×

钾长石,钾长石的用途有哪些?

admin admin 发表于2024-03-22 06:03:45 浏览16 评论0

抢沙发发表评论

本文目录一览:

钾长石颜色

呈肉红色、黄白色、呈白色、灰色。钾长石通常也称正长石,属单斜晶系,通常呈肉红色、呈白色或灰色。钾长石系列主要是正长石,微斜长石,透长石等。

钾长石是什么?

钠和钾的铝硅酸盐类矿物。为地壳中最常见的矿物,在火成岩、变质岩、沉积岩中都可出现。长石是几乎所有火成岩的主要矿物成分,对于岩石的分类具有重要意义。长石类质同象替代很发育,它们的化学组成常用OrxAby Anz(x+y+z=100)表示。Or、Ab和An分别代表KAlS3O8、NaAlSi3O8和CaAl2Si2O83种组分。以某二组分为主,可划分为两个类质同象系列:碱性长石系列(即Or-Ab系列);斜长石系列(即Ab-An系列)。Or与An组分间只能很有限地混溶,不形成系列。长石的基本结构单位是四面体,它由4个氧原子围绕一个硅原子或铝原子而构成。每一个这样的四面体都和另一个四面体共用一个氧原子,形成一种三维的骨架。大半径的碱或碱土金属阳离子位于骨架内大的空隙中,配位数为8(在单斜晶系长石中)或9(在三斜晶系长石中)。长石晶体多数呈板状或沿某一结晶轴延伸的板柱状。双晶现象十分普遍,双晶律多达20多种。常见的有钠长石律、曼尼巴律、巴温诺律、卡斯巴律、肖钠长石律双晶。它们分别存在于三斜晶体或单斜与三斜晶体中。长石常见乳白色,但常因含有杂质而被染成黄、褐、浅红、深灰等色,有的还可具有美丽的变彩或晕色。有两组完全解理,其夹角90°(单斜晶系)或近于90°(三斜晶系)。比重2.56~2.76之间,随成分中An含量增高而增高,随Or的增多而减少。莫氏硬度为6~6.5。富含钾或钠的长石主要用于陶瓷工业、玻璃工业及搪瓷工业;含有铷和铯等稀有元素的长石可作为提取这些元素的矿物原料;色泽美丽的长石可作为装饰石料和次等宝石。
一、特性及化学成份:
长石的硬度波动于6-6.5,比重波动于2-2.5,性脆,有较高的抗压强度,对酸有较强的化学稳定性。钾长石颜色多为肉红色,也有灰、白褐色。钠长石为白、灰及浅黄色,钙长石为白色或浅灰色。
化学成份 SiO2 Al2O3 Fe2O3 K2O Na2O 其它
含 量 70.12 15.84 0.09 9.55 2.65 微量
二、用途:制造钾肥,制造陶瓷及搪瓷,玻璃原料,磨粒磨具等。
品 名 规 格 化 学 成 份
长石粉 40-80 80-120 120目以上 SiO2:67% Al2O3:16% P+S>0.05
K2O+Na2O>13%(可达18%)
K2O,Na2O不活泼,是Na,K金属单质活泼。
钾长石
长石是钾、钠、钙等碱金属或碱土金属的铝硅酸盐矿物,也叫长石族矿物。 钾长石[1](KAlSi3O8)通常也称正长石,属单斜晶系,通常呈肉红色、呈白色或灰色。密度2.54-2.57g/cm,比重2.56~2.59g/cm3,硬度6,其理论成分为SiO2 64.7%Al2O3 18.4%,K2O 16.9%。它具有熔点低(1150±20℃),熔融间隔时间长,熔融粘度高等特点,广泛应用于陶瓷坯料、陶瓷釉料、玻璃、电瓷、研磨材料等工业部门及制钾肥用。 除正长石外,还有两个同质多象变种:透长石和钾微斜长石。前者亦属 单斜晶系,也通称正长石;后者则属三斜晶系。 长石矿物除了作为玻璃工业原料外(约占总用量的50—60%),在陶瓷工业中的用量占30%,其余用于化工、玻璃熔
剂、陶瓷坯体配料、陶瓷釉料、搪瓷原料、磨料磨具、玻璃纤维、电焊条等其它行业。 主要用于玻璃、陶瓷,还可用于制取钾肥,质量较好的钾长石用于制造电视显像玻壳等。 钾长石: K2O.Al2O3.6SiO2,其中 K2O 9.55%,Al2O3 16 %以上, SiO2 70% ,密度 2.56g/cm 3,莫氏硬度为 6,单斜晶系,颜色为白、红、乳白色,熔点 1290. C 。

