×

光电效应实验报告数据,光电效应实验报告推荐5篇

admin admin 发表于2024-03-24 14:30:04 浏览19 评论0

抢沙发发表评论

本文目录一览:

光电效应实验报告推荐5篇

光电管的伏安特性曲线起初在反向电压的作用下(遏止电压),光电流被抑制,当逐渐向正向加大电压时,可以发现过了遏止电压之后,光电流随着电压的加大而迅速变大,后来再慢慢减缓增长而趋于饱和。1、固定距离L=和光阑口径Φ=4mm,改变波长(频率f) 发现总体来说,波长越短(频率越高),光电流随电压的增长越快,且最终的饱和值越大。这是因为频率越高的光子激发出来的光电子初动能越大,打到阳极上形成的光电流越大。可是在波长436nm和546mm下的曲线,却是波长更长的(频率更低的)增长的快,且最终饱和值也大,出现了反常的状况;频率越大的曲线,光电流开始上升的越早,即其遏制电压越大。2、固定波长λ=365nm和光阑口径Φ=4mm,改变距离L 距离最近的,光强越强,伏安特性曲线中光电流随电压增长越快,且饱和值越大通过计算发现在距离比较小时,光电流的饱和值和起始值的差值,和距离近似的呈平方反比的关系,而距离比较大时则偏差比较大。

光电效应和普朗克常量的测定 实验报告

这个实验是通过测量入射光频率v和对应反向截止电压u0后,由 ekm=e*
u0 可得光电子的最大初动能ekm,根据光电效应方程 h
v
=ekm+w (w是阴极材料的逸出功)得
u0=(h
/
e)v-(w
/
e)
用不同频率的光照射,测得不同的反向截止电压。
上式中,u0作为因变量,v作为自变量,画出一条直线,直线的斜率就等于(h
/
e),e是电子电量(已知),在直线上求得斜率后,就能求得普朗克常量h
了。
http://jxzy.ustc.edu.cn/otheradmin/report/Directory/1%E7%BA%A7_1%E7%BB%84/PB05007204_%E5%85%89%E7%94%B5%E6%95%88%E5%BA%94%E6%B3%95%E6%B5%8B%E9%87%8F%E6%99%AE%E9%83%8E%E5%85%8B%E5%B8%B8%E6%95%B0_2006522133646.doc
刚找的,希望还能帮到你.

求一份大学物理实验报告《光电效应测普朗克常数》?

