×

声速测量实验报告数据,测量声速的实验报告

admin admin 发表于2024-03-17 17:06:02 浏览15 评论0

抢沙发发表评论

本文目录一览:

示波器与声速测量实验报告

示波器与声速测量实验报告
实验是科学研究的重要组成部分,对于专业学科而言更是必不可少的教学环节。本次实验我们使用了示波器和测量声速的方法,旨在通过实验的方式加深对物理学基本理论的理解和应用。本文将介绍实验步骤、实验结果和分析,以及对实验的总结和开展下一步研究的建议。
实验步骤
实验前我们需要准备实验材料和仪器,包括示波器、信号发生器、电路板以及电路线等。在实验时,我们首先根据实验要求,将需要测量的电路按照图纸连接,并与示波器和信号发生器相连。然后,我们使用信号发生器产生相应频率的信号,通过电路板中的电阻电容等元件,将信号通过电路板传输到示波器上。接着,我们对示波器进行调节,使其满足我们实验的测量要求。最后,我们根据实验结果进行记录和分析,得到需要的实验数据。
实验结果和分析
我们测量的第一个实验是使用示波器进行电路测量。在实验中,我们通过示波器观察到了实验电路的波形变化,并记录下了数据。通过数据的分析与计算,我们得到了该电路的相关参数,如电路频率、电压、电流等。这些参数可以进一步用于分析电路的特性和性能。
我们测量的第二个实验是测量声速。在实验中,我们需要将两个或多个测距器间隔一定距离并以一定时间间隔发声,从而测量声音在空气中的速度。我们通过对时间、声波频率以及距离的测量和计算,得到了声音在空气中的速度。这个实验的结果具有很大的实际意义,在需要对声速进行测量和分析的领域有着广泛的应用。
实验总结和建议
本次实验中,我们主要使用示波器和测量声速的方法进行实验。实验的过程相对简单,但需要熟练掌握各种仪器的使用方法和实验原理。通过实验,我们增强了对物理学基本理论的理解和应用,同时也提高了实验技能。
对于以后的实验,我们建议在实验的过程中更加注重数据的准确性和实验结果的分析,从而更好的理解实验原理与实际应用的联系。同时,在实验的过程中可以尝试使用更加先进的仪器和方法,以帮助我们更深入的研究物理学的领域。
总之,本次实验成果丰硕,为我们今后的研究和学习提供了很大的帮助。

物理实验声速的测量求助

物理实验声速的测量求助
实验报告
声速的测量

实验目的】
1.
学会用共振干涉法、相位比较法以及时差法测量介质中的声速
2.
学会用逐差法进行数据处理;
3.
了解声速与介质参数的关系。

实验原理

由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行
声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常
见的方法是利用压电效应和磁致伸缩效应来实现的。
本实验采用的是压电陶瓷制
成的换能器
(
探头
)
,这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为:
v
f
?
?
?
(1)

(1)
式可知,测得声
波的频率和波长,就可以得到声速。同样,传播速度亦可用
/
v
L
t
?
(2)