 钾长石


一、昆嵛山岩体中的钾长石
1.一般特征
昆嵛山岩体中的钾长石一般呈具红色调的白色,粒度3—5mm左右,多为他形一半自形,无双晶或具格子双晶,偶见钠长石条纹,常含有自形斜长石包裹晶,偶被斜长石所包裹,反映二种长石可部分交替生长。
2.化学成分
对5个产出特征不同的钾长石作了电子探针分析,其结果及晶体化学式列如表3-1。
(1)造岩元素:昆嵛山岩体中钾长石主要元素Si4+、Al3+、K+、Na+变化不大,端员组分0r=89.77%—94.07%、Ab=5.93%—10.10%,An近于0。其成分与玲珑花岗岩中钾长石Or88.57Ab11.43An0.00(据陈光远等1991资料计算,样品数2)相似,而与郭家岭花岗闪长岩中钾长石成分差别较大,后者(上庄岩体)碱性长石形成了以钾长石为主的钾长石-钾钠长石系列(陈光远等,1991)。
(2)分散元素:分散元素Sr2+的离子半径使之既适于置换K+,又适于置换Ca2+,因而在斜长石和钾长石中均可以类质同象富集。Ba2+的离子半径较Ca2+大得多,与K+则比较接近,所以Ba2+是钾长石中常见的类质同象元素。
对昆嵛山岩体钾长石作电子探针分析,Sr2+、Ba2+的检出率分别为40%和100%,平均值分别为0.51%和0.87%(表3-1)。很明显,Ba2+在钾长石中的富集程度比Sr2+高得多。鉴于钾长石是昆嵛山岩体的主要矿物,故该岩体可能构成一富Ba2+的地球化学场。该岩体中产出的重晶石矿床和乳山金矿田中的重晶石矿物,则是该特殊地球化学场异常的反映。
(3)铁族元素:业经分析的铁族元素有Ti4+、V3+、Cr3+、Mn2+、Fe(Fe3++Fe2+)、Co2+、Ni2+。由于铁族元素趋于在暗色矿物中集中,因此,昆嵛山含黑云二长花岗岩全岩的含量一般应高于长石中的含量。
与灵山沟金矿区玲珑花岗岩和上庄郭家岭花岗闪长岩钾长石电子探针分析结果比较,玲珑花岗岩2个钾长石样品Ti、V、Cr、Mn、Ni5个元素总检出率为30%,均值分别为659、0、376、697和0(×10-6,据陈光远等1991资料计算);郭家岭花岗闪长岩20个钾长石Ti、Fe、Mn、Cr4个元素总检出率为54%,均值分别为986、497、387和 250(×10-6,据陈光远等1991资料计算)。昆嵛山岩体5个钾长石样品7个铁族元素总检出率为56%,Ti、V、Cr、Mn、Fe、Co、Ni各元素均值分别为456、504、55、294、622、519和173(×10-6,按电子探针结果换算)。总的来看,昆嵛山岩体中钾长石和玲珑花岗岩及郭家岭花岗闪长岩中钾长石的铁族元素含量特征大体相似,说明三者在成因上有某些共同点。与世界中酸性岩中长石比较[Cr2×10-6,刘英俊等,1984;V10×10-6,瓦杰尔等;Ti(100—1000)×10-6,迪尔等,1963],上述胶东三岩体钾长石铁族元素含量明显偏高,表明对胶东群变质中基性火山岩成分有一定继承性。
另外,昆嵛山岩体钾长石中Fe的检出率为80%,均值为622×10-6,而郭家岭岩体(上庄)钾长石中Fe的检出率仅65%,均值497×10-6。这应是郭家岭岩体中界河金矿贫铁而昆嵛山岩体中乳山金矿田富铁的部分原因。