实验目的1、了解光电效应及其规律,理解爱因斯坦光电方程的物理意义。2、 用减速电位测量光电子初动能,求普朗克常数。 实验原理 光电效应金属在光的照射下释放出电子的现象叫做光电效应。根据爱因斯坦的“光量子概念”,每一个光子具有能量 ,当光照射到金属上时,其能量被电子吸收,一部分耗于电子的逸出功 ,另一部分转换为电子逸出金属表面后的动能。由能量守恒定律得电子的初动能与入射光频率呈线性关系,与入射光的强度无关。任何金属都存在一截止频率 , , 又称红限,当入射光的频率小于 时,不论光的强度如何,都不产生光电效应。此外,光电流大小(即电子数目)只决定于光的强度。实验内容1. 手动测量光电管的U-I特性曲线。(1)将光源、光电管暗盒、微电流放大器等安放在适当位置,光源与光电管的距离取30~50cm,注意两者光路共轴。暂不接线。接通微电流测量放大器电源,预热10~20分钟,进行微电流测量放大器的调零和校准。方法是:“校准、调零、测量”开关置于“调零校准”档,置“电流调节”开关于短路档,调节“调零”旋钮使电流表指零,然后“电流调节”拨向“校准”,调“校准”旋钮使电流表指100,调零和校准可反复调整,使之都能满足要求。(2)用电缆将光电管阴级K与微电流放大器后面板上的“电流输入”相连,用双芯导线将光电管阳极与地连接到后面板的“电压输出”插座上。点亮汞灯。(3) 测量光电管的暗电流.用遮光罩盖住光电管暗盒窗口,将“调零、校准、测量”开关置于“测量”,测量放大器的电压选择置于“直流”,电流调节置 或 ,旋动“电压调节”旋钮,读出-3~+3V间若干电压下相应的电流值,即光电管暗电流。(4)测不同波长的单色光照射时光电管的U-I特性曲线。取下遮光罩,换上滤色片,从-3V开始逐步改变光电管阳极电压,记录相应的光电流。逐次换上5个滤色片,测出不同波长下的U-I曲线,在电流变化明显的地方多测几点,以便准确定出 。2. 用X-Y函数记录仪自动描绘U-I特性曲线。将记录仪的X、Y输入分别与微电流放大器后面板上的X、Y输出相连,将“X量程”置100mV/cm,“Y量程”置1mV/cm,保持手动测试时的实验条件,每换上一个滤色片后,将放大器的“电压选择”开关置“扫描”,自动描绘U-I特性曲线。自动记录时必须密切注视记录笔的移动情况,及时关掉“Y输入”开关或者令记录笔抬起,以免记录仪过载。3. 用微机测绘U-I特性曲线,并求普朗克常数。、(1)在微机的ISA总线插槽上插入PC-XY接口卡,安装电脑X-Y记录仪软件和光电效应测普朗克常数软件。(2)用多芯接口电缆将测量放大器后面板PX-XY接口输出与微机PC-XY接口卡相连。(3)参照GD-Ⅳ微机光电效应实验仪使用说明书附录进行X、Y调零,用电脑X-Y记录仪软件采集5种波长下的U-I特性曲线存成数拓文件(.XYD)。(4)用光电效应测普朗克常数分析软件,测量普朗克常数,并计算实验误差(相对h的公认值),并打印。软件使用方法可参看该软件的“在线帮助”或者仪器使用说明书。 注意事项1. 微机PC-XY接口卡上一定不要接其他外设,否则会损坏主机和外设。2.汞灯熄掉后要等几分钟才能再点燃,所以一般不要轻易关汞灯。

中南大学声光效应实验报告

我也想要。
呵呵,应该只有你们专业的人那有~
光电效应测定普朗克常数(数据处理样板)
一、数据记录及处理
入射光波长 测量次数i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
366nm Ui(V)
Ii(×10-11A)
405nm Ui(V)
Ii(×10-11A)
436nm Ui(V)
Ii(×10-11A)
546nm Ui(V)
Ii(×10-11A)
577nm Ui(V)
Ii(×10-11A)
二、在坐标纸上作五条伏安特性曲线图I-U,并从图中确定各自的截止电压UC值:
入射光波长(nm) 366 405 436 546 577
入射光频率υ(×1014Hz) 8.20 7.41 6.88 5.49 5.20
截止电压UC(V)
三、作UC-υ曲线图
四、从UC-υ曲线图中任取两点A、B,求出直线斜率k、普朗克常数h和 :
; (J?s);

液晶的电光特性实验报告含思考题

答:光电效应实验思考题1什么是光电效应,光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应( Phot cel ectric effect )。光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。只要光的频率超过某一极限频率,受光照射的金属表面立即就会逸出光电子,发生光电效应。当在金属外面加一个闭合电路,加上正向电源,这些逸出的光电子全部到达阳极
便形成所谓的光电流。在入射光一定时,增大光电管两极的正向电压,提高光电子的动能,光电流会随之増大。但光电流不会无限增大,要受到光电子数量的约束,有一个最大值,这个值叫饱和电流。所以,当入射光强度塔大时,根据光子假设,入射光的强度。