示,若测得声波传播所经过的距离
L
和传播时间
t
,也可获得声速。

大学物理实验声速测定

5HZ的频率不确定度给声速测定带来的影响-->Δf=5Hz,f=30000Hz,v=λf-->
Δv/v=Δf/f=5/30000=1/60000
由于超声波具有波长短,易于定向发射、易被反射等优点。在超声波段进行
声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。
超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常
见的方法是利用压电效应和磁致伸缩效应来实现的。本实验采用的是压电陶瓷制
成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。
声波的传播速度与其频率和波长的关系为: (1) 由(1)式可知,测得声波的频率和波长,就可以得到声速。同样,传播速度亦可用 (2) 表
示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。
1. 共振干涉法
实验装置如图1所示,图中和为压电晶体换能器,作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;为超声波接收器,声波传至它的接收面上时,再被反射。当和的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即
(3)
时,发出的声波与其反射声波的相位在处差(n=1,2 ……),因此形成共振。
因为接收器的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。从示波器上观察到的电信号幅值也是极大值(参见图2)。
图中各极大之间的距离均为,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。我们只要测出各极大值对应的接收器的位置,就可测出波长。由信号源读出超声波的频率值后,即可由公式(1)求得声速。
2. 相位比较法
波是振动状态的传播,也可以说是位相的传播。沿波传播方向的任何两点同相位时,这两点间的距离就是波长的整数倍。利用这个原理,可以精确的测量波长。实验装置如图1所示,沿波的传播方向移动接收器,接收到的信号再次与发射器的位相相同时,一国的距离等于与声波的波长。
同样也可以利用李萨如图形来判断位相差。实验中输入示波器的是来自同一信号源的信号,它们的频率严格一致,所以李萨如图是椭圆,椭圆的倾斜与两信号的位相差有关,当两信号之间的位相差为0或时,椭圆变成倾斜的直线。
3. 时差法
用时差法测量声速的实验装置仍采用上述仪器。由信号源提供一个脉冲信号经发出一个脉冲波,经过一段距离的传播后,该脉冲信号被接收,再将该信号返回信号源,经信号源内部线路分析、比较处理后输出脉冲信号在、之间的传播时间t,传播距离L可以从游标卡尺上读出,采用公式(2)即可计算出声速。
4. 逐差法处理数据
在本实验中,若用游标卡尺测出个极大值的位置,并依次算出每经过个的距离为
这样就很容易计算出。如测不到20个极大值,则可少测几个(一定是偶数),用类似方法计算即可。
实验报告实验题目: 声速的测量实验目的:了解超声波的产生,发射和接收的方法,用干涉法和相位法测声速.实验内容1 测量实验开始时室温.2 驻波法(1) 将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2)将函数信号发生器接超声声速测定仪的发射端,示波器接接收端.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3)通过示波器观察讯号幅度,调整移动尺改变测定仪两端的距离找到使讯号极大的位置,在极大值附近应该使用微调,即固定移动尺螺丝,使用微调螺母调整.(4)从该极大位置开始,朝一个方向移动移动尺,依次记下每次讯号幅度极大(波腹)时游标的读数,共12个值.3 相位法(1) 将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.(2) 将函数信号发生器接超声声速测定仪的发射端,示波器的CH1接在接收端,CH2接在发射端.选择CH1,CH2的X-Y叠加.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.(3) 通过示波器观察李萨如图形,调整移动尺改变测定仪两端的距离找到使图形为一条斜率为正的直线的位置.(4)从该位置开始,朝一个方向移动移动尺,依次记下每次图形是斜率为正的直线时游标的读数,共10个值.4 测量实验结束时室温,与开始时室温取平均值作为温度t.收拾仪器,整理实验台.5 对上面两组数据,分别用逐差计算出l,然后算出声速v,并计算不确定度.与通过t计算出的理论值计算相对误差.数据处理1 理论计算实验开始时温度23.0℃,实验结束时温度21.8℃,所以认为实验时温度t=22.4℃.根据理论值计算2 驻波法游标读数(mm)95.42100.50105.70110.66115.88120.90126.16131.34136.20141.44146.52151.60逐差=3(mm)30.7430.8430.5030.7830.6430.70相邻游标相减的2倍=i(mm)10.1610.409.8810.4410.0410.5210.369.7210.4810.1610.16标准差的A类不确定度查表得:当n=11,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定查表得,当P=0.95时,=1.96.所以的不确定度选取声波输出频率为34.3KHz,已知不确定度.声速对,有不确定度传递公式:空气中的声速v=(350.99±1.20)m/s (P=0.95)相对误差=3 相位法游标读数(mm)110.80121.04131.14141.36151.58161.72171.88182.02192.10202.26逐差=5(mm)50.9250.8450.8850.7450.68相邻游标相减=i(mm)10.2410.1010.2210.2210.1410.1610.1410.0810.16标准差的A类不确定度查表得:当n=9,P=0.95时,=2.26.因为是用类似游标卡尺的仪器测量的,所以B类不确定度查表得,当P=0.95时,=1.96.所以的不确定度选取声波输出频率为34.3KHz,已知不确定度声速对,有不确定度传递公式:空气中的声速v=(348.57±1.09)m/s (P=0.95)相对误差= 误差分析:1 仪器本身的系统误差和由于老化引起的误差.2 室温在实验过程中是不断变化的.3 无论是驻波法中在示波器上找极大值,还是相位法在示波器上找斜率为正的直线,都是测量者主观的感觉,没有精确测量.思考题1 固定两换能器的距离改变频率,以求声速,是否可行 答:不可行.因为在声速一定时,频率改变了,波长也会随之改变.所以无法同时测量出频率和波长,也就无法求出声速.不对

测量声速的实验报告

1.提出问题
如何测出声音的速度?
2.猜想与假设
如果在一定距离内听到声音要多少时间?
3.实验步骤
步骤应该就是实施实验,第三是实验器材的话,就是要秒表.
4.实施实验
在一个山谷中,站在距离峭壁680M的地方大叫一声,同时按下秒表计时.
然后在听到第一声回声时按下秒表得到听到回声的时间.
5.结论
就是用距离680M*2除以时间就可以得出声音的速度了.