表3-1昆嵛山岩体钾长石化学成分(wB,%)及阳离子系数
(4)成矿元素:多金属Cu、Pb、Zn的电子探针检出率不高于 40%,检出值不大于900×10-。Au的检出率虽然只有 40%,但检出值高达24200×10-6,且不小于15000×10-6。Ag的检出率和检出值分别为 80%和1434×10-6,均远大于Cu、Pb、Zn。根据这一结果,易于得出下述判断:成因上与昆嵛山岩体有关的矿床相对富贵金属而贫多金属。牟乳地区以贵金属伴生Cu、Pb、Zn矿床为主,独立的多金属矿床极少,说明昆嵛山岩体钾长石中成矿元素种类和多寡,确对区域成矿矿种类型有一定指示意义。
3.结构状态
本文仅对昆嵛山岩体中1个钾长石粉晶样品作了X射线衍射分析,测试条件为:日本理学RCX射线粉晶衍射仪,CuKa/Ni,50KV,80mA,步宽0.02度。
根据测试结果计算了钾长石的晶胞参数、三斜度(△P)、三斜有序度(△E)、单斜有序度(△Z)、结构状态指数(§)和 Al在四面体位置中的分配,结果如表3-2、3。
将表3-2中各项数据对比表明,昆嵛山岩体中钾长石的晶胞较玲珑岩体中钾长石的晶胞大得多。a0、b0、c。的变化趋向是一致的。前者偏离单斜的程度较小。
表3-2 钾长石晶胞参数比较
表3-3 钾长石结构态数据比较
图3-1 碱性长石轴长、结构态及成分关系图(据Stwart and Wright,1974)
M1—昆嵛山岩体中钾长石,牧牛山;S3—三佛山岩体中钾长石,上口;M2—黑云二长花岗伟晶岩中钾长石,牧牛山;10A—似伟晶脉状钾长石,金青顶
将b0、c。投入Stewart和Wright(1974)碱性长石结构态和成分关系图中(图3-1),昆嵛山岩体钾长石T1(o)+T1(m)的读图值为0.88,略高于计算值0.8200(表3-3)。相应的a。值为0.860nm,与计算值0.8599nm可认为相同。这与该岩体长石中极少见条纹结构的现象是一致的。
将表3-3中昆嵛山岩体和玲珑花岗岩钾长石的各项数据对比表明,前者的有序度明显偏低。但二者均属部分有序状态。
据X光衍射分析结果,将昆嵛山岩体钾长石MlKf在Wright(1968)碱性长石结构态与成分关系图上投点(图3-2),结果属中微斜长石。
4.钾长石中金的赋存状态
对昆嵛山岩体钾长石作了电子显微镜观测,但未发现明显可辨的金粒。从钾长石中金的电子探针分析来看,凡检出的数据都高于15000×10-6,而相当多的点则无金被检出,分布极不均一。由此推断,金可能主要以超微细粒状态分散在钾长石中。
二、伟晶岩、似伟晶状钾长石脉和红化带钾长石
图3-2碱性长石三峰值、结构态与成分关系图(据Wright,1968)
Ml—昆嵛山岩体中钾长石,牧牛山;S3—三佛山岩体中钾长石,上口;M2—黑云二长花岗伟晶岩中钾长石,牧牛山;10A—似伟晶脉状钾长石,金青顶
1.一般特征
有关岩石(包括金矿田未蚀变围岩即含黑云二长花岗岩)中钾长石的一般特征可概括如表3-4。
表3-4 钾长石一般特征比较
