本文目录一览:
- 1、斐波那契数列通项公式是什么?
- 2、斐波那契Fibonacci数列的通项公式
- 3、斐波那契数列的通项公式
- 4、谁知道斐波那契数列的通项公式?谢谢!
- 5、斐波那契数列通项公式
- 6、斐波那契数列通项公式是什么?
- 7、裴波那契数列的通项公式用字母怎样表达?
- 8、斐波那契数列通项公式,详细过程。
- 9、菲波拉契数列的通项公式?
斐波那契数列通项公式是什么?
这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列。该数列由下面的递推关系决定:
F0=0,F1=1
Fn+2=Fn + Fn+1(n>=0)
它的通项公式是 Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)
补充问题:
菲波那契数列指的是这样一个数列:
1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和
它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
该数列有很多奇妙的属性
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值
F0=0,F1=0
FN=FN-1+FN-2;
一.斐波那契数列的通项公式
斐波那契数列指的是这样一个数列:
1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和
它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
该数列有很多奇妙的属性
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值
二.斐波那契数列的通项公式的推导
由an+2= an+1+an
有an+2- an+1- an=0
构造特征方程 x2-x-1=0,
令它的两个根是p,q 有pq=-1 p+q=1
下面我们来证 {an+1-pan}是以q为公比的等比数列。
为了推导的方便,令a0=1,仍满足an+2= an+1+an
an+1-pan
= an+an-1 -pan
= (1-p) an-pqan-1
=q(an-pan-1)
所以:{an+1-pan}是以q为公比的等比数列。
a1-pa0
=1-p=q
所以 an+1-pan=q*qn=qn+1 ①
同理 an+1-qan=p*pn=pn+1 ②
①-②:(q-p)an= qn+1-pn
因p=(1-√5)/2,q=(1+√5)/2,q-p=√5,所以
an=(1/√5){[(1+√5)/2]n+1-[(1-√5)/2] n+1}
可验证a0,a1也适合以上通项公式。
三.关于斐波那契数列及其通项公式的推倒
斐波那契数列 “斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,籍贯大概是比萨,卒于1240年后)。他还被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
《达·芬奇密码》中还提到过这个斐波那契数列..
菲波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21……
这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
该数列有很多奇妙的属性
比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887……
还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积少1,每个偶数项的平方都比前后两项之积多1
如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到
如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值
斐波那契数列别名
斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。
斐波那挈数列通项公式的推导
斐波那挈数列:1,1,2,3,5,8,13,21……
如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:
F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)
显然这是一个线性递推数列。
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
X^2=X+1
解得
X1=(1+√5)/2, X2=(1-√5)/2.
则F(n)=C1*X1^n + C2*X2^n
∵F(1)=F(2)=1
∴C1*X1 + C2*X2
C1*X1^2 + C2*X2^2
解得C1=1/√5,C2=-1/√5
∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
则r+s=1, -rs=1
n≥3时,有
F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]
……
F(3)-r*F(2)=s*[F(2)-r*F(1)]
将以上n-2个式子相乘,得:
F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]
∵s=1-r,F(1)=F(2)=1
上式可化简得:
F(n)=s^(n-1)+r*F(n-1)
那么:
F(n)=s^(n-1)+r*F(n-1)
= s^(n-1) + r*s^(n-2) + r^2*F(n-2)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)
……
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)
= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n - r^n)/(s-r)
r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2
则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}
四.斐波那契数列通项公式推导方法
Fn+1=Fn+Fn-1
两边加kFn
Fn+1+kFn=(k+1)Fn+Fn-1
当k!=1时
Fn+1+kFn=(k+1)(Fn+1/(k+1)Fn-1)
令
Yn=Fn+1+kFn
若
当k=1/k+1,且F1=F2=1时
因为
Fn+1+kFn=1/k(Fn+kFn-1)
=>
Yn=1/kYn-1
所以
Yn为q=1/k=1(1/k+1)=k+1的等比数列
那么当F1=F2=1时
Y1=F2+kF1=1+k*1=k+1=q
根据等比数列的通项公式
Yn=Y1q^(n-1)=q^n=(k+1)^n
因为k=1/k+1=>k^2+k-1=0
解为 k1=(-1+sqrt(5))/2
k2=(-1-sqrt(5))/2
将k1,k2代入
Yn=(k+1)^n
,和Yn=Fn+1+kFn
得到
Fn+1+(-1+sqrt(5))/2Fn=((1+sqrt(5))/2)^2
Fn+1+(-1+sqrt(5))/2Fn=((1-sqrt(5))/2)^2
两式相减得
sqrt(5)Fn=((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2
Fn=(((1+sqrt(5))/2)^2-((1-sqrt(5))/2)^2)/sqrt(5)
斐波那契Fibonacci数列的通项公式
斐波那契数列的通项公式
斐波那契数列的通项比是黄金分割比:Xn=Fn+1/Fn=(Fn+Fn-1)/Fn=1+ Fn-1/Fn=1+1/Xn-1;
即有Xn=1+1/Xn-1;
求极限,x=1+1/x;
解得x=(1+sqr(5))/2
而Fn/Fn+1=1/x=(sqr(5)-1)/2
这里用了极限的方法斐波那契数列的通项公式
Fn=[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5
用无理数表示有理数!
