本文目录一览:
- 1、动量守恒公式
- 2、动量守恒定律公式是什么?
- 3、动量守恒定律的内容
- 4、动能守恒定律的公式是什么?如何推?
- 5、物理学中什么叫动量守恒?
- 6、什么是动量守恒定律?公式是什么?
- 7、动量守恒定律公式
- 8、动量守恒的公式是什么?
- 9、动量三个公式
动量守恒公式
有条公式是(1)mu+Mv=mx+My
(2)muu/2+Mvv/2=mxx/2+Myy/2
根据(1)(2)可以推导出
u-v=y-x
解:第一个式子移项变成m(u-x)=M(y-v)
第二个式子移项变成0.5m(u^2-x^2)=0.5M(y^2-v^2)
把第二个式子左右两边分别除以第一个式子左右两边就得到:
u+x=y+v
移项就得到:u-v=y-x了。
动量守恒定律公式为:Δp1=-Δp2。一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论,但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律,是时空性质的反映。其中,动量守恒定律由空间平移不变性推出,能量守恒定律由时间平移不变性推出,而角动量守恒定律则由空间的旋转对称性推出。
动量守恒定律公式是什么?
动量守恒公式是Δp1等于负Δp2。能量守恒定律公式Q等于U加W,动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律,最初它们是牛顿定律的推论, 但后来发现它们的适用范围远远广于牛顿定律。
动量守恒和能量守恒的特点
动能定理确定研究对象,研究对象可以是一个质点单体也可以是一个系统,分析研究对象的受力情况和运动情况,是否是求解力位移与速度关系的问题,若是根据动能定理ΔW等于ΔEk列式求解,小到微观粒子大到宇宙天体,只要满足守恒条件,动量守恒定律总是适用的。
即若系统由两个物体组成,则两个物体的动量变化大小相等方向相反,此处要注意动量变化的矢量性,在两物体相互作用的过程中,也可能两物体的动量都增大也可能都减小,但其矢量和不变,动量守恒定律是自然界最普遍最基本的规律之一。
动量守恒定律的内容
动量守恒定律的内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量,即力与力作用时间的乘积,数学表达式为FΔt=mΔv。公式中的冲量为所有外力的冲量的矢量和。
动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体。动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。
相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统。
动量守恒定律的特点
1、系统不受外力或者所受合外力为零。
2、系统所受合外力虽然不为零,但系统的内力远大于外力时,如碰撞、爆炸等现象中,系统的动量可看成近似守恒。
3、系统总的来看不符合以上条件的任意一条,则系统的总动量不守恒。但是若系统在某一方向上符合以上条件的任意一条,则系统在该方向上动量守恒。
动能守恒定律的公式是什么?如何推?
动量守恒定律是指一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。公式:m1v1+m2v2=m1v1'+m2v2'。
推导过程:
以两球碰撞为例:光滑水平面上有两个质量分别是m1和m2的小球,分别以速度v1和v2(v1>v2)做匀速直线运动。当m1追上m2时,两小球发生碰撞,设碰后二者的速度分别为v1ˊ,v2ˊ。
设水平向右为正方向,它们在发生相互作用(碰撞)前的总动量:p=p1+p2=m1v1+m2v2,在发生相互作用后两球的总动量:pˊ=p1ˊ+p2ˊ=m1v1ˊ+m2v2ˊ。
设碰撞过程中两球相互作用力分别是F1和F2,力的作用时间是。
根据牛顿第二定律,碰撞过程中两球的加速度分别为:
根据牛顿第三定律,大小相等,方向相反,即:F1=-F2,所以:m1a1=-m2a2。
碰撞时两球之间力的作用时间很短,用△t表示,这样加速度与碰撞前后速度的关系就是:
代入上式,整理后可得:
或写成:
即:
这表明两球碰撞前后系统的总动量是相等的。
扩展资料
该定律的特点为:
1、矢量性
动量是矢量。动量守恒定律的方程是一个矢量方程。通常规定正方向后,能确定方向的物理量一律将方向表示为“+”或“-”,物理量中只代入大小:不能确定方向的物理量可以用字母表示。
2、瞬时性
动量是一个瞬时量,动量守恒定律指的是系统任一瞬间的动量和恒定。因此,列出的动量守恒定律表达式m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…,其中v1,v2…都是作用前同一时刻的瞬时速度,v1ˊ,v2ˊ都是作用后同一时刻的瞬时速度。
3、相对性
物体的动量与参考系的选择有关。通常,取地面为参考系,因此,作用前后的速度都必须相对于地面。
4、普适性
它不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
参考资料来源:百度百科动量守恒定律
物理学中什么叫动量守恒?
