×

高中数学公式大全,高中数学必背公式大全 高中数学必背公式总结

admin admin 发表于2024-03-17 03:51:47 浏览19 评论0

抢沙发发表评论

本文目录一览:

高中数学公式大全 高中数学公式介绍

1、抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h

正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h

圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2

圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

斜棱柱体积 V=SL 注:其中,S是直截面面积, L是侧棱长

柱体体积公式 V=s*h 圆柱体 V=pi*r2h。

2、正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b。

3、和差化积:

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB。

4、两角和公式:

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)。

高中必背88个数学公式

高中必背的88个数学公式如下:
1、几何公式:
三角形面积公式:\[S=\frac{1}{2}bh\]、直角三角形勾股定理:\[a^2+b^2=c^2\]、任意三角形余弦定理:\[c^2=a^2+b^2-2ab\cosC\]、任意三角形正弦定理:\[\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sinC}\]。
圆的周长公式:\[C=2\pir\]、圆的面积公式:\[S=\pir^2\]、椭圆的面积公式:\[S=\piab\]、平行四边形面积公式:\[S=bh\]、梯形面积公式:\[S=\frac{1}{2}(a+b)h\]。
2、代数与函数公式:
两点之间距离公式:\[d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\]、二次方程求根公式:\[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]、因式分解公式:\[a^2-b^2=(a+b)(a-b)\]、平方差公式:\[a^2-b^2=(a+b)(a-b)\]。
二次平方差公式:\[a^2+2ab+b^2=(a+b)^2\]、二次平方和公式:\[a^2-2ab+b^2=(a-b)^2\]、余弦和与差公式:\[\cos(A\pmB)=\cosA\cosB\mp\sinA\sinB\]、正弦和与差公式:\[\sin(A\pmB)=\sinA\cosB\pm\cosA\sinB\]。
对数与指数公式:\[a^{\log_{a}N}=N\]、分式运算公式:\(\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\)、连分数公式:\[a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{a_3+...}}}\]。
3、概率与统计公式:
排列公式:\(P_n^m=\frac{n!}{(n-m)!}\)、组合公式:\(C_n^m=\frac{n!}{m!(n-m)!}\)、乘法原理:如果一个实验有\(m\)个步骤,第\(i\)个步骤有\(n_i\)种可能结果,那么整个实验有\(n_1\timesn_2\times...\timesn_m\)种可能结果。
加法原理:如果一个实验有\(m\)个互不相容的事件,第\(i\)个事件发生的概率为\(P(A_i)\),则整个实验发生的概率为\(P(A_1\cupA_2\cup...\cupA_m)=P(A_1)+P(A_2)+...+P(A_m)\)条件概率公式:\[P(A|B)=\frac{P(A\capB)}{P(B)}\]。
乘法公式:\[P(A\capB)=P(B)P(A|B)=P(A)P(B|A)\]、全概率公式:\[P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+...+P(A|B_n)P(B_n)\]、Bayes公式:\[P(B_i|A)=\frac{P(A|B_i)P(B_i)}{P(A)}\]
4、导数与积分公式:
基本导数公式:常数函数求导为0,\(x^n\)的导数为\(nx^{n-1}\),\(\sinx\)的导数为\(\cos x\),\(\cosx\)的导数为\(-\sinx\),\(\log_a{x}\)的导数为\(\frac{1}{x\lna}\)。
