜集了大量的资料,上至远古,下至他生活的年代,他全部都进行考察,而且他绝不会把自己的思维局限在古人的认识中。这也是他能在科学上走得比别人更远的原因之一。
  后来,孝武帝听闻祖冲之的名声,任命他到总明观任职。当时,总明观是最权威的科研机构,在总明观任教,让他能够接触到更多、更丰富的资料,也让他拥有了进行研究与开拓的资本与条件。
  其后数年,祖冲之虽然继续担任朝廷命官,生活并不安定,但他从没放弃过对科学的研究。公元462年,祖冲之在天文学上的呕心沥血之作——新历法《大明历》终于完成。
  祖冲之晚年的时候,由于政局变化,社会动乱,祖冲之的研究方向也随之发生的改变,从对数学、天文学的研究转变为对文学和社会学的研究。这种改变是由生存环境和社会现实所决定的。
  祖冲之从小就对古书一窍不通,却极爱数学,富有实践精神。幼时,私塾的先生告诉祖冲之,“圆周是直径的3倍”。祖冲之对此产生了疑问,第二天就跑去村头测量车轮,量来量去都与这个结论不符。此后多年,这个疑问一直困扰着他。
  后来,祖冲之受到刘徽的“割圆术”的启发,沿着他的方法继续研究下去,以期求得更加精准的结果,而为了防止出现差错,他的每一步都会计算两遍。经过无数遍的演算,最终得出了圆周率在3 . 1415926和3 . 1415927之间的结论。
  祖冲之是将圆周率精确到第七位的第一人,与欧洲相比,早了1000多年。所以,圆周率又被称为“祖率”,是对祖冲之这一伟大成就的纪念。
  圆周率祖冲之名人故事 篇7   最近我在读《数理化通俗演义》,里面许多科学伟人都给我留下了深刻的印象。我印象最深的是祖冲之推算圆周率的故事。
  我相信大家都知道圆周率吧:3.1415926535......它虽然是个无穷无尽的无限不循环小数,但它的作用非常大,计算不规则图形或者圆形的周长与面积都要用到它。可是,你知道吗,这一串小数却缺不了一个数学家呕心沥血的计算,这个数学家正是中国古代这哲学家祖冲之。
  在中国古代,很多数学家都只计算出圆周率的后两位小数,而且,还存在一些争议。这时祖冲之就准备把圆周率算个明明白白、清清楚楚。于是他就与他的儿子暅儿一起,先按正多边形的周长算,每次都多增加一条边,使图形越来越接近圆形。就这样,经过日日夜夜的一次又一次计算,终于得出了3.1415926这个数字,祖冲之的手指因长期拿算筹,被磨出了血。
  我觉得祖冲之真的是一个伟大的人,他为了算出更精确的圆周率,不辞辛苦,连手指磨出血都不罢休,这真是他坚持不懈、坚强的体现。同时,他奉献出他宝贵的时间、精力,让后世的数学发展奠定了基础,这也体现了他是个舍己为人、乐于奉献的人。他让我们不再为计算圆的周长和面积而感到苦恼。如果你们还觉得圆周率太难背了,请想想祖冲之计算圆周率的辛苦吧。总而言之,祖冲之的精神是值得我们敬佩和学习的!
  圆周率祖冲之名人故事 篇8   说到祖冲之,脑海里便直接将圆周率与他联系起来,他俩就像人与影子一样早已密不可分了。在古代,没有现代如此发达的科技仅能依靠排列算筹、绳尺测量等简单的工具,祖冲之却能将圆周率精确到小数点后第七位,比欧洲要早一千年,其间的艰难险阻可想而知。如此艰巨而细致的演算,就是现在的我们不借助任何机器也不一定能算得如此精确,但圆周率的前七位我们却能熟记于心、张口就来,实际上我们只不过是走了条捷径,摘取了前人的成果。