表中,含黑云二长花岗岩是蚀变岩的原岩,即昆嵛山花岗岩,其长石特征已在前文作了详细研究。黑云母二长花岗伟晶岩主要矿物成分与上述原岩相同,为该岩体伟晶岩阶段的产物,其钾长石与斜长石含量近等,分布可远离矿体。似伟晶状钾长石脉在近矿围岩中更为发育,它同强红化含黑云二长花岗岩均为近矿的标志。钾长石的颜色,由远矿的原岩→伟晶岩→近矿的钾长石脉和红化花岗岩,红色调逐渐加深,矿物组合方面,近矿的红化花岗岩,则明显有赤铁矿和金红石出现,反映从原岩到红化花岗岩,其形成过程中f02不断提高。
2.化学成分
造岩元素:由表3-5可知,昆嵛山岩体原岩、钾长石脉和红化带的钾长石在主要组分上差别不大,而伟晶岩钾长石的Or组分明显偏高,Ab明显偏低。
铁族元素:近矿的脉状钾长石和红化花岗岩中钾长石的铁含量明显低于原岩钾长石的铁含量,伟晶岩中钾长石的铁含量也显著偏低。这说明,在花岗岩原岩→伟晶岩→近矿钾长石脉形成过程中,由于f02不断提高,Fe的活动性趋于增强(Fe3+增多),因而,在伟晶岩和钾长石脉形成时,只有少量铁沉淀下来,而大部分趋于在气液物质中继续迁移。当花岗岩原岩遭受红化蚀变时,热液的f02值达到最大,铁随热液迁移并参与成矿的作用也更为明显。
钴与铁有颇为相似的地化性质,它在蚀变带的析出也有端倪可查(从伟晶岩、钾长石脉到红化花岗岩分别为2674×10-6、79×10-6、0×10-6)。在成矿过程中,Co2+置换黄铁矿中的Fe+,成为使黄铁矿晶体在电场作用下呈 N型电导的施主元素。
表3-5 钾长石阳离子系数比较
其他微量元素,如Ti、Cr、Mn、Ni等,在伟晶岩、钾长石脉及红化花岗岩钾长石中与昆嵛山花岗岩钾长石的数值特征大体相似,反映了它们成因上的相关性和物质成分上的继承性。
成矿元素:主成矿元素 Au在近矿钾长石脉和红化带钾长石中的含量下降最为明显(均为0×10-6)。显然,在碱质交代和氧化条件双重作用下,金大多由还原态转为氧化态向成矿有利部位聚集,很难以 Au0价态沉淀在长石中。成矿元素Pb、Zn(在钾长石脉和红化带钾长石中为0×10-6)以及分散元素Ba(表3-5)和微量元素总量(在原岩、伟晶岩、钾长石脉和红化带钾长石中分别为24720×10-6、20881×10-6、5688×10-6和5545×10-6,按EMPA结果换算)的变化也反映了此种趋势。“红化”为成矿准备了物质条件,这同蚀变岩的研究结果完全一致。
3.结构状态
根据钾长石X射线衍射分析结果计算的结构态参数见表3-6、7。
据表3-6,在图3-2上投点,三种长石均落入中微斜长石区。除原岩钾长石M1外,伟晶岩钾长石M2和钾长石脉10A116的 读图值和实测值差别较大
据表3-6在图3-1中投点,昆嵛山岩体钾长石M1的a。读图值与实测值基本一致。伟晶岩钾长石 M2和似伟晶脉状钾长石 10A的 a。读图值与实测值差别较大:M2△a。=0.01205nm,10A116nm△a0=0.01389nm,二者均大于0.005nm。这与 的情况相似。
表3-6 钾长石晶胞参数比较
表3-7 钾长石结构态数据比较