基本积分公式:\(a^x\)的不定积分为\(\frac{a^x}{\lna}+C\),\(\sinx\)的不定积分为\(-\cosx +C\),\(\cosx\)的不定积分为\(\sinx+C\),\(\frac{1}{x}\)的不定积分为\(\ln|x|+C\)。
反常积分公式:\(|x|\)在区间\([-a,a]\)上的积分为0,\(\frac{1}{x^2}\)在区间\([a,+\infty)\)上的积分为\(\frac{1}{a}\),\(\frac{1}{x}\)在区间\([a,+\infty)\)上的积分为\(\lna\)。
二重积分公式:\(\iint_Df(x,y)dxdy=\iint_{D'}f(x(u,v),y(u,v))|J(u,v)|dudv\)、三重积分公式:\(\iiint_\Omegaf(x,y,z)dxdydz=\iiint_{\Omega'}f(x(u,v,w),y(u,v,w),z(u,v,w))|J(u,v,w)|dudvdw\)。
5、矩阵与行列式公式:
矩阵乘法公式:若矩阵\(A\)的维度为\(m\timesn\),矩阵\(B\)的维度为\(n\timesp\),则矩阵\(AB\)的维度为\(m\timesp\)。
行列式性质:行列式的转置等于其自身,行列式两行交换改变符号,行列式两行相等结果为0,行列式两行成比例结果为0。
6、数列与级数公式:
等差数列前\(n\)项和公式:\[S_n=\frac{n}{2}(a_1+a_n)\]、等比数列前\(n\)项和公式:若\(r\neq1\),则\[S_n=\frac{a_1(1-r^n)}{1-r}\]、幂级数收敛判定公式:当\(|x|R\)时,幂级数发散;当\(|x|=R\)时,收敛性需要进一步判定。
7、解析几何公式:
点到直线距离公式:点\(P(x_0,y_0)\)到直线\(Ax+By+C=0\)的距离为\[d=\frac{|Ax_0+By_0+C|}{\sqrt{A^2+B^2}}\]。
8、立体几何公式:
空间直线方程:一般式方程:\[\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}\]对称式方程:\[\frac{x-x_0}{m}=\frac{y-y_0}{n}=\frac{z-z_0}{p}=t\]空间平面方程:点法式方程:\[A(x-x_0)+B(y-y_0)+C(z-z_0)=0\]一般式方程:\[Ax+By+Cz+D=0\]。
空间曲线弧长公式:一般曲线\(C\)的弧长公式为:\[L=\int_{a}^{b}\sqrt{(dx)^2+(dy)^2+(dz)^2}\]、空间曲面面积公式:一般曲面\(S\)的面积公式为:\[S=\iint_{D}\sqrt{1+(f'_x)^2+(f'_y)^2}dxdy\]空间曲面曲率公式:一般曲面\(S\)的曲率公式为:\[K=\frac{|f''_x\timesf''_y|}{(1+(f'_x)^2+(f'_y)^2)^\frac{3}{2}}\]。
9、三角恒等式:
正弦定理:\(\frac{a}{\sinA}=\frac{b}{\sinB}=\frac{c}{\sinC}\)、余弦定理:\(c^2=a^2+b^2-2ab\cosC\)、正切和余切的关系:\(\tanA=\frac{\sinA}{\cosA}\),\(\cot A=\frac{1}{\tanA}\)。
和差角公式:\(\sin(A\pmB)=\sinA\cosB\pm\cosA\sinB\),\(\cos(A\pmB)=\cosA\cos B\mp\sinA\sinB\)、二倍角公式:\(\sin2A=2\sinA\cosA\),\(\cos2A=\cos^2A-\sin^2 A\),\(\tan2A=\frac{2\tanA}{1-\tan^2A}\)。
三倍角公式:\(\sin3A=3\sinA-4\sin^3A\),\(\cos3A=4\cos^3A-3\cosA\),\(\tan 3A=\frac{3\tanA-\tan^3A}{1-3\tan^2A}\)。
10、数学分析公式:
中值定理:若函数\(f(x)\)在区间\([a,b]\)连续,在\((a,b)\)可导,则存在\(c\in(a,b)\),使得\[\frac{f(b)-f(a)}{b-a}=f'(c)\]、拉格朗日中值定理:若函数\(f(x)\)在区间\([a,b]\)连续,在\((a,b)\)可导,则存在\(c\in(a,b)\),使得\[f'(c)=\frac{f(b)-f(a)}{b-a}\]。
柯西中值定理:若函数\(f(x),g(x)\)在区间\([a,b]\)连续,在\((a,b)\)可导,并且\(g'(x)\neq 0\),则存在\(c\in(a,b)\),使得\[f'(c)=\frac{f(b)-f(a)}{g(b)-g(a)}\]。