在光电效应测普朗克常量实验误差有哪些

实验误差主要有以下几点:
1、单色光不够严格以及阴极光电流的遏止电势差的确定。
2、光电管的阳极光电流和光电流的暗电流因素。
扩展资料
在光电效应测普朗克常量的实验中如何避免误差:
1、在实验中主要通过分析阳极电流和暗电流的特点(阳极光电流在反向区域几乎呈饱和状态,而暗电流很小,且电流随电压线性变化,他们均对阴极光电流在Uc显著拐弯的性质无影响),通过对实际光电流的测定,找到曲线拐点的方法来精确求得Uc。
2、单色光的获得尽可能用精确度高的单色仪获得,而不用滤片的方法获得。
3、尽量减小反射到阳极的散射光,适当提高光电管的真空度以及二电极之间的距离,以减小暗电流的大小。
(1) 根据爱因斯坦光电效应方程:1/2mvv=hv-Wk
式中m为电子质量,v为光电子的最大速度,Wk为该金属的逸出功,它的大小与入射光频率v无关,只决定于金属本身的属性.
一束频率为v的单色光入射在真空光电管的光阴极K上.在光电管的收集极(阳板)C和光阴极K之间外加一反向电压,使得C、K之间建立起的电场,对光阴极中逸出的光电子起着阻挡它们到达收集极的作用(减速作用).随着两极间负电压的逐渐增大,到达收集极的光电子,亦即流过微电流计G的光电流将逐渐减小.当U=Uo`时,光电流将为零.此时逸出金属表面的光电子全部不能到达收集极.Uo`称为外加遏止电势差.
(2)由于光电管在制造过程中的工艺问题及电极结构上的种种原因,在产生阴极光电流的同时,还伴随着下列两个主要物理过程:
反向电流,光电管制作过程中,工艺上很难做到阳极不被阴极材料所沾染,而且这种沾染在光电管使用过程中还会日趋严重.所以当光射到阳极C上或阴极K漫反射到阳极C上,致使阳级C也发射光电子,而外电场对这些光电子却是一个加速场,因此它们很容易到达阴极而形成反向电流.
暗电流和本底电流,当光电管不受任何光照射时,在外加电压下光电管仍有微弱电流流过,称为光电管的暗电流.其原因主要是热电子发射及光电管管壳漏电所致.本底电流是因为室内各种漫反射光射入光电管所致.暗电流和本底电流均使光电流不可能降为零,且随电压的变化而变化,形成光电管的暗特性.由于上述两个因素的影响,实测电流实际上是阴极光电流、阳极光电子形成的反向电流及暗电流的代数和.
四、误差分析
产生误差的原因可能为:
1.反向电流的作用造成误差.
2.暗电流和本地电流对实验结果的影响,暗电流产生的主要原因是热电子发射及光电管管壳漏电所致,本地电流是因为室内各种漫反射光射入光电管所致,暗电流和本底电流使光电流不可能降为零,形成光电管的暗特性.
四、实验方案
(1) 打开汞灯和微电流测试仪,均遇热20分钟左右进行测量.
(2) 调节光电管前后位置,尽量缩小入射光的光斑,以减少杂散光的影响.
(3)调节光电管上下左右的位置,使入射光照到阴极圈的中间,以免入射光直接照到阳极面产生强大的反向电流.
(3) 调好微电流测试仪.
(4) 将波长选择盘转到遮光位置,转动“电压调节旋钮”旋钮,从-2至0v之间,每隔0.2v记一次想对应的电压和电流值,作出暗电流特性曲线.
(5) 将波长选择盘转到365nm位置,从-2v开始测,转动加速电压调节旋钮,每隔0.1v记一次相对应的电流和电压值,直到“微电流指示”数字表接近满度为止.然后作光电流特性曲线.找出光电流特性曲线与暗电流特性曲线的交点所对应的电势差Uo`.
(6) 将波长选择旋钮分别转到405nm、436nm、546nm、577nm位置,按上述同样的方法作出各单色光对应的光电流特性曲线,及所对应的Uo`.
(7) 利用上面测得的数据,作Uo'——v图线,求h出,并与公认值比较.
五、讨论与分析
(1) 汞灯需冷却后再启动,否则会影响其寿命;
(2) 光电管应保存在暗箱内,实验时也应尽量减少光照,故实验不读数时应将波长选择旋钮转到暗的位置.
实验误差主要有以下几点:
1、单色光不够严格以及阴极光电流的遏止电势差的确定。
2、光电管的阳极光电流和光电流的暗电流因素。
扩展资料
光电效应和普朗克常量的测定
一、实验目的
1、了解光电效应的基本规律;
2、掌握普朗克常量的测量方法;
3、掌握光电管的伏安特性和光电特性的测量方法。
二、实验仪器
ZKY-GD-4 智能光电效应实验仪(包括汞灯及电源,滤色片,光阑,光电管和智能实验仪)。
利用光电管制成的光控制电器,可以用于自动控制,如自动计数、自动报警、自动跟踪等等。它的工作原理是:当光照在光电管上时,光电管电路中产生电光流,经过放大器放大,使电磁铁M磁化,而把衔铁N吸住,当光电管上没有光照时,光电管电路中没有电流,电磁铁M就自动控制,利用光电效应还可测量一些转动物体的转速。
参考资料来源:百度百科-光电效应
参考资料来源:百度百科-普朗克常量