声速的测量误差分析

声速的测量误差分析如下:
1、仪器误差:声速测量仪器的精度会影响最终结果的准确性。例如,换能器的性能和校准精度,以及传播介质中是否存在空气污染、杂质等都可能影响声速的测量结果。
2、温度误差:声波的传播速度会随着温度的变化而变化,这个现象被称为声速温度效应。误差的产生主要源于测量时介质的温度与标准温度存在差异。为了减小这种误差,通常需要使用高质量的冷却器来控制空气温度,并使用热电偶等测量设备来监控和确保温度的一致性。
3、压力误差:压力对声速的影响也值得考虑。在实际测量中,应考虑环境压力对声速的干扰。如果介质中的压力与标准压力不一致,那么就需要进行压力补偿。
4、传播距离误差:测量两点之间的声波传播时间时,存在传播距离误差。为了减小这种误差,可以在两个测量点上都使用相同的计时器,并确保两个点之间的距离恒定。
5、测量人员的主观误差:测量人员的操作技能和经验也会影响声速的测量结果。为了减小这种误差,应该对测量人员进行培训,并确保他们在测量过程中遵循正确的操作规程。
6、校准误差:对声速测量仪器的校准是保证测量准确性的重要步骤。如果校准过程不准确或操作不当,就会产生校准误差。
7、环境噪声干扰:测量环境中的噪声可能会干扰声波的传播,导致测量结果不准确。为了减小这种误差,应该选择一个安静的测量环境,并采取适当的措施来减少环境噪声的影响。
声速测量的意义
1、应用于大气污染扩散、空气质量预报模型。声波在空气中的传播速度与空气的温度、压力等因素密切相关。因此,通过测量声速可以了解空气的状态,进而为污染扩散和空气质量预报提供重要的依据。
2、用于地球物理学研究。声波在固体、液体、气体等介质中的传播速度和传播特性可以用于研究地球的构造,例如地壳、地幔、地核的分布情况,这对于地震预测、矿产资源勘探等具有重要意义。
3、用于声音成像技术。声波在固体、液体中的传播特性可以被用于生成声成像,这是一种无损检测技术,可以应用于医学、考古等领域,能够提供物体内部结构的图像,具有很大的应用价值。
4、军事应用。声速的测量和传播特性在军事上也有一定的应用,例如探测潜艇、导弹预警等。
5、基础科学研究和教学。声速测量也是基础科学研究和教学的需要,对于声波传播理论、波动现象的解释等具有重要意义。