高中数学公式大全

正弦定理
a/sinA=b/sinB=c/sinC=2R
注:
其中
R
表示三角形的外接圆半径
余弦定理
b^2=a^2+c^2-2accosB
注:角B是边a和边c的夹角
圆的标准方程
(x-a)^2+(y-b)^2=^r2
注:(a,b)是圆心坐标
圆的一般方程
x^2+y^2+Dx+Ey+F=0
注:D^2+E^2-4F>0
抛物线标准方程
y^2=2px
y^2=-2px
x^2=2py
x^2=-2py
直棱柱侧面积
S=c*h
斜棱柱侧面积
S=c'*h
正棱锥侧面积
S=1/2c*h'
正棱台侧面积
S=1/2(c+c')h'
圆台侧面积
S=1/2(c+c')l=pi(R+r)l
球的表面积
S=4pi*r2
圆柱侧面积
S=c*h=2pi*h
圆锥侧面积
S=1/2*c*l=pi*r*l
弧长公式
l=a*r
a是圆心角的弧度数r
>0
扇形面积公式
s=1/2*l*r
锥体体积公式
V=1/3*S*H
圆锥体体积公式
V=1/3*pi*r2h

斜棱柱体积
V=S'L
注:其中,S'是直截面面积,
L是侧棱长
柱体体积公式
V=s*h
圆柱体
V=pi*r2h
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2
-1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2)
sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)
cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))
tan(A/2)=-√((1-cosA)/((1+cosA))
cot(A/2)=√((1+cosA)/((1-cosA))
cot(A/2)=-√((1+cosA)/((1-cosA))

和差化积
2sinAcosB=sin(A+B)+sin(A-B)
2cosAsinB=sin(A+B)-sin(A-B)
)
2cosAcosB=cos(A+B)-sin(A-B)
-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2
cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)
5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
常用导数公式
1.y=c(c为常数)
y'=0
2.y=x^n
y'=nx^(n-1)
3.y=a^x
y'=a^xlna
y=e^x
y'=e^x
4.y=logax
y'=logae/x
y=lnx
y'=1/x
5.y=sinx
y'=cosx
6.y=cosx
y'=-sinx
7.y=tanx
y'=1/cos^2x
8.y=cotx
y'=-1/sin^2x
9.y=arcsinx
y'=1/√1-x^2
10.y=arccosx
y'=-1/√1-x^2
11.y=arctanx
y'=1/1+x^2
12.y=arccotx
y'=-1/1+x^2

高中生的数学公式

高中生的数学公式大全
  公式在数学中占很重要的位置,下面我为大家精心整理的高中生的数学公式大全,欢迎大家阅读与学习!

  乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
  |a-b|≥|a|-|b| -|a|≤a≤|a|
  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
  判别式
   b2-4ac=0 注:方程有两个相等的'实根
  b2-4ac>0 注:方程有两个不等的实根
  b2-4ac<0 注:方程没有实根,有共轭复数根
  三角函数公式
  两角和公式
  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
  倍角公式
  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
  半角公式
  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
  和差化积
  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
  某些数列前n项和
  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
  正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
  圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
  锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
  斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

高中数学公式

高中数学公式大全
  数学公式一定要背好,下面是我为大家收集的关于高中数学公式大全,欢迎大家阅读!