光电效应测普朗克常数实验报告电压为负怎么画图

光电效应测普朗克常数实验报告电压为负,可以将图的坐标轴倒过来,或者是将负数取绝对值,把负数变成正数

大学物理实验报告 光电效应中为什么伏安特性曲线“突然”变的水平?

1、曲线突然变得水平是因为微电流测量仪超量程了。
2、增长到达到平衡时变化那么快,过度过程极短是因为光电流的变化与电压成指数函数关系。
因为光频率和光强度都保持不变的时候,单位时间内产生的光电子数目是不变的。因此当电压加到一定程度时候,所有的光电子都顺利到达阳极,从而形成了饱和电流。如果此时再增加电压,则不会有新的电子产生,也不会有更多的电子到达阳极,所以电流不再变化,曲线呈现为平行于U轴的样子

急求大学物理实验报告,等倾干涉,激光琴,红外接收演示,液晶光电效应,热磁轮的都可以

实验报告23 迈克尔逊干涉实验
一 实验目的
1、 了解迈克尔逊干涉仪的结构;
2、 掌握迈克尔逊干涉仪的结构;
3、 观察光的等倾干涉现象并掌握波长的方法;
4、 掌握逐差法处理数据。
二 实验仪器
He-Ne激光器、扩束透镜、迈克尔逊干涉仪
三 实验原理
迈克尔逊干涉仪的光学系统如图。它由分光板G、补偿板H、定反射镜M1和动反射镜M2组成。M1和M2互相垂直,分光板和补偿板是一对材料和外型完全相同的平板光学玻璃,它们相互平行并分别和M1、、M2成大致45度夹角,分光板的次数不同引起的光程差。来自点光源(或扩展光源)的光,入射到分光板上,分为强度相同的光线“1”和光线“2”的相干光,并分别由M1和M2反射后投射到光屏上(对于扩展光源用眼睛正对着观察)产生干涉现象。由于M1和M2垂直,可以等价地看成M2的虚象和M1形成一个厚度d为的空气隙,d的大小随M2的位置改变而改变,所以两光线的光程差可由下式确定:
(1)
式中iˊ为光线“1”对M2的入射角。当d一定时,Δ由iˊ确定,iˊ相同的方向上光程差相等,形成了等倾干涉条纹。且满足:
k=0、1、2、3…… (2)
呈亮条纹:
k=0、1、2、3…… (3)
呈暗条纹。条纹呈明暗相间的同心环,这和牛顿环干涉条纹相似,但不同的是本同心环外侧干涉级别低,越靠圆心干涉级别越高。圆心干涉级别最高。现分析一下(2)式。对于第级亮条纹,有:
(4)
当d增大时,为了保证(4)式仍成立ik‘必须也增大,即k级亮条纹往外扩大,反之,减小时,ik‘也必须减小,k级亮条纹往内缩小。特别地考虑iˊ=0(即圆心)处。满足:
(5)
时为亮条纹。那么,d增大时,中心亮条纹的级别K增大,中心往外冒出亮条纹,d减小时,中心亮条纹级别减小,亮条纹往中心收进。每当d改变 时,中心处就冒出或收进一个干涉条纹。当d改变 时,中心处就冒出或收进n个干涉条纹。根据这种现象,可以测定光波波长。
假设动镜M2原在位置D1上,现移动M2的位置,同时观察并计算中心亮条纹冒出或收进的数目,当M2移至位置D2时,相应地冒出或收进的亮条纹数目N。就有:
(6)
四、实验步骤
1、 移开扩束透镜,打开激光器电源使出射激光,调节激光方向使入射光与反射光重合。
2、 观察由M1和M2反射到屏上或墙上的两组光点,反复调节背面三个螺丝,使M1反射的光点和M2反射的光点一一对应重合。
3、 把扩束透镜置于激光束中使激光扩束后投射到分光板上,调节光照位置直到观察到屏上有同心圆。
4、 转动微动手轮观察干涉图样的变化情况,顺时针或反时针转动,观察干涉图样中心冒出或收入的情况。
五、数据记录及处理
N DN(mm) M DM(mm) DM-DN(mm)
10 44.99455 410 44.86692 0.12763
60 44.97835 460 44.85109 0.12726
110 44.96242 510 44.83525 0.12713
160 44.94655 560 44.81958 0.12697
210 44.93072 610 44.80370 0.12702
260 44.91450 660 44.78765 0.12685
310 44.89865 710 44.77175 0.12690
360 44.88280 760 44.75585 0.12695
;S=2.384×10-4 ; SC8=4.44×10-4
经查0.12763是坏值,剔除它;
重新算平均值:
;S‘=1.31×10-4; S‘C7=2.36×10-4
经查0.12726是坏值,剔除它;
重新算平均值:
; S″=8.93×10-5;S″C6=1.6×10-4
无坏值,所以
Δm=0.0001mm ;
六 注意事项
1、 使用干涉仪时不要使工作台震动;
2、 切勿用手或其他物品触摸其光学表面;
3、切勿正对着光学表面讲话。