  面对如此庞大的计算,祖冲之可谓是大智大勇、临危不惧。相比较我们,那真是自愧不如!在平常的学习中,一遇到繁琐些的问题我们便心浮气躁、抓耳挠腮、眉头紧皱像是在迷宫中晃荡了许久找不到出口一般,心急如焚;有的甚至直接放弃不再去想那些伤脑筋的题目而是在网上搜。如此,思维便得不到发展提升总是在一个层面停滞不前,宛如一只井底之蛙只能贪婪地望着井口的那一小片天空,只能深陷在小小的泥潭而不自知,永远无法亲眼见识天空的广阔无垠。也许是没经历过艰苦的环境不知道学习的重要性,对于手到擒来的东西不知道珍惜,往往在失去之后才明白如此丰富的校园生活是多么的弥足珍贵。
  像那些生活在山区里的贫苦学生往往要比我们更懂得珍惜,每天天不亮就要起床,背着书包走在曲折泥泞的山间小路上,走了几十里才能到校;每天放学都要借着月亮的光辉才能安全到家。在这样恶劣的环境下,他们却能始终如一,每天起早贪黑坚持上学。试想,无论是在古代还是在现代,总有人在艰苦的环境下依然能勤奋好学,而我们生活在如此优越的环境下怎能不发愤图强、奋起直追呢!
  当然,祖冲之能够流芳百世不仅仅是因为他的勤奋好学与数学上的成就,还因为他为官清正、勤政爱民,为人们办了许多实事,是一位名副其实的清官。他还改造指南车、建造千里船等,这无疑是世界科技史上的一个奇迹,是中国人的骄傲。
  我们应该继承并弘扬中华优秀传统文化,更要培养优秀人才,正如赵翼所说“江山代有人才出,各领风骚数百年”。
  圆周率祖冲之名人故事 篇9   《数理化通俗演义》中记录了许多名人的故事,作者梁衡用通俗易懂的语言将许多遥远的历史人物和他们的科学成就再现在我们眼前。
  祖冲之,南北朝时期杰出的数学家、天文学家,他得出的圆周率精确值在当时的世界遥遥领先。
  祖冲之是在为中国古代数学名著《九章算术》做注的时候遭遇到圆周率这个难题的,这个问题当时已经困扰中国数学学者四百余年。
  祖冲之大量阅读了前人留下对《九章算术》注解,从刘徽的割圆术中获得灵感,将一个圆内接上正多边形,不断地割下去,求出多边形的周长,便能无限接近圆周率。
  祖冲之和他的儿子祖暅在地上画了一个直径为一丈的打算,将圆割成六等分,然后依次内接12边形、24边形、48边形……父子俩把地上的大圆切割到了24576份,这时的圆周率已经精确到了3.14159261。祖冲之知道这样不断的割下去,内接多边形的周长还会增加,会更接近于圆周,但这已经是小数点后的第8位,再增加也不会超过0.00000001丈,所以圆周率必然在3.1415926和3.1415927之间,他首次提出了圆周率在“上下二限”之间这个提法,这个圆周率的精确值直到1000年后才被阿拉伯数学家超过。
  圆周率的应用很广泛,尤其是在天文、历法方面,凡牵涉到圆的一切问题,都要使用圆周率来推算。祖冲之对圆周率数值的精确推算,对于中国乃至世界都是一个重大贡献,有着积极的现实意义。
  圆周率祖冲之名人故事 篇10   祖冲之是中国古代伟大的数学家和天文学家。小时候祖冲之对学过的知识总爱问个为什么,直到弄懂为止。
  一天深夜,祖冲之躺在床上翻来覆去睡不着,心里老是想:老师和一些算术书上说,圆的周长是直径的3倍左右,到底是多少呢?于是,他决定亲自实践一番,弄个明白。
  第二天一早,他就拿了一根绳子,跑到村口大路旁,等候来往的车辆。一会儿,来了一辆马车。祖冲之拦住马车,对驾车的老大爷说:“我用绳子量量您的车轮,行吗?”
  “好吧,孩子。”老人点点头,把车停了下来。
  祖冲之先用麻绳绕车轮一圈,然后折成相同长短的三段,再去量车轮的直径。量了几次,他发现车轮的直径没有线段长。他又量了几辆车的车轮,结果是同样的。
  这到底是怎么回事?他决心解开这个谜。经过几十年的实验与研究,他终于得出了圆周率在3.26到3.27之间。这一发现,比欧洲要早一千多年呢!
  为了纪念祖冲之的功绩,人们将月球上的一座环形山命名为“祖冲之环形山”,还将小行星1888号命名为“祖冲之小行星”。

