×

核聚变原理,核聚变的反应原理是什么?

admin admin 发表于2024-03-21 21:40:57 浏览20 评论0

抢沙发发表评论

本文目录一览:

核聚变是利用了什么原理?

核聚变原理是:
在极高的温度和压力下才能让核外电子摆脱原子核的束缚,让两个原子核能够互相吸引而碰撞到一起,发生原子核互相聚合作用,生成新的质量更重的原子核(如氦),中子虽然质量比较大,但是由于中子不带电,因此也能够在这个碰撞过程中逃离原子核的束缚而释放出来。
大量电子和中子的释放所表现出来的就是巨大的能量释放。这是一种核反应的形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。核聚变是核裂变相反的核反应形式。
扩展资料:
如果要实现核聚变发电,那么在核聚变反应堆中,需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。
由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。

核聚变的基本原理

核聚变的基本原理介绍如下:
核聚变基本原理:
核聚变,即当轻原子核(如氦)融合成偏重的原子核(如氦)时,释放出来很大的动能。因为有机化学是在分子和原子方面科学研究化学物质特性、构成、构造和变化趋势的科学研究,而核聚变产生在原子核方面,因此核聚变不属于化学反应。
热核反应,或分子核聚变反映,是当前一种特别有发展前途的新能源技术。参加核反应的轻原子核,如氢(氕)、氘、氚、锂等从热运动获得必要的动能而引起的聚变反应。热核反应是氢弹试验的基本,能在一瞬间造成很多热量,但不可以运用。
假如热核反应可以在一定的管束地区内造成和开展,可控热核反应就可以依据我们的用意获得操纵。这也是试验设计的一个关键课题研究。可控热核反应是聚变核反应堆的基本。
核聚变的影响:
一旦聚变核反应堆取得成功,它很有可能会为人们带来最整洁、最取之不竭的电力能源。
水电费会越来越非常少,甚至是立即完全免费的,变成每一个人都能够像太阳和气体一样享有的在线资源。由于核聚变的原材料、氘和氚是取之不竭的,在大家地球上的大海中,大概有40万亿吨氘,理论上足够让人们应用几百亿年。因而,一旦核聚变取得成功,造成的动能是取之不竭的。此外,可能那时候生产制造电线的厂商会破产倒闭许多,因为我们可以彻底无线输电。
实际上这一技能早已存有好长时间了,可是由于耗电量过多,一直没有规模性执行。在我们不考虑到电力工程耗损时,我们可以彻底解决电线的拘束。手机上和笔记本电脑可以无线快速充电技术。

核聚变的反应原理是什么?

聚变和裂变的区别在于:原理不同,反应释放能量不同,对环境影响大小不同。
1、在原理上,聚变是小质量的两个原子核合成一个比较大的原子核而裂变就是一个大质量的原子核分裂成两个比较小的原子核,在这个变化过程中都会释放出巨大的能量。
2、在反应释放能量上,聚变释放的能量非常大。裂变释放能量巨大,但是远远小于聚变。
3、在对环境影响大小上,变堆的核燃料蕴藏极为有限,不仅产生强大的辐射,伤害人体,而且遗害千年的废料也很难处理,对环境污染很大。核聚变的辐射则少得多,核聚变的燃料可以说是取之不尽,用之不竭。
扩展资料
核聚变就是小质量的两个原子核合成一个比较大的原子核,核裂变就是一个大质量的原子核分裂成两个比较小的原子核,在这个变化过程中都会释放出巨大的能量,前者释放的能量更大。
世界上的每一种物质都处于不稳定状态,有时会分裂或合成,变成另外的物质。物质无论是分裂或合成,都会产生能量。由两个氢原子合为一个氦原子,就叫核聚变。
太阳就是依此而释放出巨大的能量。大家熟悉的原子弹则是用裂变原理造成的,目前的核电站也是利用核裂变而发电。
核裂变虽然能产生巨大的能量,但远远比不上核聚变,裂变堆的核燃料蕴藏极为有限,不仅产生强大的辐射,伤害人体。
而且遗害千年的废料也很难处理,核聚变的辐射则少得多,核聚变的燃料可以说是取之不尽,用之不竭。
参考资料:百度百科-核裂变和核聚变