  1 、过两点有且只有一条直线
  2、 两点之间线段最短
  3 、同角或等角的补角相等
  4 、同角或等角的余角相等
  5、 过一点有且只有一条直线和已知直线垂直
  6、 直线外一点与直线上各点连接的所有线段中,垂线段最短
  7、 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
  8、 如果两条直线都和第三条直线平行,这两条直线也互相平行
  9 、同位角相等,两直线平行
  10 、内错角相等,两直线平行
  11 、同旁内角互补,两直线平行
  12、两直线平行,同位角相等
  13、 两直线平行,内错角相等
  14、 两直线平行,同旁内角互补
  15 、定理 三角形两边的和大于第三边
  16 、推论 三角形两边的差小于第三边
  17 、三角形内角和定理 三角形三个内角的和等于180°
  18 、推论1 直角三角形的两个锐角互余
  19、 推论2 三角形的一个外角等于和它不相邻的两个内角的和
  20、 推论3 三角形的一个外角大于任何一个和它不相邻的内角
  21 、全等三角形的对应边、对应角相等
  22、边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等
  23 、角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等
  24、 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等
  25、 边边边公理(sss) 有三边对应相等的两个三角形全等
  26、 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等
  27、 定理1 在角的平分线上的点到这个角的两边的距离相等
  28、 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
  29、 角的平分线是到角的两边距离相等的所有点的集合
  30 、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
  31 、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
  32 、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
  33 、推论3 等边三角形的各角都相等,并且每一个角都等于60°
  34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
  35 、推论1 三个角都相等的三角形是等边三角形
  36、 推论 2 有一个角等于60°的等腰三角形是等边三角形
  37、 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
  38 、直角三角形斜边上的中线等于斜边上的一半
  39 、定理 线段垂直平分线上的点和这条线段两个端点的距离相等
  40 、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
  41 、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
  42、 定理1 关于某条直线对称的两个图形是全等形
  43、 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
  44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
  45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
  46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
  47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
  48、定理 四边形的内角和等于360°
  49、四边形的外角和等于360°
  50、多边形内角和定理 n边形的内角的和等于(n-2)×180°
  51、推论 任意多边的外角和等于360°
  52、平行四边形性质定理1 平行四边形的对角相等
  53、平行四边形性质定理2 平行四边形的对边相等
  54、推论 夹在两条平行线间的平行线段相等
  55、平行四边形性质定理3 平行四边形的对角线互相平分
  56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
  57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
  58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形
  59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
  60、矩形性质定理1 矩形的.四个角都是直角
  61、矩形性质定理2 矩形的对角线相等
  62、矩形判定定理1 有三个角是直角的四边形是矩形
  63、矩形判定定理2 对角线相等的平行四边形是矩形
  64、菱形性质定理1 菱形的四条边都相等
  65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
  66、菱形面积=对角线乘积的一半,即s=(a×b)÷2
  67、菱形判定定理1 四边都相等的四边形是菱形
  68、菱形判定定理2 对角线互相垂直的平行四边形是菱形
  69、正方形性质定理1 正方形的四个角都是直角,四条边都相等
  70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
  71、定理1 关于中心对称的两个图形是全等的
  72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
  73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
  74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等
  75、等腰梯形的两条对角线相等
  76、等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
  77、对角线相等的梯形是等腰梯形
  78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
  79、 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
  80、 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边
  81 、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半
  82 、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h
  83、 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
  84 、(2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
  85、(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
  86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例
  87 、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
  88 、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
  89 、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
  90、 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
  91 、相似三角形判定定理1 两角对应相等,两三角形相似(asa)
  92 、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
  93、 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)
  94 、判定定理3 三边对应成比例,两三角形相似(sss)
  95 、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
  96、 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
  97、 性质定理2 相似三角形周长的比等于相似比
  98、 性质定理3 相似三角形面积的比等于相似比的平方
  99 、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值
  100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
  101、圆是定点的距离等于定长的点的集合
  102、圆的内部可以看作是圆心的距离小于半径的点的集合
  103、圆的外部可以看作是圆心的距离大于半径的点的集合
  104、同圆或等圆的半径相等
  105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
  106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
  107、到已知角的两边距离相等的点的轨迹,是这个角的平分线
  108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
  109、定理 不在同一直线上的三点确定一个圆。
  110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
  111、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
  112、推论2 圆的两条平行弦所夹的弧相等
  113、圆是以圆心为对称中心的中心对称图形
  114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
  115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
  116、定理 一条弧所对的圆周角等于它所对的圆心角的一半
  117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
  118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径
  119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
  120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
  121、①直线l和⊙o相交 d
  ②直线l和⊙o相切 d=r
  ③直线l和⊙o相离 d>r
  122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
  123、切线的性质定理 圆的切线垂直于经过切点的半径
  124、推论1 经过圆心且垂直于切线的直线必经过切点
  125、推论2 经过切点且垂直于切线的直线必经过圆心
  126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
  127、圆的外切四边形的两组对边的和相等
  128、弦切角定理 弦切角等于它所夹的弧对的圆周角
  129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
  130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等
  131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
  两条线段的比例中项
  132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
  133、推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
  134、如果两个圆相切,那么切点一定在连心线上
  135、①两圆外离 d>r+r ②两圆外切 d=r+r
  ③两圆相交 r-rr)
  ④两圆内切 d=r-r(r>r) ⑤两圆内含dr)
  136、定理 相交两圆的连心线垂直平分两圆的公共弦
  137、定理 把圆分成n(n≥3):
  ⑴依次连结各分点所得的多边形是这个圆的内接正n边形
  ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
  138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
  139、正n边形的每个内角都等于(n-2)×180°/n
  140、定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
  141、正n边形的面积sn=pnrn/2 p表示正n边形的周长
  142、正三角形面积√3a/4 a表示边长
  143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
  144、弧长计算公式:l=nπr/180
  145、扇形面积公式:s扇形=nπr2/360=lr/2
  146、内公切线长= d-(r-r) 外公切线长= d-(r+r)
  147、等腰三角形的两个底脚相等
  148、等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合
  149、如果一个三角形的两个角相等,那么这两个角所对的边也相等
  150、三条边都相等的三角形叫做等边三角
;

