本文目录一览:
- 1、笛卡尔坐标系方程?
- 2、笛卡尔坐标系
- 3、笛卡尔坐标系的历史作用
- 4、笛卡尔坐标系
- 5、笛卡尔坐标系
- 6、笛卡尔坐标系就是直角坐标系吗
- 7、笛卡尔坐标是什么意思
- 8、笛卡尔坐标系是什么坐标系?
- 9、笛卡尔坐标系有哪几种类型?
- 10、迪卡尔坐标系的定义以及怎样划分?
笛卡尔坐标系方程?
如下:
1、直角坐标方程
心形线的平面直角坐标系方程表达式分别为 :
x^2+y^2+a*x=a*sqrt(x^2+y^2) 。
x^2+y^2-a*x=a*sqrt(x^2+y^2)。
2、极坐标方程
水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)。
垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)。
简介
笛卡尔在科学上的贡献是多方面的。笛卡尔不仅在哲学领域里开辟了一条新的道路,同时笛卡尔又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在数学上他创立了解析几何,从而打开了近代数学的大门,在科学史上具有划时代的意义。
但他的哲学思想和方法论,在其一生活动中则占有更重要的地位。他的哲学思想对后来的哲学和科学的发展,产生了极大的影响。
笛卡尔坐标系
笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。 相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
二维的直角坐标系通常由两个互相垂直的坐标轴设定,通常分别称为 x-轴和 y-轴;两个坐标轴的相交点,称为原点,通常标记为 O ,既有“零”的意思,又是英语“Origin”的首字母。每一个轴都指向一个特定的方向。这两个不同线的坐标轴,决定了一个平面,称为 xy-平面,又称为笛卡尔平面。通常两个坐标轴只要互相垂直,其指向何方对于分析问题是没有影响的,但习惯性地(见右图),x-轴被水平摆放,称为横轴,通常指向右方;y-轴被竖直摆放而称为纵轴,通常指向上方。两个坐标轴这样的位置关系,称为二维的右手坐标系,或右手系。如果把这个右手系画在一张透明纸片上,则在平面内无论怎样旋转它,所得到的都叫做右手系;但如果把纸片翻转,其背面看到的坐标系则称为“左手系”。这和照镜子时左右对掉的性质有关。
为了要知道坐标轴的任何一点,离原点的距离。假设,我们可以刻画数值于坐标轴。那么,从原点开始,往坐标轴所指的方向,每隔一个单位长度,就刻画数值于坐标轴。这数值是 刻画的次数,也是离原点的正值整数距离;同样地,背着坐标轴所指的方向,我们也可以刻画出 离原点的负值整数距离。称 x-轴刻画的数值为 x-坐标,又称横坐标,称 y-轴刻画的数值为 y-坐标,又称纵坐标。虽然,在这里,这两个坐标都是整数,对应于坐标轴特定的点。按照比例,我们可以推广至实数坐标和其所对应的坐标轴的每一个点。这两个坐标就是直角坐标系的直角坐标,标记为(x,y)。任何一个点 P 在平面的位置,可以用直角坐标来独特表达。只要从点 P画一条垂直于 x-轴的直线。从这条直线与 x-轴的相交点,可以找到点 P 的 x-坐标。同样地,可以找到点 P 的 y-坐标。这样,我们可以得到点 P 的直角坐标。
笛卡尔坐标系的历史作用
笛卡尔坐标系就是直角坐标系和斜角坐标系的统称。相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
二维的直角坐标系是由两条相互垂直、0点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。采用直角坐标,几何形状可以用代数公式明确的表达出来。几何形状的每一个点的直角坐标必须遵守这代数公式。
笛卡尔坐标系
三维笛卡儿坐标系是在二维笛卡儿坐标系的基础上根据右手定则增加第三维坐标(即Z轴)而形成的。同二维坐标系一样,AutoCAD中的三维坐标系有世界坐标系(WCS)和用户坐标系(UCS)两种形式。