急求 大学物理实验报告

实验报告
实验题目: 声速的测量
实验目的:了解超声波的产生,发射和接收的方法,用干涉法和相位法测声速.
实验内容
1 测量实验开始时室温.
2 驻波法
(1) 将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.
(2)将函数信号发生器接超声声速测定仪的发射端,示波器接接收端.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.
(3)通过示波器观察讯号幅度,调整移动尺改变测定仪两端的距离找到使讯号极大的位置,在极大值附近应该使用微调,即固定移动尺螺丝,使用微调螺母调整.
(4)从该极大位置开始,朝一个方向移动移动尺,依次记下每次讯号幅度极大(波腹)时游标的读数,共12个值.
3 相位法
(1) 将超声声速测定仪的两个压电陶瓷换能器靠在一起,检查两表面是否水平.如果不水平将其调平.
(2) 将函数信号发生器接超声声速测定仪的发射端,示波器的CH1接在接收端,CH2接在发射端.选择CH1,CH2的X-Y叠加.函数信号发生器选择正弦波,输出频率在300HZ左右,电压在10-20V.
(3) 通过示波器观察李萨如图形,调整移动尺改变测定仪两端的距离找到使图形为一条斜率为正的直线的位置.
(4)从该位置开始,朝一个方向移动移动尺,依次记下每次图形是斜率为正的直线时游标的读数,共10个值.
4 测量实验结束时室温,与开始时室温取平均值作为温度t.收拾仪器,整理实验台.
5 对上面两组数据,分别用逐差计算出l,然后算出声速v,并计算不确定度.与通过t计算出的理论值计算相对误差.
数据处理
1 理论计算
实验开始时温度23.0℃,实验结束时温度21.8℃,所以认为实验时温度t=22.4℃.
根据理论值计算
2 驻波法
游标读数
(mm)
95.42
100.50
105.70
110.66
115.88
120.90
126.16
131.34
136.20
141.44
146.52
151.60
逐差=3(mm)
30.74
30.84
30.50
30.78
30.64
30.70
相邻游标相减的2倍=i(mm)
10.16
10.40
9.88
10.44
10.04
10.52
10.36
9.72
10.48
10.16
10.16
标准差
的A类不确定度
查表得:当n=11,P=0.95时,=2.26.
因为是用类似游标卡尺的仪器测量的,所以B类不确定
查表得,当P=0.95时,=1.96.
所以的不确定度
选取声波输出频率为34.3KHz,已知不确定度.
声速
对,有不确定度传递公式:
空气中的声速v=(350.99±1.20)m/s (P=0.95)
相对误差=
3 相位法
游标读数
(mm)
110.80
121.04
131.14
141.36
151.58
161.72
171.88
182.02
192.10
202.26
逐差=5(mm)
50.92
50.84
50.88
50.74
50.68
相邻游标相减=i(mm)
10.24
10.10
10.22
10.22
10.14
10.16
10.14
10.08
10.16
标准差
的A类不确定度
查表得:当n=9,P=0.95时,=2.26.
因为是用类似游标卡尺的仪器测量的,所以B类不确定度
查表得,当P=0.95时,=1.96.
所以的不确定度
选取声波输出频率为34.3KHz,已知不确定度
声速
对,有不确定度传递公式:
空气中的声速v=(348.57±1.09)m/s (P=0.95)
相对误差=
误差分析:
1 仪器本身的系统误差和由于老化引起的误差.
2 室温在实验过程中是不断变化的.
3 无论是驻波法中在示波器上找极大值,还是相位法在示波器上找斜率为正的直线,都是测量者主观的感觉,没有精确测量.
思考题
1 固定两换能器的距离改变频率,以求声速,是否可行
答:不可行.因为在声速一定时,频率改变了,波长也会随之改变.所以无法同时测量出频率和波长,也就无法求出声速.
不对
物理实验报告
一、实验名称: 霍尔效应原理及其应用
二、实验目的:
1、了解霍尔效应产生原理;
2、测量霍尔元件的 、 曲线,了解霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间的关系;
3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度 及分布;
4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。
三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号)
四、实验原理:
1、霍尔效应现象及物理解释
霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。
半导体样品,若在x方向通以电流 ,在z方向加磁场 ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场 ,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力 时电荷不断聚积,电场不断加强,直到 样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) 。
设 为霍尔电场, 是载流子在电流方向上的平均漂移速度;样品的宽度为 ,厚度为 ,载流子浓度为 ,则有:
(1-1)
因为 , ,又根据 ,则
(1-2)
其中 称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出 、 以及知道 和 ,可按下式计算 :
(1-3)
(1—4)
为霍尔元件灵敏度。根据RH可进一步确定以下参数。
(1)由 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 和 的方向(即测量中的+ ,+ ),若测得的 <0(即A′的电位低于A的电位),则样品属N型,反之为P型。
(2)由 求载流子浓度 ,即 。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入 的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。
(3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 以及迁移率 之间有如下关系:
(1-5)
2、霍尔效应中的副效应及其消除方法
上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使 的测量产生系统误差,如图2所示。
(1)厄廷好森效应引起的电势差 。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势 。可以证明 。 的正负与 和 的方向有关。
(2)能斯特效应引起的电势差 。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在3、4点间形成电势差 。若只考虑接触电阻的差异,则 的方向仅与磁场 的方向有关。
(3)里纪-勒杜克效应产生的电势差 。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势 。 的正负仅与 的方向有关,而与 的方向无关。
(4)不等电势效应引起的电势差 。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一等势面上,只要有电流沿x方向流过,即使没有磁场 ,3、4两点间也会出现电势差 。 的正负只与电流 的方向有关,而与 的方向无关。
综上所述,在确定的磁场 和电流 下,实际测出的电压是霍尔效应电压与副效应产生的附加电压的代数和。可以通过对称测量方法,即改变 和磁场 的方向加以消除和减小副效应的影响。在规定了电流 和磁场 正、反方向后,可以测量出由下列四组不同方向的 和 组合的电压。即:
, :
, :
, :
, :
然后求 , , , 的代数平均值得:
通过上述测量方法,虽然不能消除所有的副效应,但 较小,引入的误差不大,可以忽略不计,因此霍尔效应电压 可近似为
(1-6)
3、直螺线管中的磁场分布
1、以上分析可知,将通电的霍尔元件放置在磁场中,已知霍尔元件灵敏度 ,测量出 和 ,就可以计算出所处磁场的磁感应强度 。
(1-7)
2、直螺旋管离中点 处的轴向磁感应强度理论公式:
(1-8)
式中, 是磁介质的磁导率, 为螺旋管的匝数, 为通过螺旋管的电流, 为螺旋管的长度, 是螺旋管的内径, 为离螺旋管中点的距离。
X=0时,螺旋管中点的磁感应强度
(1-9)
五、 实验内容:
测量霍尔元件的 、 关系;
1、将测试仪的“ 调节”和“ 调节”旋钮均置零位(即逆时针旋到底),极性开关选择置“0”。
2、接通电源,电流表显示“0.000”。有时, 调节电位器或 调节电位器起点不为零,将出现电流表指示末位数不为零,亦属正常。电压表显示“0.0000”。
3、测定 关系。取 =900mA,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为1.00,2.00,…,10.00mA,将 和 极性开关选择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表1。
4、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
5、测定 关系。取 =10 mA ,保持不变;霍尔元件置于螺旋管中点(二维移动尺水平方向14.00cm处与读数零点对齐)。顺时针转动“ 调节”旋钮, 依次取值为0,100,200,…,900 mA,将 和 极性开关择置“+” 和“-”改变 与 的极性,记录相应的电压表读数 值,填入数据记录表2。
6、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
测量长直螺旋管轴向磁感应强度
1、取 =10 mA, =900mA。
2、移动水平调节螺钉,使霍尔元件在直螺线管中的位置 (水平移动游标尺上读出),先从14.00cm开始,最后到0cm点。改变 和 极性,记录相应的电压表读数 值,填入数据记录表3,计算出直螺旋管轴向对应位置的磁感应强度 。
3、以 为横坐标, 为纵坐标作 图,并对 曲线作定性讨论。
4、用公式(1-8)计算长直螺旋管中心的磁感应强度的理论值,并与长直螺旋管中心磁感应强度的测量值 比较,用百分误差的形式表示测量结果。式中 ,其余参数详见仪器铭牌所示。
六、 注意事项:
1、为了消除副效应的影响,实验中采用对称测量法,即改变 和 的方向。
2、霍尔元件的工作电流引线与霍尔电压引线不能搞错;霍尔元件的工作电流和螺线管的励磁电流要分清,否则会烧坏霍尔元件。
3、实验间隙要断开螺线管的励磁电流 与霍尔元件的工作电流 ,即 和 的极性开关置0位。
4、霍耳元件及二维移动尺容易折断、变形,要注意保护,应注意避免挤压、碰撞等,不要用手触摸霍尔元件。
七、 数据记录:KH=23.09,N=3150匝,L=280mm,r=13mm
表1 关系 ( =900mA)
(mV) (mV) (mV) (mV)