扩展资料例如:
解答过程
参考资料来源:百度百科-fibonacci斐波那契数列
斐波那契数列的通项公式
斐波那契数列的通项公式是F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1,F(n)表示第n项。
递归公式虽然直观,但在实际计算中效率并不高。如果要计算很大的项,比如F(10000),就需要进行很多次的递归计算,时间成本很高。
为了解决这个问题,数学家们找到了其他的求解方法。其中最著名的是Binet的公式,它是一个关于n的二项式公式,可以直接求出第n项的值。这个公式对于大项的计算效率要比递归公式高很多。
除了递归和Binet公式外,还有其他的求解方法,如矩阵指数法、生成函数等。这些方法各有优劣,可以根据实际需要选择适合的方法进行计算。
斐波那契数列的应用:
1、黄金分割:
斐波那契数列与黄金分割有着密切的联系。黄金分割是一种比例关系,它指的是将一个线段分成两部分,使得较长部分与原线段的比例等于较短部分与较长部分的比值。这个比例关系在自然界中广泛存在,如螺旋壳、向日葵的花瓣排列等。
斐波那契数列中的每一项都可以表示为前两项的比值,这个比值越来越接近黄金分割的比值0.618034。因此,斐波那契数列在研究黄金分割和相关的美学问题中有着重要的应用。
2、植物生长:
斐波那契数列在植物生长中也有应用。许多植物的花瓣数量和排列方式与斐波那契数列有关。例如,向日葵的花瓣排列方式就是按照斐波那契数列的顺序排列的。此外,一些植物的叶子和茎干的分叉方式也是按照斐波那契数列的规律进行的。这种排列方式可以使植物更好地适应环境,提高生存概率。
3、经济学:
斐波那契数列在经济学中也有应用。例如,股票市场的波动率与斐波那契数列中的数字相关。一些投资者使用斐波那契数列来预测股票市场的走势,寻找买卖点。此外,斐波那契数列还可以用于分析货币汇率、房地产市场等经济领域中的波动趋势。
谁知道斐波那契数列的通项公式?谢谢!
an=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)
an=an-1+an-2 n>=3 a1=a2=1
这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列,它有许多神奇的性质.
它的通项公式是
an=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)
唯楚有才!
这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列,它有许多神奇的性质.
它的通项公式是
an=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)
唯楚有才!
参考资料:初中数学奥林匹克实用教程第一册(湖南师范大学出版社)第193页
斐波那契数列通项公式
斐波那契数列通项公式:F[n]=F[n-1]+F[n-2](n>=2,F[0]=1,F[1]=1)。
斐波那契数列介绍如下:
斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称“兔子数列”。
其数值为:1、1、2、3、5、8、13、21、34……在数学上,这一数列以如下递推的方法定义:F(0)=1,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*)。
1202年,斐波那契在《计算之书(Liber Abaci)》中提出了斐波那契数列。根据该数列可折叠出斐波那契蜗牛;绘制出斐波那契螺旋线等。
此外,在现代物理、准晶体结构、化学等领域,该数列均有直接应用;为此,美国数学会从1963年起出版了一份名为《斐波那契数列季刊》的数学杂志,以专门刊载相关研究成果。
斐波那契数列的定义者,是意大利数学家莱昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的莱昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区。
莱昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。另外斐波那契还在计算机C语言程序题中应用广泛。
斐波那契数列通项公式是什么?