核聚变原理

核聚变的原理是轻原子核结合成较重原子核释放出巨大能量。
核聚变反应能够根据人们的意图在一定的约束范围内以受控的方式产生和进行,那么受控的热核反应就能够实现。这正是实验研究的主要课题。受控热核反应是聚变堆的基础。一旦聚变反应堆成功,它可能为人类提供最清洁、最取之不尽的能源。
受控核聚变是等离子体中大量原子在高温下的核聚变反应,同时释放能量。氘是最重要的聚变燃料,海洋是氘的潜在来源。一旦能够实现以氘为基本燃料的受控核聚变,人们几乎将拥有取之不尽的能量。
氢弹爆炸释放出的大量聚变能和原子弹爆炸释放的大量裂变能是不可控的。第一颗原子弹爆炸仅十年后,人们就找到了控制裂变反应的方法,并建造了一座裂变变电站。
发生条件
产生可控核聚变需要的条件非常苛刻。我们的太阳就是靠核聚变反应来给太阳系带来光和热,其中心温度达到1500万摄氏度。
另外还有巨大的压力能使核聚变正常反应,而地球上没办法获得巨大的压力,只能通过提高温度来弥补,不过这样一来温度要到上亿度才行。核聚变如此高的温度没有一种固体物质能够承受,只能靠强大的磁场来约束。由此产生了磁约束核聚变。
对于惯性核聚变,核反应点火也成为问题。不过在2010年2月6日,美国利用高能激光实现核聚变点火所需条件。中国也有“神光2”将为我国的核聚变进行点火。

核聚变的原理是什么?

核聚变的原理是通过将两个轻核(通常是氢的同位素氘和氚)融合成一个更重的核,释放出巨大的能量。下面我将详细解释核聚变的原理。
一、核聚变的过程可以分为三个主要步骤:热化、静电击穿和融合。
1、热化:
核聚变反应需要非常高的温度来克服核内部的静电排斥力。高温将氢等离子体加热至数百万摄氏度,使其达到足够的能量水平以克服原子核之间的斥力。这种高温条件可以通过等离子体加热、惯性约束等方式实现。
2、静电击穿:
在高温下,氢等离子体中的氢原子核(氘和氚)以极高的速度运动,碰撞力很大。当两个氢原子核非常接近时,由于核内部的静电排斥力,它们会相互反弹并返回。然而,如果它们具有足够的动能,静电排斥力可以被克服,两个原子核可以更接近。
3、融合:
当两个原子核相互接近并克服静电排斥力时,核力开始起作用。核力是一种极强的引力作用力,可以将原子核结合在一起。在这个过程中,氘和氚核融合成一个氦核,同时释放出一个中子和大量的能量。
核聚变的反应方程可以表示为:氘 + 氚 -> 氦 + 中子 + 能量。
在核聚变过程中,释放的能量来自于核内部的结合能差异。氘和氚的核结合在一起形成氦核时,核内的粒子之间的引力减少了整体的势能,而这部分势能转化为释放的能量。
核聚变释放的能量巨大且清洁,因为它使用的燃料是氢同位素,而不是放射性的铀和钚等物质。核聚变的燃料丰富且容易获得,因为氘可以从海水中提取,氚可以从锂中提取。
二、核聚变的应用领域:
1、清洁能源发电:
核聚变被认为是未来清洁能源的候选者之一,核聚变反应使用氢同位素(氘和氚)融合产生氦,并释放出巨大的能量。相较于核裂变,核聚变反应不产生长寿命的放射性废物,并且燃料资源丰富。如果实现可控核聚变,将能够提供持续且环保的能源,有助于减少对传统化石燃料的依赖。
2、氢能源生产:
核聚变可以为氢能源生产提供持续和可再生的能源来源。在核聚变过程中,氦是主要的产物,而氦可以被用作氢能源的生产和储存。通过核聚变技术,可以生产大量的氦供应氢能源产业,从而推动氢能源的发展和应用。
3、放射性同位素生产:
核聚变还可以用于产生放射性同位素,用于医学、工业和科学研究等领域。通过核聚变反应,可以获得放射性同位素,用于医学影像、癌症治疗、辐射治疗、无损检测、材料分析和辐射生物学研究等方面。核聚变技术提供了一种可控和持续的放射性同位素生产方式。
4、海上和空间推进:
核聚变也有潜在的应用于海上和空间推进领域。核聚变提供了高能量密度和高推力的特点,可以用于推动舰船和太空航天器。通过核聚变反应产生的高能量,可以有效提高推进系统的效率和性能,从而实现更快、更远的航行和探索。
核聚变、核裂变基本原理是爱因斯坦的质能方程: E=mC^2 核聚变是两个较轻的原子核聚合为一个较重的原子核,核裂变是一个重原子核裂变为两个或两个以上的轻核,在聚变或裂变时都会有质量亏损,减少的质量都以能量的形式释放出来。 核聚变产生的能量比核裂变要多得多,是因为在相同质量的原子核在发生核聚变时,会有较多的质量亏损所以释放的能量也较多。 具体可以参考方程: 聚变:31H+21H—→42He+10n+1.76×107eV (不全是这个反应,31H是含2个中子的氢,。。n是中子) 和 裂变:U+n→Sr+Xe+10n 核聚变产生质量亏损大。 但核聚变发生需要克幅分子间的斥力,要对原子做功,需要很大的分子动能(1亿摄氏度)