1.00 0.28 -0.27 0.31 -0.30 0.29
2.00 0.59 -0.58 0.63 -0.64 0.61
3.00 0.89 -0.87 0.95 -0.96 0.90
4.00 1.20 -1.16 1.27 -1.29 1.23
5.00 1.49 -1.46 1.59 -1.61 1.54
6.00 1.80 -1.77 1.90 -1.93 1.85
7.00 2.11 -2.07 2.22 -2.25 2.17
8.00 2.41 -2.38 2.65 -2.54 2.47
9.00 2.68 -2.69 2.84 -2.87 2.77
10.00 2.99 -3.00 3.17 -3.19 3.09
表2 关系 ( =10.00mA)
(mV) (mV) (mV) (mV)

0 -0.10 0.08 0.14 -0.16 0.12
100 0.18 -0.20 0.46 -0.47 0.33
200 0.52 -0.54 0.80 -0.79 0.66
300 0.85 -0.88 1.14 -1.15 1.00
400 1.20 -1.22 1.48 -1.49 1.35
500 1.54 -1.56 1.82 -1.83 1.69
600 1.88 -1.89 2.17 -2.16 2.02
700 2.23 -2.24 2.50 -2.51 2.37
800 2.56 -2.58 2.84 -2.85 2.71
900 2.90 -2.92 3.18 -3.20 3.05
表3 关系 =10.00mA, =900mA
(mV) (mV) (mV) (mV) B ×10-3T