1.右手定则
在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。
要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。
要确定轴的正旋转方向,如右图所示,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向。
2.世界坐标系(WCS)
在AutoCAD中,三维世界坐标系是在二维世界坐标系的基础上根据右手定则增加Z轴而形成的。同二维世界坐标系一样,三维世界坐标系是其他三维坐标系的基础,不能对其重新定义。
3.用户坐标系(UCS)
用户坐标系为坐标输入、操作平面和观察提供一种可变动的坐标系。定义一个用户坐标系即改变原点(0,0,0)的位置以及XY平面和Z轴的方向。可在AutoCAD的三维空间中任何位置定位和定向UCS,也可随时定义、保存和复用多个用户坐标系。详见本章第3节。
19.1.2三维坐标形式
在AutoCAD中提供了下列三种三维坐标形式:
1.三维笛卡尔坐标
三维笛卡尔坐标(X,Y,Z)与二维笛卡尔坐标(X,Y)相似,即在X和Y值基础上增加Z值。同样还可以使用基于当前坐标系原点的绝对坐标值或基于上个输入点的相对坐标值。
2.圆柱坐标
圆柱坐标与二维极坐标类似,但增加了从所要确定的点到XY平面的距离值。即三维点的圆柱坐标可通过该点与UCS原点连线在XY平面上的投影长度,该投影与X轴夹角、以及该点垂直于XY平面的Z值来确定。例如,坐标“10<60,20”表示某点与原点的连线在XY平面上的投影长度为10个单位,其投影与X轴的夹角为60度,在Z轴上的投影点的Z值为20。
圆柱坐标也有相对的坐标形式,如相对圆柱坐标“@10<45,30”表示某点与上个输入点连线在XY平面上的投影长为10个单位,该投影与X轴正方向的夹角为45度且Z轴的距离为30个单位。
3.球面坐标
球面坐标也类似与二维极坐标。在确定某点时,应分别指定该点与当前坐标系原点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。例如,坐标“10<45<60”表示一个点,它与当前UCS原点的距离为10个单位,在XY平面的投影与X轴的夹角为45度,该点与XY平面的夹角为60度。
同样,圆柱坐标的相对形式表明了某点与上个输入点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。
笛卡尔坐标系
三维笛卡儿坐标系是在二维笛卡儿坐标系的基础上根据右手定则增加第三维坐标(即Z轴)而形成的。同二维坐标系一样,AutoCAD中的三维坐标系有世界坐标系(WCS)和用户坐标系(UCS)两种形式。
1.右手定则
在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。
要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。
要确定轴的正旋转方向,如右图所示,用右手的大拇指指向轴的正方向,弯曲手指。那么手指所指示的方向即是轴的正旋转方向。
2.世界坐标系(WCS)
在AutoCAD中,三维世界坐标系是在二维世界坐标系的基础上根据右手定则增加Z轴而形成的。同二维世界坐标系一样,三维世界坐标系是其他三维坐标系的基础,不能对其重新定义。
3.用户坐标系(UCS)
用户坐标系为坐标输入、操作平面和观察提供一种可变动的坐标系。定义一个用户坐标系即改变原点(0,0,0)的位置以及XY平面和Z轴的方向。可在AutoCAD的三维空间中任何位置定位和定向UCS,也可随时定义、保存和复用多个用户坐标系。详见本章第3节。
19.1.2三维坐标形式
在AutoCAD中提供了下列三种三维坐标形式:
1.三维笛卡尔坐标
三维笛卡尔坐标(X,Y,Z)与二维笛卡尔坐标(X,Y)相似,即在X和Y值基础上增加Z值。同样还可以使用基于当前坐标系原点的绝对坐标值或基于上个输入点的相对坐标值。
2.圆柱坐标