求一篇大学物理期末实验报告总结,1000字左右,是总结这学期的课程论文,急~~

假设有一个光源S1,在S1前放置一块屏幕,从S1发出的光(光子)会将整个屏幕均匀的照亮。我们知道,屏幕的亮度是与落在屏幕上面的光子数的多少有关的。严格地说,屏幕的亮度是以垂直于屏幕的光线与屏幕的交点为中心向四周逐渐变暗的。但这种变化决不是几率问题。证明如下:把S1放在一个半径为R1的球的中心,假设S1在单位时间里发射出N个光子,则单位球面积上所接受的光子数等于光子数N除以球的总面积4πR12,如果把球的半径由R1变为R2(R2>R1),则在单位球面积上所接受的光子数就变为N除以4πR22,由于R2大于R1,所以半径为R1的球在单位球面积上接受的光子数大于R2球单位面积上的光子数。这就是为什么屏幕上的亮度是由明到暗逐渐变化的原因。当屏幕距光源的距离很大且屏幕的面积又很小时,就可以近似的认为屏幕上的光子是均匀分布的。
现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹见图一,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。量子力学在解释干涉条纹时则采用的是几率波的方法,认为亮的地方是光子出现几率多的地方,暗的地方则是光子出现几率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,几率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用几率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?
为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源---频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。
我们在x轴上设置两个点光源S1和S2,如图一所示。令P为垂直平面上的一点,从P点到S1和S2的光程差PS1-PS2为波长的某个正数倍ml (m=±1,2,3,…)。从S1和S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从Q到S1和S2的光程差也为ml。过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1和S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。
同理,我们令T为垂直平面上的另一点(图中未画出),从T点到S1和S2的光程差TS1-TS2为波长的l/2×(2m+1)倍(m=±1,2,3,…)。从S1和S2出发的两列光子,将以1800的相位差达到T点。再令V为垂直平面上的另一点(图中未画出),从V到S1和S2的光程差也为道长l/2×(2m+1)倍。过T和V做一条曲线使这曲线上任一点到两定点S1和S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1和S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。