核聚变反应是什么反应

核聚变反应是指将两个轻核聚合成更重的核所释放出的能量。在核聚变过程中,原子核相互作用,产生高能粒子和射线,并释放出大量能量。
聚变原理:
核聚变能是模仿太阳的原理,使两个较轻的原子核结合成一个较重的原子核并释放能量。1952年世界第一颗氢弹爆炸之后,人类制造核聚变反应成为现实,但那只是不可控制的瞬间爆炸。核聚变能试验装置实际上就是在磁容器中对氢的同位素氘和氚所发生的核聚变反应进行控制。
聚变反应:
核聚变反应是指在高温条件下,两个轻核以极高的热速度相互碰撞,发生核聚变,形成一个较重的原子核,并释放出能量。因必须在极高的压力、温度条件下,轻核才有足够的动能去克服静电斥力而发生持续的聚变,因此,聚变反应也称“热核聚变反应”或“热核反应”。
核聚变的原料主要是氢、氘和氚。氘、氚都是氢的同位素。核聚变是取得核能的重要途径之一。用核聚变原理造出来的氢弹是靠先爆发一颗核裂变原子弹而产生的高热,来触发核聚变起燃器,使氢弹得以爆炸。
实现可控核聚变的条件更苛刻。当两个带正电的球相互接近时,它们会互相排斥,只有使用更大的力才能使两者互相接近。可控核聚变也是这样,由于所有的原子核都带正电,当两个原子核越接近时,其静电斥力越大。
为了使两个核发生聚变反应,必须使两个原子核的一方或双方有足够的能量,以克服它们之间的静电斥力。而核子之间的吸引力————核力是短程力,只有当两个原子核相互接近达到约万亿分之三毫米时,核力才能起作用。这时由于核力大于静电斥力,使两个原子聚合到一起,并放出巨大的能量。

核聚变和核裂变的原理是什么?谁的威力大


核聚变和核裂变的原理是什么?谁的威力大
核聚变是指将两个或多个轻元素核合并成一个重元素核的过程。在核聚变反应中,两个原子核靠近并融合成一个新的核,释放出能量。
核聚变的能量来源于原子核的质量差异,其中一部分质量转化成能量并释放。核聚变反应需要高温、高压和高密度的环境才能进行,通常需要使用强大的磁场和激光束来控制反应过程。目前,核聚变反应已被应用于核电站、实验室和太阳等自然现象的研究。
核裂变是指将一个重元素核分裂成两个或更多的轻元素核的过程。在核裂变反应中,原子核被撞击后发生裂变,并释放出大量的能量和中子。核裂变的能量也来源于原子核的质量差异,其中一部分质量转化成能量并释放。
核裂变反应在核武器和核电站中被广泛应用。在核武器中,核裂变反应释放出大量的能量,产生爆炸和辐射。而在核电站中,核裂变反应被用于产生热能,驱动涡轮发电机产生电力。
总的来说,核聚变和核裂变的威力都非常大,但是它们在不同的应用领域有着不同的优缺点。核聚变的优点是能够产生更多的能量,而且所需的燃料更加丰富,如氢等。
然而,目前尚未开发出可行的商业化核聚变反应堆,研发成本较高,技术难度大。而核裂变的优点是技术已经相对成熟,能够在较短时间内释放出大量能量,但是所需的燃料稀缺,而且会产生较大的辐射和核废料问题。
因此,核聚变和核裂变在不同的应用场合有各自的优缺点,没有哪一个比另一个更加威力强大。需要根据实际需求和安全考虑进行选择和应用。

聚变反应的原理


核聚变的原理是:在标准的地面温度下,物质的原子核彼此靠近的程度只能达到原子的电子壳层所允许的程度。因此,原子相互作用中只是电子壳层相互影响。带有同性正电荷的原子核间的斥力阻止它们彼此接近,结果原子核没能发生碰撞而不发生核反应。要使参加聚变反应的原子核必须具有足够的动能,才能克服这一斥力而彼此靠近。提高反应物质的温度,就可增大原子核动能。因此,聚变反应对温度极其敏感,在常温下其反应速度极小,只有在1400万到1亿度的绝对温度条件下,反应速度才能大到足以实现自持聚变反应。所以这种将物质加热至特高温所发生的聚变反应叫作热核反应,由此做成的聚变武器也叫热核武器。要得到如此高温高压,只能由裂变反应提供。热核材料:核聚变反应一般只能在轻元素的原子核之间发生,如氢的同位素:氘和氚,它们原子核间的静电斥力最小,在相对较低的温度(近千万摄氏度)即可激发明显的聚变反应生成氦,而且反应释放出的能量大,一千克聚变反应装药放出的能量约为核裂变的七倍。但在热核武器中不是使用在常温下呈气态的氘和氚。氘采用常温下是固态化合物的氘化锂,而氚则由核武器进行聚变反应过程中由中子轰击锂的同位素而产生。1942年,美国科学家在研制原子弹过程中,推断原子弹爆炸提供的能量有可能点燃氢核引起聚变,并以此制造威力比原子弹更大的超级弹。1952年1月,美国进行了世界上首次代号“迈克”的氢弹原理试验,爆炸威力超过1000万吨当量,但该装置以液态氘作热核材料连同贮存容器和冷却系统重约65吨,不能作为武器使用,直到固态氘化锂作为热核装料的试验成功,氢弹的实际应用才成为可能。中国于1966年12月28日成功进行了氢弹原理试验,1969年6月17日由飞机空投的300万吨级氢弹试验圆满成功。