圆柱坐标与二维极坐标类似,但增加了从所要确定的点到XY平面的距离值。即三维点的圆柱坐标可通过该点与UCS原点连线在XY平面上的投影长度,该投影与X轴夹角、以及该点垂直于XY平面的Z值来确定。例如,坐标“10<60,20”表示某点与原点的连线在XY平面上的投影长度为10个单位,其投影与X轴的夹角为60度,在Z轴上的投影点的Z值为20。
圆柱坐标也有相对的坐标形式,如相对圆柱坐标“@10<45,30”表示某点与上个输入点连线在XY平面上的投影长为10个单位,该投影与X轴正方向的夹角为45度且Z轴的距离为30个单位。
3.球面坐标
球面坐标也类似与二维极坐标。在确定某点时,应分别指定该点与当前坐标系原点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。例如,坐标“10<45<60”表示一个点,它与当前UCS原点的距离为10个单位,在XY平面的投影与X轴的夹角为45度,该点与XY平面的夹角为60度。
同样,圆柱坐标的相对形式表明了某点与上个输入点的距离,二者连线在XY平面上的投影与X轴的角度,以及二者连线与XY平面的角度。
是,也叫自然坐标系,其原点是不固定的。
1637年,笛卡儿发表了《几何学》,创立了直角坐标系。
笛卡尔坐标系是平面坐标系
不是
是的
是平面直角坐标系
通常也叫做 笛卡儿直角坐标系,是从笛卡儿引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。
1637年,迪卡儿发表了《几何学》,创立了直角坐标系,他用平面上的一点到两条固定直线的距离来确定点的位置,用坐标来描述空间中的点,他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数的变换来发现几何性质,证明几何性质。笛卡儿堪称17世纪欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”
笛卡尔坐标系就是直角坐标系吗
是。笛卡尔坐标系包括,笛卡尔直角坐标系和笛卡尔斜角坐标系,而笛卡尔直角坐标系就是直角坐标系,他们两个指的是同一个坐标系。笛卡尔,1596年3月31日-1650年2月11日,法国哲学家、数学家、物理学家,近代哲学的奠基者和唯理论的创始人。
笛卡尔坐标是什么意思
笛卡尔坐标:又称直角坐标,是在数学中常用的一种坐标系统。
一、在二维笛卡尔坐标系中,我们引入了两个垂直的数轴,分别称为x轴和y轴。这两条轴以一个交点作为原点。x轴从左向右延伸,正方向表示正数;y轴从下向上延伸,正方向同样表示正数。整个平面被分为四个象限,第一象限在x轴和y轴的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方。
二、每个点在二维笛卡尔坐标系中可以表示为一对有序数值(x, y),其中x表示点在x轴上的位置,y表示点在y轴上的位置。通过确定x和y的数值,我们可以准确地确定平面上的一个点,并且每个点都有唯一的坐标表示。例如,点A的坐标可以表示为(3, 4),意味着它在x轴上的位置是3,在y轴上的位置是4。
三、在三维空间中,我们还可以引入第三个垂直的数轴,称为z轴。类似于二维情况,每个点可以用一个有序数值组(x, y, z)来表示。
四、笛卡尔坐标系为我们提供了一种方便且统一的方式来描述和计算平面或空间中的几何对象,如点、线、平面、图形等。它在数学、物理学、工程学、计算机科学等领域都有广泛应用。通过笛卡尔坐标系,我们可以进行复杂的几何分析和数学运算,解决各种实际问题,并帮助我们更好地理解和可视化数学概念。
使用笛卡尔坐标注意事项
1、点的表示:可以使用笛卡尔坐标系来表示点在平面或空间中的位置。通过给定的数值组(x, y)或(x, y, z),我们可以明确地确定一个点的位置。
2、距离计算:在笛卡尔坐标系中,可以使用距离公式来计算两个点之间的距离。例如,在二维情况下,两点A(x?, y?)和B(x?, y?)之间的欧几里德距离可以通过以下公式计算:d = √((x? - x?)2 + (y? - y?)2)。
笛卡尔坐标系是什么坐标系?