图一是在S1到S2的距离为3l,P点的光程差为PS1-PS2=2l(m=2)这一简单情况下画出的。m=1的那条双曲线是垂直平面内光程差为l的那些点的轨迹。光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。图中还画出m= -1和m= -2的双曲线。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1和S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。 如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l,暗条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。
为了检验以上的设想是否正确,这里我结合光的干涉实验和光电效应实验设计了一个简单实验。第一步用光干涉仪产生明暗相间的干涉条纹。第二步将光电管依次放在从明到暗条纹的不同位置上,当然采用的单色光源频率要在临阈频率之上,观察产生光电子动能的大小。如果按照现有光量子理论,光电子的动能应该是不变的,原因是光子的能量只与光的频率有关而与光的亮度无关,干涉后光的频率并没有变化,所以在从明到暗的条纹上,测得的光电子的动能应该是不变的。再从量子理论的观点来分析,明亮的地方光子出现的几率大,暗的地方光子出现的几率小,明暗只是单位面积上光子数不同而已,光子的动能并没有改变,所以结论也是光电子的动能不变。而我的结论则是在从明到暗的干涉条纹上光子数是一样的,产生的光电子的动能是从大到小连续变化的。
如果实验的结果与我所做的推论一致,我们不妨把这一结论推广到一切实物粒子,因为实物粒子也具有波粒二象性,即一切实物粒子自身的能量与质量之间始终处在不停地相互变化中,这也正是量子力学波函数所要描述的微观世界粒子的客观实在图像。
经过一学期大学物理实验学习,我学会了许多以前所不会的东西,也懂得了许多以往所不懂的原理和知识,这是我以后学习和生活具有重要作用。
一学期的大学物理实验课程不仅仅是学会了这些物理实验的做法,更多的是学习方法和面对问题时所应采取的心态和方法。这不仅在学习方面让我受益匪浅更在生活和工作方面让我收获良多。像是在霍尔效应实验以及测水表面张力系数的实验它们的和步骤以及注意事项和材料让我明白做实验的基本过程和方法需要明白什么、要得到什么、应该怎样去做。正如做事应知道用什么方法、准备什么、目标是什么、应注意什么一样。正如我们在大学不仅是学习知识而更多是学习方法和适应社会的能力。我想这也正是我们应该做的。
这一年大学物理实验课的学习中,让我受益颇多。它让我养成了课前预习的好习惯。一直以来就没能养成课前预习的好习惯(虽然一直认为课前预习是很重要的),但经过这一年,让我深深的懂得课前预习的重要。只有在课前进行了认真的预习,才能在课上更好的学习,收获的更多、掌握的更多。其并且培养了我的动手能力。“实验就是为了让你动手做,去探索一些你未知的或是你尚不是深刻理解的东西。”现在,大学生的动手能力越来越被人们重视,大学物理实验正好为我们提供了这一平台。每个实验我都亲自去做,不放弃每次锻炼的机会。经过这一年,让我的动手能力有了明显的提高。他还让我在探索中求得真知。那些伟大的科学家之所以伟大就是他们利用实验证明了他们的伟大。实验是检验理论正确与否的试金石。为了要使你的理论被人接受,你必须用事实(实验)来证明,让那些怀疑的人哑口无言。虽说我们的大学物理实验只是对前人的经典实验的重复,但是对于一个知识尚浅、探索能力还不够的人来说,这些探索也非一件易事。大学物理实验都是一些经典的给人类带来了难以想象的便利与财富。对于这些实验,我在探索中学习、在模仿中理解、在实践中掌握。大学物理实验让我慢慢开始“摸着石头过河”。学习就是为了能自我学习,这正是实验课的核心,它让我在探索、自我学习中获得知识。它并且教会了我处理数据的能力。实验就有数据,有数据就得处理,这些数据处理的是否得当将直接影响你的实验成功与否。经过这一年,我学会了数学方程法、图像法等处理数据的方法,让我对其它课程的学习也是得心应手。