公式:
数列从第三项开始,每一项都等于前两项之和,它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】
解得x=(1+sqr(5))/2
而Fn/Fn+1=1/x=(sqr(5)-1)/2
这里用了极限的方法斐波那契数列的通项公式
Fn=[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5
特性:
从第二项开始(构成一个新数列,第一项为1,第二项为2,……),每个偶数项的平方都比前后两项之积多1,每个奇数项的平方都比前后两项之积少1。如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。
裴波那契数列的通项公式用字母怎样表达?
百度一下就出来了啊,还有推导过程,怎麼是要人帮你复制过来?
f(n) = f(n-1) + f(n-2)
第n项=第n-1项+第n-2项
1 1 2 3 5 8 13...
斐波那契数列的通项公式:
f(n)=f(n-1)+f(n-2)
比如第一项是1,第二项是1,那么:第三项是2,第四项是3,第五项是5,第六项是8
斐波那契数列通项公式,详细过程。
斐波那契数列通项公式
f(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}
通项公式的推导方法一:利用特征方程
线性递推数列的特征方程为:
x^2=x+1
解得
x1=(1+√5)/2,
x2=(1-√5)/2.
则f(n)=c1*x1^n
+
c2*x2^n
∵f(1)=f(2)=1
∴c1*x1
+
c2*x2
c1*x1^2
+
c2*x2^2
解得c1=1/√5,c2=-1/√5
∴f(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}【√5表示根号5】
通项公式的推导方法二:普通方法
设常数r,s
使得f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]
则r+s=1,
-rs=1
n≥3时,有
f(n)-r*f(n-1)=s*[f(n-1)-r*f(n-2)]
f(n-1)-r*f(n-2)=s*[f(n-2)-r*f(n-3)]
f(n-2)-r*f(n-3)=s*[f(n-3)-r*f(n-4)]
……
f(3)-r*f(2)=s*[f(2)-r*f(1)]
将以上n-2个式子相乘,得:
f(n)-r*f(n-1)=[s^(n-2)]*[f(2)-r*f(1)]
∵s=1-r,f(1)=f(2)=1
上式可化简得:
f(n)=s^(n-1)+r*f(n-1)
那么:
f(n)=s^(n-1)+r*f(n-1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*f(n-2)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+
r^3*f(n-3)
……
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)*f(1)
=
s^(n-1)
+
r*s^(n-2)
+
r^2*s^(n-3)
+……+
r^(n-2)*s
+
r^(n-1)
(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的等比数列的各项的和)
=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)
=(s^n
-
r^n)/(s-r)
r+s=1,
-rs=1的一解为
s=(1+√5)/2,
r=(1-√5)/2
则f(n)=(1/√5)*{[(1+√5)/2]^n
-
[(1-√5)/2]^n}
菲波拉契数列的通项公式?
a1=1,a2=1,a3=a1+a2=2, an+1=an+an-1
通项公式推导如下:
(An+1)=(An)+(An-1),将An项分解为(((1+√5)/2)+((1-√5)/2))(An),然后移项,得到下式:
(An+1)-((1+√5)/2)(An)=((1-√5)/2)(An)+(An-1)
即(An+1)-((1+√5)/2)(An)=((1-√5)/2)((An)-((1+√5)/2)(An-1))
即新数列{(An)+((1+√5)/2)(An-1)}是以((1-√5)/2)为首项,((1-√5)/2)为公比的等比数列
即(An)-((1+√5)/2)(An-1)=((1-√5)/2)^n
即(An)=((1+√5)/2)(An-1)+((1-√5)/2)^n
两边同时除以((1+√5)/2)^n,得又一新数列(Bn)=(Bn-1)+(((1-√5)/2)^n)/(((1+√5)/2)^(n+1))
其中,(Bn)=An/(((1+√5)/2)^n)
依次递归,得到(Bn)=((1+√5)/2)^(-1)+2*(((1-√5)/(1+√5)^2)+(((1-√5)^2)/(1+√5)^3)+……+(((1-√5)^(n-1))/(1+√5)^n))
将Bn带入,化简,得到An=((((1+√5)/2)^n)-(((1-√5)/2)^n))/(√5)
(注√表示根号)