1、椭圆∶焦半径∶a+ex(左焦点),a-ex(右焦点),x=a2/c;
2、双曲线∶焦半径∶|a+ex|(左焦点)|a-ex|(右焦点),准线x=a2/c;
3、抛物线(y2=2px)∶焦半径∶x+p/2准线∶x=-p/2;
弦长=√k2+1*√(x1+x2)2-4x1x2以上是焦点在x轴的,y轴只需将x换成y即可。
圆锥坐标系(英语:Conical coordinates)是一种三维正交粜垍坐标系。它的三个坐标曲面分别为同心圆球面,锥轴为 x-轴的圆锥面,锥轴为 z-轴的圆锥面。
x+y=z在三维空间坐标里是曲面,它是形状象个漏斗的圆锥面。三维笛卡尔坐标系是在二维笛卡尔坐标系的基础上根据右手定则增加第三维坐标(即Z轴)而形成的。
笛卡尔坐标系有哪几种类型?
一维坐标系;选某一坐标为坐标原点,以某个方向为正方向,选择适当的标度建立一个坐标轴,就构成了一维坐标系,如图一。
二维坐标系;在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴,垂直的数轴叫做y轴x轴y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点,如图二。
三维坐标系;三维笛卡尔坐标(X,Y,Z)与二维笛卡尔坐标(X,Y)相似,即在X和Y值基础上增加Z值,同样还可以使用基于当前坐标系原点的绝对坐标值或基于上个输入点的相对坐标值,如图三。
扩展资料
坐标还有平面极坐标系,在平面上取一点o,称为极点,由点o出发引一条射线,称为极轴。平面上任一点P,到O的长度用e表示,称为极径,OP与X轴的夹角称为极角,一般在0到180度之间,其坐标(e,a)则是此点的极坐标,这样的话平面内任一点都可以用极坐标来表示,也就是说平面内的点与坐标形成一一对应的关系。
柱坐标系坐标类似的,也是坐标与位置形成一一对应关系,只不过还是有其特殊性,其坐标是建立在平面极坐标的基础之上的。柱面坐标系是一种数据,设M(x,y,z)为空间内一点,并设点M在xoy面上的投影P的极坐标为rθ,则这样的三个数r, θ,z就叫点M的柱面坐标。
参考资料百度百科--笛卡尔坐标系
迪卡尔坐标系的定义以及怎样划分?
笛卡尔坐标系 (Cartesian coordinates) 就是直角坐标系和斜角坐标系的统称。
相交于原点的两条数轴,构成了平面仿射坐标系。如两条数轴上的度量单位相等,则称此仿射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。
仿射坐标系和笛卡尔坐标系平面向空间的推广
相交于原点的三条不共面的数轴构成空间的仿射坐标系。三条数轴上度量单位相等的仿射坐标系被称为空间笛卡尔坐标系。三条数轴互相垂直的笛卡尔坐标系被称为空间笛卡尔直角坐标系,否则被称为空间笛卡尔斜角坐标系。
笛卡尔坐标,它表示了点在空间中的位置,但却和直角坐标有区别,两种坐标可以相互转换。举个例子:某个点的笛卡尔坐标是493 ,454, 967,那它的X轴坐标就是4+9+3=16,Y轴坐标是4+5+4=13,Z轴坐标是9+6+7=22,因此这个点的直角坐标是(16, 13, 22),坐标值不可能为负数(因为三个自然数相加无法成为负数)。
笛卡尔和笛卡尔坐标系的产生
据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。
直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图形也可以用代数形式来表示。由此笛卡尔在创立直角坐标系的基础上,创造了用代数的方法来研究几何图形的数学分支——解析几何, 他大胆设想:如果把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特征的点组成的。举一个例子来说,我们可以把图看作是动点到定点距离相等的点的轨迹,如果我们再把点看作是组成几何图形的基本元素,把数看作是组成方程的解,于是代数和几何就这样合为一家人了。