总之,大学物理实验课让 收获颇丰,同时也让 发现了自身的不足。在实验课上学得的, 将发挥到其它中去,也将在今后的学习和工作中不断提高、完善;在此间发现的不足,将努力改善,通过学习、实践等方式不断提高,克服那些不应成为学习、获得知识的障碍。最后衷心的感谢老师和同学这一学期在课上和课后对我的帮助,特别是老师在这一学期对我的帮助和教导。
明天又是一个新的开始,我会用最大的努力来实现我的人生价值。
我们知道,屏幕的亮度是与落在屏幕上面的光子数的多少有关的。严格地说,屏幕的亮度是以垂直于屏幕的光线与屏幕的交点为中心向四周逐渐变暗的。但这种变化决不是几率问题。证明如下:把S1放在一个半径为R1的球的中心,假设S1在单位时间里发射出N个光子,则单位球面积上所接受的光子数等于光子数N除以球的总面积4πR12,如果把球的半径由R1变为R2(R2>R1),则在单位球面积上所接受的光子数就变为N除以4πR22,由于R2大于R1,所以半径为R1的球在单位球面积上接受的光子数大于R2球单位面积上的光子数。这就是为什么屏幕上的亮度是由明到暗逐渐变化的原因。当屏幕距光源的距离很大且屏幕的面积又很小时,就可以近似的认为屏幕上的光子是均匀分布的。
现在把另一个相干光源S2放在靠近S1的地方,情况有了变化。在垂直两个光源的平面上出现了明暗相间的圆环,而在平行两个光源的平面上,则出现了明暗相间的条纹见图一,这就是人们所说的光的干涉条纹。因为干涉现象是波动的最主要特征,所以这也就成了光具有波动性的最有力证据之一。我们知道机械波是振动在媒质中的传播,当有两列相干波源存在时,媒质中任意一点的振动是两列波各自到达这一点时波的叠加。当到达这一点的两列波的相位相同时,则在这一点上的振幅最大,如果两列波的相位相差1800时,则振动的振幅相互抵消,这样就形成了有规则的干涉条纹。经典光学正是套用机械波的方法证明光的干涉条纹的,而传播光的媒质以太已被证明是根本不存在的,这样用机械波的方法证明光的干涉条纹也就显得比较牵强。量子力学在解释干涉条纹时则采用的是几率波的方法,认为亮的地方是光子出现几率多的地方,暗的地方则是光子出现几率少的地方。问题是当只有一个光源时,光子是均匀分布在屏幕上的,而当存在另一个相干光源时,按照量子理论光子就会集中出现在一些地方而不去另一些地方,几率的解释是不能使人心悦诚服地接受的。爱因斯坦曾用上帝不掷骰子来表达他对用几率描述单个粒子行为的厌恶。这就是目前对于光的干涉现象的两种正统解释方法。我们对于光本性的认识是否还存在其它我们没有考虑到的因素,是否还存在其它的证明方法来统一光的波粒二象性即用一种理论解释来解释波动性和粒子性呢?
为了找到这种新的理论,在此我们不得不在现有光量子理论基础上进行一些必要的修正即单个光量子的能量是变化的,光子的能量和质量是相互转化的,转化的频率就是光的频率。频率快光子的能量大质量小,相反,频率慢则光子的能量小质量大,这样光子在空间所走的路程就形成了一条类波的轨迹。在论证光的干涉现象之前,我们先对光源进行定义。单频率点光源---频率单一且所有光子在离开光源时的状态(相位)都相同。单频率点光源具有这样两个特点,其一在距光源某一点的空间位置上,光子的状态不随时间变化。其二光子的状态随距点光源的距离作周期变化。光的波长指的是光子在一个周期的时间内在空间运行的距离。