不同产状钾长石的轴长变化表明,伟晶岩脉中钾长石和似伟晶脉状钾长石a0、b0、c0普遍小于花岗岩钾长石(表3-6)。从端员组分看,花岗岩钾长石X0r平均91.25%(5)(据表3-1),与似伟晶脉状钾长石的X0r近等(92.07%,见表3-7)。伟晶岩钾长石X0r最大,达97.86%。显然,端员组分变化并非轴长变化的主因。从微量元素看,花岗岩(昆嵛山岩体)钾长石和伟晶岩钾长石的微量“杂质”总量相似且较高,而脉状钾长石显著偏低,因此也难以判定与轴长变化的关系。影响轴长变化的可能原因是,伟晶岩钾长石和脉状钾长石△a0均较大,适应富钠相出溶而进行的键长和键角的调整,使得轴长有所减小。
从三斜有序度(△E)、单斜有序度(△Z),和结构状态指数(§)看,由含黑云二长花岗岩原岩→伟晶岩→钾长石脉,钾长石的有序程度依次提高,其原因是Al在T1位的配分值有所增加。从外部影响因素看,虽然伟晶岩脉和钾长石脉比花岗岩冷却速度较快,但两种脉体形成温度较低,富含挥发组分,钾长石便可以较大有序度产出。这与灵山沟金矿区由玲珑花岗岩、伟晶岩到红化强钾化蚀变岩微斜长石的有序度变化特征类似。
图3-3 钾长石热发光曲线
10A116—似伟晶状钾长石脉;M2—黑云二长花岗伟晶岩;19572—红化含黑云二长花岗岩
总之,从找矿矿物学的角度看,有序度较高,微量“杂质”较少,轴长较小的钾长石,是与成矿有关的钾长石,是近矿的标志。
4.热发光特征
对伟晶岩钾长石、脉状钾长石和红化带钾长石的热发光测试(图3-3、表3-8)表明,三种长石的热发光曲线均呈锐单峰,峰点温度十分接近,但伟晶岩和钾长石脉中的钾长石热发光强度和积分强度显著高于红化花岗岩中的钾长石(3倍以上)。这是区别三者的有效性质标型。
表3-8 钾长石热发光特征比较
三、其他中酸性岩中钾长石
其他中酸性岩所包括的岩类在本章前文已有叙述。其中,(上口)二长花岗岩(三佛山岩体)是本区主要代表性岩体之一。
1.一般特征
本区所有中酸性岩都含有钾长石,其一般产出特征如表3-9。
表3-9 牟乳地区中酸性岩钾长石一般特征
表中,柳林庄黑云二长花岗岩和三佛山二长花岗岩(以下简称三佛山岩体)中钾长石呈粉红色,与其他岩类钾长石的红色调白色明显不同,代表了较为氧化的形成环境,是导致金等成矿元素进一步迁移的有利因素。
2.化学成分
不同岩类岩体中钾长石由电子探针分析结果计算的晶体化学式如表3-10。
表3-10 牟乳地区中酸性岩钾长石阳离子系数
仍按元素地球化学特点,分类讨论如下:
(1)造岩元素:表3-10中,W3和W2分别代表含榴二长花岗岩的细粒相和粗粒相,在无染寺可见W2与W3过渡接触或在其中呈脉状。二者矿物组成及含量基本相同。W2代表该岩体的晚期富挥发分相。因此,含榴二长花岗岩演化过程中钾长石的成分变化大体可以限定在Or89.69—97.32Ab10.31—2.68间。晚期钾长石0r较富,其主体即细粒相钾长石成分与昆嵛山岩体相似。
表中L2和L3的关系与W3和W2的关系类似,但L2和L3呈明显的侵入接触,成分相近,为同源不同次侵入的产物,L2早于L3,属同类岩石。该类岩石钾长石向晚期演化Or增大,其成分与昆嵛山岩体钾长石相近。
表中除闪长岩S2之钾长石0r组分略低外,石英二长岩L1和三佛山岩体S3之钾长石端员组分均与昆嵛山岩体相似。