祖冲之与圆周率的故事是什么?

祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。
祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。
祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。
祖冲之与圆周率的故事
圆周率的小故事,祖冲之
祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。

祖冲之与圆周率的故事,20字。

祖冲之是我国南北朝时期,杰出的数学家、天文学家。特别对"圆周率"的研究,更是超越前代。他采用了三国时刘徽的方法,从正六边形算起, 要算到24576边,每一运算要反复进行十二次又包括加减乘除和开方等十多个步骤。当时祖冲之只能用筹码(小竹棍)来逐步推演。如果祖冲之没有顽强刻苦的研究精神,,是绝对不会成功的。
祖冲之是我国南北朝时期,杰出的数学家、天文学家。特别对"圆周率"的研究,更是超越前代。他采用了三国时刘徽的方法,从正六边形算起, 要算到24576边,每一运算要反复进行十二次又包括加减乘除和开方等十多个步骤。当时祖冲之只能用筹码(小竹棍)来逐步推演。如果祖冲之没有顽强刻苦的研究精神,,是绝对不会成功的。
南北朝的时候,祖冲之为了计算圆周率,他在自己书房的地面画了一个直径1丈的大圆,从这个圆的内接正六边形一直作到12288边形,然后一个一个算出这些多边形的周长。那时候的数学计算,不是用现在的阿拉伯数字,而是用竹片作的筹码计算。他夜以继日、成年累月,终于算出了圆的内接正24576边形的周长等于3丈1尺4寸1分5厘9毫2丝6忽,还有余。因而得出圆周率π的值就在3.1415926与3.1415927之间,准确到小数点后7位

祖冲之和圆周率的故事

祖冲之和圆周率的故事

  祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

  祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
  宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。
  我国历代都有研究天文的官,并且根据研究天文的`结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
  公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
  尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。

数学名人故事:祖冲之和圆周率的故事

数学名人故事:祖冲之和圆周率的故事
  祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。

  【祖冲之和圆周率的故事】
  祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在 3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的..祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
  祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.
  祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".
;