0 0.54 -0.56- 0.73 -0.74 2.88
0.5 0.95 -0.99 1.17 -1.18 4.64
1.0 1.55 -1.58 1.80 -1.75 7.23
2.0 2.33 2.37- 2.88 -2.52 10.57
4.0 2.74 -2.79 2.96 -2.94 12.30
6.0 2.88 -2.92 3.09 -3.08 12.90
8.0 2.91 -2.95 3.13 -3.11 13.10
10.0 2.92 -2.96 3.13 -3.13 13.10
12.0 2.94 -2.99 3.15 -3.06 13.20
14.0 2.96 -2.99 3.16 -3.17 13.3
八、 数据处理:(作图用坐标纸)
九、 实验结果:
实验表明:霍尔电压 与霍尔元件工作电流 、直螺线管的励磁电流 间成线性的关系。
长直螺旋管轴向磁感应强度:
B=UH/KH*IS=1.33x10-2T
理论值比较误差为: E=5.3%
十、问题讨论(或思考题):
参考资料: 网站: http://ly17yun.lingd.net中有很多

超声波声速测定实验的误差的主要原因

超声波声速测定实验中的误差的主要原因为:
1、在发射换能器与接收换能器之间不是严格的驻波场;
2、发射的有可能为球面波;
3、用接收换能器做反射面也会使误差增大;
4、调节超声波的谐振频率也会是误差增大;
5、判断最大值的位置不准确。
超声波测量是指测量频率超过16-20kHz的弹性波在岩体中传播速度的方法。
扩展资料:
由于超声波的波长小,发射的定向性高。所以能精确地测定超声波传播速度。
主要用于测试室内岩石试件,在测定范围小于1m时亦可用来测定围岩破裂、松动范围等。它所用的仪器与声波测量相同,仅发射装置所激发波的频率不同。
测量频率为2-20kHz的弹性波在岩体中传播速度和衰减的方法。它可用以测量岩石动弹性模量、围岩的松动范围、应力的变化和岩体工程分类的有关参数等。用于测量岩体表面和声波测井的范围为5-10m。中国矿山常用于井下测定岩石声波传播速度的仪器有SYC-2和SYC-3型。
参考资料来源:百度百科-超声波测量

超声波速测量 驻波法和相位比较法好在哪儿

声速测量中的驻波法是观测声波与其反射波所形成的驻波。由于,改变半个波长的传播路程,驻波的波幅会变化一个周期,可以测得波长,再乘以频率,既可得到声速。
相位比较法是比较接收波与发射波的相位差,在示波器上形成李沙如图。由于,改变一个波长的传播路径,相位会变化2pi,李沙如图变化一个周期。从而测得波长,乘以频率,得到声速.
两种测量方法都比较直观,而且仪器简单,操作方便,测量精度较高。
可以,
声音在所有介质中传播都是以声波的形式传播的,是机械波就可以形成驻波,当然就可以通过相位比较法测声速,两种方法都是在一定已知频率下,测出声波波长,v=λf
我写实验报告的思考题就是这,自己找了点在加工了一下。

用驻波法和相位比较法测声速,示波器的接线和操作有什么不同? 大学物理实验报告的思考问题2

相位比较法即出现李萨如图(l该变量为一个波长时图形恢复原状),驻波法是形成驻波利用驻波波长是原波长的1/2来测,两种方法接线无区别,示波器相位比较法需要把声源处和接收器的电压信号接到x轴和y轴上,其他无区别
2。不是一直存在,一直存在的是波的干涉,示波器显示波形幅度最大时与上一最大位置差1/2声波波长
3。这样才能使两边都成像,1/s+1/s'=1/f,s+s'=L,使方程有解L必须>=4f(如若,您对我的答复满意,请点击左下角“好评”,谢谢您的采纳。)

急寻解决 物理实验————光速测定思考题

1.根据实验原理试问使用不同频率的声波测得的声速是否相同?
实验中为什么要用30HZ以上的超声波。 -->应该是30KHZ以上的超声波,超声波波长短,可以在很狭窄的范围内进行测量,抗干扰能力强.
2.5HZ的频率不确定度给声速测定带来的影响-->Δf=5Hz,f=30000Hz,v=λf-->
Δv/v=Δf/f=5/30000=1/60000