(2)分散元素:本区中酸性岩钾长石中Sr仅在昆嵛山岩体中检出。Ba在中性的S2和L1中最高,酸性岩中除昆嵛山岩体外,含榴二长花岗岩钾长石的Ba也被检出(表3-10),指示二者具有一定的成因联系。
(3)铁族元素:铁族元素除在含辉石黑云闪长岩(S2)钾长石中含量略高外,其他中酸性岩钾长石的铁族元素总量基本相同,反映了区域上不同类型中酸性岩浆活动有某种类似的成因背景。
(4)成矿元素:本区中酸性岩钾长石的多金属元素Cu、Pb、Zn的检出率明显低于贵金属元素Au、Ag的检出率。除昆嵛山岩体外,其他岩类岩石的钾长石中各元素检出率分别为:Cu28.6%、Pb42.9%、Zn28.6%、Au71.4%、Ag57.1%。该结果不仅反映了昆嵛山岩体相对富贵金属而贫多金属,而且区域地球化学场也具有相同的特征。
3.三佛山岩体与昆嵛山岩体钾长石结构态的比较
据采于上口的三佛山岩体钾长石粉晶X射线衍射分析结果计算的结构态参数和晶胞参数见表3-2、3-3。
表3-2中,三佛山岩体钾长石的晶胞大小介于昆嵛山岩体和玲珑花岗岩钾长石之间,偏离单斜的程度较小。
在图3-1中,三佛山岩体钾长石T1(o)+T1(m)的读图值为0.95,略高于计算值0.94(表3-2),相应的a。读图值(0.846nm)与计算值(0.8575nm)之差△a=a计算—a读图=0.011nm。说明矿物的畸变程度较大。
将表3-3中三岩体钾长石轴长与主成分特征(昆嵛山岩体钾长石Or91.25Ab8.57An0.18,5点平均;三佛山岩体钾长石Or94.04Ab5.96An0.00;玲珑花岗岩Or92.28Ab7.72An0.00,据陈光远等2点平均)对比可知,Or组分的增加未能引起轴长的增大。结合伟晶岩等钾长石轴长影响因素的讨论,所有△a较大的长石轴长均较小,可能钠长石出溶引起的应变作用是轴长变化的决定性因素。
表3-3中各项数据对比表明,三佛山岩体钾长石与玲珑花岗岩钾长石有序度相似,略高于昆嵛山岩体钾长石的有序度。
据X射线粉晶分析结果在图3-2上投点表明,三佛山岩体和昆嵛山岩体中钾长石均属中微斜长石,前者与最大微斜长石相对比较接近。
四、小结
根据钾长石的研究,可以得出以下几点认识:
(1)昆嵛山岩体、三佛山岩体与昆嵛山岩体相关的黑云二长花岗伟晶岩及似伟晶状钾长石脉等不同岩类中,钾长石均属中微斜长石;昆嵛山岩体钾长石Or组分最低,△a较小,其他三种岩石中钾长石Or组分较高,△a较大。
(2)昆嵛山岩体钾长石有序度较低,晶胞较大;三佛山岩体、伟晶岩及钾长石脉之钾长石有序度略高,晶胞较小。
(3)本区中酸性岩及其与玲珑花岗岩、郭家玲花岗闪长岩之间有类似的成因背景,表现为钾长石中具类似的微量元素组成。
(4)由中酸性岩构成的地球化学场以相对富贵金属而贫多金属为特征。Ba是该地化场中又一特征元素。由此决定了区域成矿矿种类型和主要的成矿岩体分布特征。
(5)成矿有关元素,尤其是Au、Fe在近矿的钾长石脉和红化带钾长石中含量明显偏低,说明红化是使成矿元素活化迁移进而在有利部位富集的重要条件。
(6)有序度较高、微量杂质较少而轴长较小的钾长石和热发光强度极大的脉状钾长石,是与成矿有关的钾长石,是近矿的标志。