祖冲之圆周率的故事。

求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。 祖冲之是中国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率。
在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。 祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!
祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”。 除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算。他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”。
祖冲之在数学领域的成就,只是中国古代数学成就的一个方面。实际上,14世纪以前中国一直是世界上数学最为发达的国家之一。比如几何中的勾股定理,在中国早期的数学专著《周髀算经》(大约于公元前2世纪成书)中即有论述;成书于公元1世纪的另一本重要的数学专著《九章算术》,在世界数学史上最早提出负数概念及正负数加减法法则;13世纪时,中国就已经有了十次方程的解法,而直到16世纪,欧洲才提出三次方程的解法。
求算圆周率的值是数学中一个非常重要也是非常困难的研究课题。中国古代许多数学家都致力于圆周率的计算,而公元5世纪祖冲之所取得的成就可以说是圆周率计算的一个跃进。 祖冲之是中国古代伟大的数学家和天文学家。祖冲之于公元429年出生在建康(今江苏南京),他家历代都对天文历法有研究,他从小就接触数学和天文知识,公元464年,祖冲之35岁时,他开始计算圆周率。
在中国古代,人们从实践中认识到,圆的周长是“圆径一而周三有余”,也就是圆的周长是圆直径的三倍多,但是多多少,意见不一。在祖冲之之前,中国数学家刘徽提出了计算圆周率的科学方法--“割圆术”,用圆内接正多边形的周长来逼近圆周长,用这种方法,刘徽计算圆周率到小数点后4位数。 祖冲之在前人的基础上,经过刻苦钻研,反复演算,将圆周率推算至小数点后7位数(即3.1415926与3.1415927之间),并得出了圆周率分数形式的近似值。祖冲之究竟用什么方法得出这一结果,现在无从查考。如果设想他按刘徽的“割圆术”方法去求的话,就要计算到圆内接16000多边形,这需要化费多少时间和付出多么巨大的劳动啊!
祖冲之计算得出的圆周率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把圆周率π叫做“祖率”。 除了在计算圆周率方面的成就,祖冲之还与他的儿子一起,用巧妙的方法解决了球体体积的计算。他们当时采用的原理,在西方被称为“卡瓦列利”(Cavalieri)原理,但这是在祖冲之以后一千多年才由意大利数学家卡瓦列利发现的。为了纪念祖氏父子发现这一原理的重大贡献,数学上也称这一原理为“祖原理”。
祖冲之(公元429~500),字文远,范阳遒县(今河北省涞水县北)人,生活于南朝的宋、齐之间,是我国古代杰出的数学家、天文学家和机械发明家.祖冲之卓越的数学成就,在世界数学史上闪耀着光芒,是中华民族的骄傲.南朝时期,经济繁荣,文化发达,因而也对科学技术进步提出较为迫切的要求.这为祖冲之的科学成就创造了良好的社会基础.祖氏家族世代掌管历法.祖冲之从小受到很好的家庭教育,对于自然科学、文学和哲学都有浓厚的兴趣.他尤其酷爱数学、天文学、机械制造,苦心钻研.当时宋朝政府中有一个研究学术的机关,叫华林学省,祖冲之青年时期就被吸收在这里从事研究工作.祖冲之一面研究继承家学,一面学习我国古代及外国传入的科学成就.他博览群书,兼学百家,为后来的科研工作奠定了深厚的基础.
祖冲之小时候酷爱数学和天文,学习非常刻苦,他“专攻数术,搜炼古今”,把从古代到6世纪所保存的观测记录和有关文献,几乎全部搜集来作为参考.他对圆周率的研究开始得很早,后来达到了如醉如痴的地步.相传,有一天,夜已经很深了,他翻来覆去睡不着,《周髀算经》上说,圆周的长是直径的3倍,这个说法对吗?天还没亮,他就把妈妈叫醒,要了一根绳子,跑到大路上,等候着马车.突然,来了一辆马车,祖冲之喜出望外,要求量马车的轮子,经过再三测量,他总觉得圆周长大于直径的3倍,究竟大多少?这个问题一直盘旋在他的脑子里,直到40多岁,才解开了这个谜.
祖冲之最突出的成就是对圆周率的精确推算.现在都知道,圆周率是圆的周长与直径的比.这是一个常数,一般用希腊字母π表示.已经证明,π不但是一个无理数,而且是一个超越数,就是说,既不能用有限的数字精确地表示它,也不能用有限的代数式精确地表示它.祖冲之对圆周率的研究,包含在与他儿子祖恒合著的《缀术》中.
祖冲之把圆周率精确到小数点后七位
祖冲之用木柴堆才得出结果
祖冲之算出圆周率(π)的真值在3.1415926和3.1415927之间,相当于精确到小数第7位,简化成3.1415926,祖冲之因此入选世界纪录协会世界第一位将圆周率值计算到小数第7位的科学家。
祖冲之还给出圆周率(π)的两个分数形式:22/7(约率)和355/113(密率),其中密率精确到小数第7位。祖冲之对圆周率数值的精确推算值,对于中国乃至世界是一个重大贡献,后人将“约率”用他的名字命名为“祖冲之圆周率”,简称“祖率”。
扩展资料
家世背景:
祖冲之,429年(南朝宋元嘉六年)出生于建康(今南京),祖籍范阳郡遒县(今河北涞水县)。西晋末期,北方发生大规模战乱,祖冲之的先辈从河北迁徙到江南,并在江南定居下来。
祖冲之就出生在江南,其祖父祖昌任刘宋朝大匠卿,是朝廷管理土木工程的官吏,父亲祖朔之做“奉朝请”,学识渊博,常被邀请参加皇室的典礼、宴会。
祖冲之从小就受到很好的家庭教育。爷爷给他讲“斗转星移”,父亲领他读经书典籍,家庭的熏陶,耳濡目染,加之自己的勤奋,使他对自然科学和文学、哲学,特别是天文学产生了浓厚的兴趣,在青年时代就有了博学的名声。
参考资料来源:百度百科-祖冲之

祖冲之与圆周率的故事 祖冲之与圆周率有什么故事

1、祖祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。
2、所谓圆周率,就是圆周长与直径长之比。圆周率通用希腊字母π表示,因为希腊文中“周围”一词的开头字母是π。求算π的值是数学上一个耐人寻味的问题,许多数学家为求算π的值花费了多年的精力。