高中数学公式大全(完整版)精选

  在数学里公式的重要性不言而喻,那么高中数学公式都有哪些呢?下面是由我为大家整理的“高中数学公式大全(完整版)精选”,仅供参考,欢迎大家阅读本文。
   高中数学公式大全(完整版)精选
  1、两角和公式
  sin(A+B)=sinAcosB+cosAsinB
  sin(A-B)=sinAcosB-sinBcosA
  cos(A+B)=cosAcosB-sinAsinB
  cos(A-B)=cosAcosB+sinAsinB
  tan(A+B)=(tanA+tanB)/(1-tanAtanB)
  tan(A-B)=(tanA-tanB)/(1+tanAtanB)
  cot(A+B)=(cotAcotB-1)/(cotB+cotA)
  cot(A-B)=(cotAcotB+1)/(cotB-cotA)
  2、乘法与因式分解
  a^2-b^2=(a+b)(a-b)
  a^3+b^3=(a+b)(a^2-ab+b^2) 
  a^3-b^3=(a-b(a^2+ab+b^2)
  3、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
  |a-b|≥|a|-|b| -|a|≤a≤|a|
  4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。
  5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。
  6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。
  7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。
  8、倍角公式
  tan2A=2tanA/[1-(tanA)^2]
  cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
  9、半角公式
  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))
  10、某些数列前n项和
  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2
  1+3+5+7+9+11+13+15+…+(2n-1)=n2
  2+4+6+8+10+12+14+…+(2n)=n(n+1) 5
  1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6
  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
  1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
   高中数学的学习方法
  1、要养成良好的演算、验算习惯,提高运算能力。对复杂运算,要有耐心,掌握算理,注重简便方法。解后要反思,提高分析问题的能力。
  2、在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
  3、在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。
  4、为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力,也养成归纳总结的习惯。
  5、要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
  6、审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的。要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。

高中数学必背公式知识点大全

在数学的学习以及做题方面,我们的数学解题都离不开公式,高中数学有很多需要必备的公式,那么我就将其中重要的公式给大家整理一下。

三角公式大全 1.两角和公式:
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
2.倍角公式:
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
3.半角公式:
sin(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)
cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)
tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))
ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))
4.和差化积:
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
立体图形及平面图形的公式 圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h

高中数学必背公式大全 高中数学必背公式总结

1、两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a/2、半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))/3、和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB/
4、某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n*2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
5、圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
6、抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
7、直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c*h
8、正棱锥侧面积 S=1/2c*h 正棱台侧面积 S=1/2(c+c)h
9、圆台侧面积 S=1/2(c+c)l=pi(R+r)l 球的表面积 S=4pi*r2