核聚变是怎样产生的?

核聚变的定义:
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。原子核中蕴藏巨大的能量,原子核的变化(从一种原子核变化为另外一种原子核)往往伴随着能量的释放。如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如太阳发光发热的能量来源。
相比核裂变,核聚变几乎不会带来放射性污染等环境问题,而且其原料可直接取自海水中的氘,来源几乎取之不尽,是理想的能源方式。
目前人类已经可以实现不受控制的核聚变,如氢弹的爆炸。但是要想能量可被人类有效利用,必须能够合理的控制核聚变的速度和规模,实现持续、平稳的能量输出。科学家正努力研究如何控制核聚变,但是现在看来还有很长的路要走。
目前主要的几种可控核聚变方式:
超声波核聚变
激光约束(惯性约束)核聚变
磁约束核聚变(托卡马克)
核聚变的另一定义
比原子弹威力更大的核武器—氢弹,就是利用核聚变来发挥作用的。核聚变的过程与核裂变相反,是几个原子核聚合成一个原子核的过程。只有较轻的原子核才能发生核聚变,比如氢的同位素氘(dao)、氚(chuan)等。核聚变也会放出巨大的能量,而且比核裂变放出的能量更大。太阳内部连续进行着氢聚变成氦过程,它的光和热就是由核聚变产生的。
核聚变能释放出巨大的能量,但目前人们只能在氢弹爆炸的一瞬间实现非受控的人工核聚变。而要利用人工核聚变产生的巨大能量为人类服务,就必须使核聚变在人们的控制下进行,这就是受控核聚变。
实现受控核聚变具有极其诱人的前景。不仅因为核聚变能放出巨大的能量,而且由于核聚变所需的原料——氢的同位素氘可以从海水中提取。经过计算,1升海水中提取出的氘进行核聚变放出的能量相当于100升汽油燃烧释放的能量。全世界的海水几乎是“取之不尽”的,因此受控核聚变的研究成功将使人类摆脱能源危机的困扰。
但是人们现在还不能进行受控核聚变,这主要是因为进行核聚变需要的条件非常苛刻。发生核聚变需要在1亿度的高温下才能进行,因此又叫热核反应。可以想象,没有什么材料能经受得起1亿度的高温。此外还有许多难以想象的困难需要去克服。尽管存在着许多困难,人们经过不断研究已取得了可喜的进展。科学家们设计了许多巧妙的方法,如用强大的磁场来约束反应,用强大的激光来加热原子等。可以预计,人们最终将掌握控制核聚变的方法,让核聚变为人类服务。
利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的较重的原子核而释出能量。最常见的是由氢的同位素氘(读"刀",又叫重氢)和氚(读"川",又叫超重氢)聚合成较重的原子核如氦而释出能量。 核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。
第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。
目前实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近于成功,但要达到工业应用还差得远。按照目前技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。
另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。
原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。
尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。
补充内容:
每克氘聚变时所释放的能量为5.8×108kJ,大于每克U-235裂变时所释放的能量(8.2×107KJ)。从能源的角度考虑,核聚变有几个方面比核裂变优越:其一,聚变产物是稳定的氦核,没有放射性污染产生,没有难于处理的废料;其二,聚变原料氘的资源比较丰富,在海水中氘和氢之比为1.5×10-4∶1,地球上海水总量约为1018吨,其中蕴藏着大量的氘,提炼氘比提炼铀容易得多。遗憾的是这个聚变反应需要非常高的温度,以克服两个带正电的氘核之间的巨大排斥力(从理论计算,要克服这种库仑斥力需要109℃的高温)。氢弹的制造原理,就是利用一个小的原子弹作为引爆装置,产生瞬间高温引发上述聚变反应发生强烈爆炸。氢元素的几种同位素之间能发生多种聚变反应,这种变化过程存在于宇宙之间,太阳辐射出来的巨大能量就来源于这类核聚变。但我们目前尚没有办法在地球上利用这类核聚变发电,怎样能取得这样高的温度?用什么材料制造反应器?怎样控制聚变过程等各种问题尚无答案。