在物理学中,动量守恒是指在一个孤立系统中,如果没有外力作用,系统的总动量将保持不变。当两个物体发生碰撞时,动量守恒可以用动量守恒定律来表达,该定律可以用动量的总和来表示。对于一个简单的两物体碰撞情况,动量守恒定律可以用以下公式表示:
m1 * v1i + m2 * v2i = m1 * v1f + m2 * v2f
其中,
m1和m2分别是两个物体的质量(mass);
v1i和v2i是碰撞前两个物体的速度(initial velocity);
v1f和v2f是碰撞后两个物体的速度(final velocity)。
这个公式表达了碰撞前后的动量总和相等。在弹性碰撞中,动量和动能都守恒,但在非弹性碰撞中,虽然动量守恒仍然成立,但动能可能不守恒。
需要注意的是,这个公式仅在没有外力作用的情况下成立,即碰撞过程中没有其他外部力(如摩擦力、引力等)产生作用。
什么是动量守恒定律?公式是什么?
动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论,
但后来发现它们的适用范围远远广于牛顿定律,
是比牛顿定律更基础的物理规律,
是时空性质的反映。其中,
动量守恒定律由空间平移不变性推出,
能量守恒定律由时间平移不变性推出,
而角动量守恒定律则由空间的旋转对称性推出
相互间有作用力的物体体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统.
动量守恒定律的适用条件
(1)系统不受外力或系统所受的外力的合力为零。
(2)系统所受外力的合力虽不为零,但比系统内力小得多。
(3)系统所受外力的合力虽不为零,但在某个方向上的分力为零,则在该方向上系统的总动量保持不变——分动量守恒。
(4)在某些实际问题中,一个系统所受外力和不为零,内力也不是远大于外力,但外力在某个方向上的投影为零,那么在该方向上也满足动量守恒的条件。
注意:
(1)区分内力和外力
碰撞时两个物体之间一定有相互作用力,由于这两个物体是属于同一个系统的,它们之间的力叫做内力;系统以外的物体施加的,叫做外力。
(2)在总动量一定的情况下,每个物体的动量可以发生很大变化
例如:静止的两辆小车用细线相连,中间有一个压缩的弹簧。烧断细线后,由于弹力的作用,两辆小车分别向左右运动,它们都获得了动量,但动量的矢量和为零。
3.动量守恒的数学表述形式:
(1)p=p′.
即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;
(2)Δp=0.
即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:
m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和)
(3)Δp1=-Δp2.
即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.
动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。最初它们是牛顿定律的推论,
但后来发现它们的适用范围远远广于牛顿定律,是比牛顿定律更基础的物理规律,
是时空性质的反映。
1、p=p′即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量。
2、Δp=0即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:
(等式两边均为矢量和)。
3、Δp1=-Δp2
即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性。
扩展资料
为了验证能量守恒定律,奥地利物理学家泡利(1900—1958)在1930年提出了一个大胆的设想:如果认为在β衰变过程中还伴随着一种未被查觉的未知粒子的话,那么上面所列举的矛盾都可立即获得解决。
亦就是说,如果β衰变遵守能量守恒定律的话,那么在衰变过程中应当还有一种质量极小又不带电荷的粒子存在,泡利是在1930年12月给迈特纳和盖革的信中首先提出这个假设的。
参考资料来源:百度百科-动量守恒定律
动量守恒定律的内容:一个相对作用的物体,若系统不受外力作用或所受外力之和为零,这个系统的总动量保持不变。
表达式:P1+P2=P1`+P2`或者:m1v1+m2v2=m1v1`+m2v2`.
如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变,这个结论叫做动量守恒定律。动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来。
3.动量守恒的数学表述形式:
(1)p=p′.
即系统相互作用开始时的总动量等于相互作用结束时(或某一中间状态时)的总动量;
(2)δp=0.
即系统的总动量的变化为零.若所研究的系统由两个物体组成,则可表述为:
m1v1+m2v2=m1v1′+m2v2′(等式两边均为矢量和)
(3)δp1=-δp2.
即若系统由两个物体组成,则两个物体的动量变化大小相等,方向相反,此处要注意动量变化的矢量性.在两物体相互作用的过程中,也可能两物体的动量都增大,也可能都减小,但其矢量和不变.