钾长石硬度是多少

硬度为6。钾长石的硬度在6,属于中等硬度矿物,它的硬度适中,可以用钢刀刮擦,可以用玻璃刻拉划。在矿物鉴定和岩石学中,钾长石经常被用来进行硬度测试,还可以根据其颜色、透明度及晶体形状等多种特征来进行鉴定。

锂长石与钾长石的区别

定义不同。1、锂长石因含有钾钠元素超过7%,在长石范畴中名为钾钠长石。2、钾长石是钾、钠、钙等碱金属或碱土金属的铝硅酸盐矿物,也叫长石族矿物。

钾长石的用途

1、制取钾肥:钾是农作物生长的重要的元素,世界上蕴藏着很多含钾资源,但绝大部分是水难溶性的或不溶性的。我国钾资源丰富,可溶性钾资源十分贫乏。我国从二十世纪60年代初起就开始利用钾长石制取钾肥的研究,先后进行了数十种工艺研究,综合起来可分为:烧结法、高温熔融法、水热法、高炉冶炼法和低温分解法。
2、钾长石防火硅酸钙板:使用钾长石制造硅酸钙板,其原理是将原料制好浆,按比例(钾长石粉:石灰:纤维=229:91:80)混合均匀,制备好的料浆,采用流浆制板工艺制成板坯,板坯堆垛后送入蒸压釜中,高温高压蒸汽养护,使材料中硅铝与石灰中的氧化钙在高温水热反应作用下生成水化硅酸钙,水化硅酸钙结晶矿物,与纤维胶结起来形成一个整体。
3、利用钾长石制取钾肥的同时制取白炭黑:钾长石中含钾量为13.6%,针对提钾后余下的矿物石的特性,进行综合利用的研究:制取白炭黑的原理是基于提钾后钾长石结构已经遭到破坏,然后,在一定温度下与NaOH反应制取水玻璃,用水稀释的同时加入适量电解质,用酸中和并定温老化,再经过滤、洗涤制得白炭黑。
4、陶瓷坯体配料:在烧成前长石能起瘠性原料的作用,减少坯体的干燥收缩和变形,改善干燥性能,缩短干燥时间。在烧成时可作为熔剂降低烧成温度,促使石英和高岭土熔融,并在液相中互相扩散渗透而加速莫来石的形成。熔融中生成的长石玻璃体充填于坯体的莫来石晶粒之间,使坯体致密而减少空隙,从而提高其机械强度和介电性能。此外长石玻璃的生成还能提高坯体的透光性。
5、玻璃熔剂:长石是玻璃混合料的主要成份之一。长石含Al2O3高,铁质含量低,且比氧化铝易熔,不但熔融温度低而且熔融范围宽,主要用来提高玻璃配料中的氧化铝含量,降低玻璃生产中的熔融温度和增加碱含量,以减少碱的用量。此外,长石熔融后变成玻璃的过程比较缓慢,结晶能力小,可以防止在玻璃形成过程中析出晶体而破坏制品。长石还可以用来调节玻璃的粘性。

钾长石的用途有哪些?

 ?? 钾长石也叫做正长石,属于单斜晶系,通常钾长石呈肉红、黄、白等颜色。由于钾长石矿中的含钾量非常的高峰,因而成为了分布最广而且储量最大的一种非水溶性的钾资源。一般在四川、山西以及新疆等地区钾长石的分布比较集中,而且储量也丰富。如此丰富的资源,便开始利用各种的方法进行对钾长石中钾肥的提出,被广泛的运用于各个领域,下面我们就来了解一下钾长石有着怎样的用途。??
  
  什么是钾长石?
  长石是含有一些碱金属的一各铝硅酸盐的矿物,同时又叫做长石族矿物,而钾长石就属于这种长石族的矿物,根据其密度、硬度以及所含有的成份及特点,而被广泛的运用于一些玻璃、电瓷等工业制造以及制钾肥使用。
  