高中数学基本公式大全

  寒窗苦读十余载,今朝考试展锋芒;思维冷静不慌乱,下笔如神才华展;心平气和信心足,过关斩将如流水;细心用心加耐心,努力备考,定会考入理想院校。接下来是我为大家整理的高中数学基本公式大全,希望大家喜欢!
   高中数学基本公式大全一
  复合函数如何求导f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),
  从而(公式):f'[g(x)]=f'(u)_'(x)
  呵呵,我们的老师写在黑板上时我一开始也看不懂,那就举个例子吧,耐心看哦!
  f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)
  所以f'[g(x)]=[sin(u)]'_2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x).
  以此类推y'=[cos(3x)]'=-3sin(x)
  y'={sin(3-x)]'=-cos(x)
  一开始会做不好,老是要对照公式和例子,
  但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。
  复合函数求导法则证法一:先证明个引理
  f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)
  证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0
  因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)
  所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
  反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)
  因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)
  所以f(x)在点x0可导,且f'(x0)=H(x0)
  引理证毕。
  设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
  证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)
  又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)
  于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)
  因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且
  F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)
  证法二:y=f(u)在点u可导,u=g(x)在点x可导,则复合函数y=f(g(x))在点x0可导,且dy/dx=(dy/du)_du/dx)
  证明:因为y=f(u)在u可导,则lim(Δu->0)Δy/Δu=f'(u)或Δy/Δu=f'(u)+α(lim(Δu->0)α=0)
  当Δu≠0,用Δu乘等式两边得,Δy=f'(u)Δu+αΔu
  但当Δu=0时,Δy=f(u+Δu)-f(u)=0,故上等式还是成立。
  又因为Δx≠0,用Δx除以等式两边,且求Δx->0的极限,得
  dy/dx=lim(Δx->0)Δy/Δx=lim(Δx->0)[f'(u)Δu+αΔu]/Δx=f'(u)lim(Δx->0)Δu/Δx+lim(Δx->0)αΔu/Δx
  又g(x)在x处连续(因为它可导),故当Δx->0时,有Δu=g(x+Δx)-g(x)->0
  则lim(Δx->0)α=0
  最终有dy/dx=(dy/du)_du/dx)
   高中数学基本公式大全二
  1过两点有且只有一条直线
  2两点之间线段最短
  3同角或等角的补角相等
  4同角或等角的余角相等
  5过一点有且只有一条直线和已知直线垂直
  6直线外一点与直线上各点连接的所有线段中,垂线段最短
  7平行公理经过直线外一点,有且只有一条直线与这条直线平行
  8如果两条直线都和第三条直线平行,这两条直线也互相平行
  9同位角相等,两直线平行
  10内错角相等,两直线平行
  11同旁内角互补,两直线平行
  12两直线平行,同位角相等
  13两直线平行,内错角相等
  14两直线平行,同旁内角互补
  15定理三角形两边的和大于第三边
  16推论三角形两边的差小于第三边
  17三角形内角和定理三角形三个内角的和等于180°
  18推论1直角三角形的两个锐角互余
  19推论2三角形的一个外角等于和它不相邻的两个内角的和
  20推论3三角形的一个外角大于任何一个和它不相邻的内角
  21全等三角形的对应边、对应角相等
  22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
  23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
  24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
  25边边边公理(SSS)有三边对应相等的两个三角形全等
  26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
  27定理1在角的平分线上的点到这个角的两边的距离相等
  28定理2到一个角的两边的距离相同的点,在这个角的平分线上
  29角的平分线是到角的两边距离相等的所有点的集合
  30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
  31推论1等腰三角形顶角的平分线平分底边并且垂直于底边
  32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
  33推论3等边三角形的各角都相等,并且每一个角都等于60°
  34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
  35推论1三个角都相等的三角形是等边三角形
  36推论2有一个角等于60°的等腰三角形是等边三角形