动量守恒定律公式
动量守恒定律F=mv,速度指的是物体的移动速度动力学的普遍定理之一动量定理的内容为物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量用字母I表示,即力与力作用时间的乘积,数学表达式为FΔt=mΔ。
17 动量定理 物体所受合外力的冲量等于它的动量的变化公式 F合t = mv’ 一mv 解题时受力分析和正方向的规定是关键18 动量守恒定律相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们。
动量守恒定律的公式是m1v1+m2v2=m1v3+m2v41 动量p=mv{p动量kgs,m质量kg,v速度ms,方向与速度方向相同}。
定义如果一个系统不受外力或所受外力之和为零,那么这个系统的总动量保持不变如果系统在某一方向上不受外力或在该方向上所受外力之和为零,那么该系统在该方向上动量也守恒公式M1v1+M2v2=M1v3+M2v4 希望能解决。
这个很简单,m1是一个小物体的质量,m2是另一个小物体的质量,v1是m1碰撞之前的速度,v2是m2碰撞之前的速度,v3是m1碰撞后的速度,v4是m2碰撞后的速度的。
1机械能守恒定律 内容在只有重力或系统内弹力做功的物体系统内,物体的动能Ek和势能Ep可以相互转化,但机械能保持不变公式Ek1+Ep1=Ek2+Ep2 适用条件只有重力或系统内弹力做功 2动量守恒定律 内容一个。
动量守恒定律公式为Δp1=Δp2一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律最初。
动量守恒的公式是什么?
动量守恒和动能守恒联立M1v1+m2v2=m1v1’+m2v2’,1/2M1v1^2+1/2m2v2^2=1/2m1v1’^2+1/2m2v2’^2,解v1' 和 v2'。
这个简便算法可以适用于任何直线上的弹性碰撞动量守恒程:m1v1+m2v2=m1v1'+m2v2'(1),能量守恒方程:0.5m1vi^2+0.5m2v2^2=0.5m1v1'^2+0.5m2v2'^2(2)。
(1)式移得:m1(v1-v1')=m2(v2'-v2) …(3),(2)式移项得:m1(v1-v1')(v1+v1')=m2(v2'-v2)(v2'+v2) …(4),用(4)式除以(3)式,得v1+v1'=v2'+v2 …(5)。
扩展资料:
动量是一个瞬时量,动量守恒定律指的是系统任一瞬间的动量和恒定。因此,列出的动量守恒定律表达式m1v1+m2v2+…=m1v1ˊ+m2v2ˊ+…,其中v1,v2…都是作用前同一时刻的瞬时速度,v1ˊ,v2ˊ都是作用后同一时刻的瞬时速度。
只要系统满足动量守恒定律的条件,在相互作用过程的任何一个瞬间,系统的总动量都守恒。动量守恒定律和能量守恒定律以及角动量守恒定律一起成为现代物理学中的三大基本守恒定律。
动量三个公式
动量三个公式如下:
1、动量守恒定律:
动量守恒定律是物理学中最基本的定律之一,它表述了在一个没有外力作用的封闭系统中,物体的总动量保持不变。这个定律可以用公式表示为:m1v1+m2v2=m1v1+m2v2,其中m1和m2是物体的质量,v1和v2是物体的速度,v1和v2是物体相互作用后的速度。
2、动能定理:
动能定理表述了在一个过程中,物体动能的变化等于它所受的外力做的总功。这个定理可以用公式表示为:ΔE= W=ΣF·dr,其中ΔE是物体动能的变化,W是外拆御力做的总功,ΣF·dr是各个外力对物体做的功的代数和。
3、角动量定理巧搏:
角动量定理表述了在一个过程中,物体角动量的变化等于它所受的外力矩。这个定理可以用公式表示为:L= M=Σr× F,其中L是物体的角动量,M是外力矩,Σr× F是各个外力对物体作用点的力矩的代数和。
动量在物理学中的重要性:
1、描述物体的运动状态:动量是描述物体运动状态的重要物理量,它等于物体的质量乘以速度。通过动量的概念,我们可以准确地了解物体在空间中的位置、速度和加速度等运动学信息。这些信息对于解决各种物理问题至关重要,例如在力学、天体物理学和粒子物理学等领域。
2、揭示相互作用机制:动量在揭示物质间相互作用机制方面具有重要作用。当两个物体相互作用时,它们之间会产生力,这个力的大小与它们之间的动量差成正比。因此,通过研究物体之间的相互作用,我们可以深入理解它们之间的相互作用机制,为探索新的物理现象提供理论支持。
3、指导实验和观测:动量对于实验和观测也有着重要的指导作用。在实验中,我们可以利用动量的概念来研究物体的运动规律和相互作用机制。例如,通过测量粒子的动量,我们可以了解粒子之间的相互作用和碰撞过程。在观测方面,动量的概念可以帮助我们更好地理解天体运动和宇宙学现象,例如黑洞、星系形成和宇宙膨胀等。