  钾长石的用途之一—玻璃熔剂
  由于钾长石是制作成玻璃混合料中的主要一种成份,而且钾长石的用途中所含的铁质比较低,又比氧化铝容易熔解,相对而言,钾长石的熔融温度低而范畴宽,所以常常用来提高玻璃配料中的氧化铝含量,从而降低降低在玻璃生产制制造过程中的碱的用量。另外,钾长石还可以用业调节玻璃材料中的粘性。
  钾长石的用途之二—陶瓷坯体配料
  钾长石用为陶瓷坯体配料使用时,可以减少坯体中由于干燥而发生的收缩或者变形,从而改善干燥的性能,缩短陶瓷的干燥时间。而且在烧制陶瓷过程中,钾长石可以作为一种熔剂降低烧制过程中的温度。同时还可以使得坯体之间变得致密而减少空隙,提高陶瓷坯体的透光度。
  
  钾长石的用途之三—其它原料
  钾长石除了以上的用途之外,还是陶瓷釉料的主要组成部分,而且在陶瓷的工业中最为主要的就是钾长石。另外,钾长石还可以与其它的矿物原料进行不同比较的掺配成法琅,也是一种在绘画中最为常见一种搪瓷原料。钾长石中所含有的丰富的钾元素,还可以作为钾肥的原料来提取。
  
  除此之外,钾长石还可以研磨成超细的白灰粉,也是工业上经常使用到的一种原料,其研磨而成的粗粉可以用于建筑、农业、工业等,如果 是比较细的白灰粉则可以用于橡胶、冶炼以及一些高科技技术的行业当中。
土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~

长石的主要成分

长石的主要成分是:钾。
长石的主要成分是钾,但同时也含有一定量的钠长石分子。钠长石在少数情况下也会超过钾长石的分子,因此被称为钠正长石。长石还含有微量的钡、铁和亚铁。钾是长石中的重要成分,它在长石中起到调节和控制元素平衡的作用。钾的存在对于长石的稳定性和导电性具有重要意义。
钾(Kalium),元素符号K,原子序数为19,位于元素周期表第四周期IA族,属于碱金属元素。单质是一种银白色的软质金属,蜡状,可用小刀切割,熔沸点低,密度比水小,化学性质极度活泼(比钠还活泼)。
钾在自然界没有单质形态存在,钾元素以盐的形式广泛的分布于陆地和海洋中,也是人体肌肉组织和神经组织中的重要成分之一。钾为银白色立方体结构金属,理化性质和钠非常相似。钾质软而轻可用小刀切割,新切面有银白色光泽。
钾是热和电的良导体,具有较好的导磁性,质量分数77.2%的钾和22.8%的钠形成的钾钠合金熔点只有12℃,是核反应堆导热剂。钾单质还具有良好的延展性,硬度也低,能够溶于汞和液态氨,溶于液氨形成蓝色溶液。
化学性质
钾的化学性质比钠还要活泼,仅比铯、铷活动性弱。暴露在空气中,表面迅速覆盖一层氧化钾和碳酸钾,使它失去金属光泽(表面显蓝紫色),因此金属钾应保存在液体石蜡或氩气中以防止氧化。钾在空气中加热就会燃烧,它在有限量氧气中加热,生成氧化钾。
在过量氧气中加热,生成过氧化钾和超氧化钾的混合物。金属钾溶于液氨生成深蓝色液体,可导电,实验证明其中含氨合电子,钾的液氨溶液久置或在铁的催化下会分解为氢气和氨基钾。钾的液氨溶液与氧气作用,生成超氧化钾,臭氧作用,生成橘红色的臭氧化钾。

钾长石条痕颜色

条痕白色。钾长石条痕颜色是条痕白色,钾长石又称正长石,是由钾、铝等组成的硅酸盐矿物。钾长石是分布最广和蕴藏量最丰富的含钾矿物,在我国各地都可以找到,它常存于酸性火成岩中,有花岗岩的地方往往可以发现钾长石。

钾长石形态

柱状钾长石,板状钾长石。1、柱状钾长石:柱状钾长石是钾长石最常见的形态之一,其晶体外形呈长方柱状,由多个平行排列的面组成。2、板状钾长石:板状钾长石的晶体外形呈现出扁平的矩形或者长方形,其表面很光滑,晶体内部则常有明显的条纹。