我们在x轴上设置两个点光源S1和S2,如图一所示。令P为垂直平面上的一点,从P点到S1和S2的光程差PS1-PS2为波长的某个正数倍ml (m=±1,2,3,…)。从S1和S2出发的两列光子,将同相地达到P点,状态相同。再令Q为垂直平面上的另一点,从Q到S1和S2的光程差也为ml。过P和Q点做一条曲线,使得这曲线上所有过XO的垂直平面内的点的轨迹都具有这样的性质,即这条曲线上任意一点到S1和S2的距离之差为常数,根据解析几何我们知道,这曲线是一条双曲线。如果我们设想这一双曲线以直线XO为轴旋转,则它将扫出一个曲面,叫做双曲面。我们看到,在这曲面上的任意一点,来自S1和S2的光子始终都是同相位的(相位差保持不变),光子在曲面上的每一点的状态是一定的,沿曲面上的点的状态是周期变化的。由于光的波长很短,光子沿曲面的这种周期变化是不容易被观测到。
同理,我们令T为垂直平面上的另一点(图中未画出),从T点到S1和S2的光程差TS1-TS2为波长的l/2×(2m+1)倍(m=±1,2,3,…)。从S1和S2出发的两列光子,将以1800的相位差达到T点。再令V为垂直平面上的另一点(图中未画出),从V到S1和S2的光程差也为道长l/2×(2m+1)倍。过T和V做一条曲线使这曲线上任一点到两定点S1和S2的距离之差为常数,这曲线也是一条双曲线,以XO为轴旋转同样将扫出一双曲面。所不同的是来自S1和S2的光子到达这曲面上的任意一点的相位差始终为1800,叠加后的最终状态是一个恒定的值。
图一是在S1到S2的距离为3l,P点的光程差为PS1-PS2=2l(m=2)这一简单情况下画出的。m=1的那条双曲线是垂直平面内光程差为l的那些点的轨迹。光程差为零(m=0)的各点的轨迹是过S1S2中点的一条直线。由它绕XO旋转而成的将是一个平面。图中还画出m= -1和m= -2的双曲线。在这种情况下,这五条曲线绕XO旋转而产生五个曲面,这五个曲面将S1和S2两光源所形成的能量场分成了6个左右对称的无限延伸的能量空间。屏幕上亮线将出现在屏幕与诸双曲面相交的那些曲线的任何所在位置上。 如果两点光源间的距离是许多个波长,则将存在许多曲面,在这些曲面上各光子相互加强。因而在平行于两光源连线的屏幕上,将形成许多明暗相间的双曲线(几乎是直线)干涉条纹。而在垂直于两光源连线的屏幕上将形成许多明暗相间的圆形干涉条纹。两条相邻的明条纹之间的关系是光程差相差一个l,暗条纹与相邻明条纹之间相差l/2。干涉条纹从明到暗再到明之间的相位变化是从同相到相差1800相位再到同相。
为了检验以上的设想是否正确,这里我结合光的干涉实验和光电效应实验设计了一个简单实验。第一步用光干涉仪产生明暗相间的干涉条纹。第二步将光电管依次放在从明到暗条纹的不同位置上,当然采用的单色光源频率要在临阈频率之上,观察产生光电子动能的大小。如果按照现有光量子理论,光电子的动能应该是不变的,原因是光子的能量只与光的频率有关而与光的亮度无关,干涉后光的频率并没有变化,所以在从明到暗的条纹上,测得的光电子的动能应该是不变的。再从量子理论的观点来分析,明亮的地方光子出现的几率大,暗的地方光子出现的几率小,明暗只是单位面积上光子数不同而已,光子的动能并没有改变,所以结论也是光电子的动能不变。而我的结论则是在从明到暗的干涉条纹上光子数是一样的,产生的光电子的动能是从大到小连续变化的。
如果实验的结果与我所做的推论一致,我们不妨把这一结论推广到一切实物粒子,因为实物粒子也具有波粒二象性,即一切实物粒子自身的能量与质量之间始终处在不停地相互变化中,这也正是量子力学波函数所要描述的微观世界粒子的客观实在图像。