  37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
  38直角三角形斜边上的中线等于斜边上的一半
  39定理线段垂直平分线上的点和这条线段两个端点的距离相等
   高中数学基本公式大全三
  常用的诱导公式有以下几组:
  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)=sinα(k∈Z)
  cos(2kπ+α)=cosα(k∈Z)
  tan(2kπ+α)=tanα(k∈Z)
  cot(2kπ+α)=cotα(k∈Z)
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  公式三:
  任意角α与-α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  公式五:
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  公式六:
  π/2±α及3π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)=cosα
  cos(π/2+α)=-sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  (以上k∈Z)
  注意:在做题时,将a看成锐角来做会比较好做。
  诱导公式记忆口诀
  ※规律 总结 ※
  上面这些诱导公式可以概括为:
  对于π/2_±α(k∈Z)的三角函数值,
  ①当k是偶数时,得到α的同名函数值,即函数名不改变;
  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.
  (奇变偶不变)
  然后在前面加上把α看成锐角时原函数值的符号。
  (符号看象限)
  例如:
  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
  所以sin(2π-α)=-sinα
  上述的记忆口诀是:
  奇变偶不变,符号看象限。
  公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
  所在象限的原三角函数值的符号可记忆
  水平诱导名不变;符号看象限。
  #
  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
  这十二字口诀的意思就是说:
  第一象限内任何一个角的四种三角函数值都是“+”;
  第二象限内只有正弦是“+”,其余全部是“-”;
  第三象限内切函数是“+”,弦函数是“-”;
  第四象限内只有余弦是“+”,其余全部是“-”.
  上述记忆口诀,一全正,二正弦,三内切,四余弦
  #
  还有一种按照函数类型分象限定正负:
  函数类型第一象限第二象限第三象限第四象限
  正弦...........+............+............—............—........
  余弦...........+............—............—............+........
  正切...........+............—............+............—........
  余切...........+............—............+............—........
  同角三角函数基本关系
  同角三角函数的基本关系式
  倒数关系:
  tanα·cotα=1
  sinα·cscα=1
  cosα·secα=1
  商的关系:
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方关系:
  sin^2(α)+cos^2(α)=1
  1+tan^2(α)=sec^2(α)
  1+cot^2(α)=csc^2(α)
  同角三角函数关系六角形记忆法
  六角形记忆法:(参看图片或参考资料链接)
  构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。
  (1)倒数关系:对角线上两个函数互为倒数;
  (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。
  (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。
  (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。
   高中数学基本公式大全四
  1、直线
  两点距离、定比分点 直线方程
  |AB|=| |
  |P1P2|=
  y-y1=k(x-x1)
  y=kx+b
  两直线的位置关系 夹角和距离
  或k1=k2,且b1≠b2
  l1与l2重合
  或k1=k2且b1=b2
  l1与l2相交
  或k1≠k2
  l2⊥l2
  或k1k2=-1 l1到l2的角
  l1与l2的夹角
  点到直线的距离
  2.圆锥曲线
  圆 椭圆
  标准方程(x-a)2+(y-b)2=r2
  圆心为(a,b),半径为R
  一般方程x2+y2+Dx+Ey+F=0
  其中圆心为( ),
  半径r
  (1)用圆心到直线的距离d和圆的半径r判断或用判别式判断直线与圆的位置关系
  (2)两圆的位置关系用圆心距d与半径和与差判断 椭圆
  焦点F1(-c,0),F2(c,0)
  (b2=a2-c2)
  离心率
  准线方程
  焦半径|MF1|=a+ex0,|MF2|=a-ex0
  双曲线 抛物线
  双曲线
  焦点F1(-c,0),F2(c,0)
  (a,b>0,b2=c2-a2)
  离心率
  准线方程
  焦半径|MF1|=ex0+a,|MF2|=ex0-a抛物线y2=2px(p>0)
  焦点F
  准线方程
  坐标轴的平移
  这里(h,k)是新坐标系的原点在原坐标系中的坐标。

高中数学基本公式大全相关 文章 :
1. 高一数学必背公式及知识汇总
2. 高中数学公式大汇总
3. 高一数学必修一公式大全
4. 高中数学公式大全
5. 常用数学公式大全
6. 高中数学的阶乘公式大全
7. 高中数学基础知识大全
8. 高中数学必修三公式汇总
9. 高中的全部数学公式
10. 高中数学公式汇总