本文目录一览:
- 1、康托尔集合论的主要内容
- 2、康托尔的集合论相关论文范文
- 3、什么是集合论?
- 4、集合论创始人康托尔简介
- 5、集合论的创始人介绍
- 6、谁被称为集合论之父?
- 7、集合论的创立者是谁?
- 8、集合论是谁提出的?
- 9、集合论是什么意思
- 10、集合论的意义
康托尔集合论的主要内容
康托尔集合论的主要内容有:
1、集合论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含集合、元素和成员关系等数学中最基本的概念,是数学的一个基本的分支学科。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。
2、集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。集合论是康托尔于19世纪末创立的。它的发展经历两个阶段:1908年以前称为朴素集合论;1908年以后又产生了所谓公理集合论。
3、后者不外乎是前者的严格处理;由于广泛使用数理逻辑的工具,它又逐渐成为数理逻辑的一个分支,并从60年代以来获得迅速的发展。
4、虽然古典集合论的创始者康托尔仅以素朴的形式陈述他的理论,既没有明确原始概念,也没有罗列其不证自明的思想规定,但只要对古典集合论的内容加以概括总结即可看出,康托尔当时的几个主要基本原则或思想方法不外乎是。
5、概括原则、外延原则、一一对应原则、延伸原则、穷竭原则和对角线方法.并且,其中概括原则与外延原则用于造集并确定集与集的相等,一一对应原则与对角线方法用于引出基数概念和确定更大基数的存在,与穷竭原则用于描叙良序集的生成和确立实无限研究对象的存在。
康托尔介绍
1、康托尔,全名:格奥尔格·费迪南德·路德维希·菲利普·康托尔(德语:Georg Ferdinand Ludwig Philipp Cantor,1845年3月3日-1918年1月6日),出生于俄国的德国数学家(波罗的海德国人)。
2\他创立了现代集合论,是实数系以至整个微积分理论体系的基础,还提出了势和良序概念的定义;康托尔确定了在两个集合中的成员,其间一对一关系的重要性,定义了无限且有序的集合,并证明了实数比自然数更多。康托尔爱好广泛,极有个性,终身信奉宗教。
康托尔的集合论相关论文范文
康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!
康托尔的集合论论文篇1:《基于集合论思想的人性》
摘要:作为人类,我们有必要去了解自己,这样才能更加地进步。人性是从根本上决定并解释着人类行为的那些人类天性。本文利用集合论的思想对此进行了一些讨论。
关键词:人性;理性;社会性;自然性;集合论思想
一、引言
在长期以来的生活中,人类的大脑会在无意识的作用下储存某些事物的信息,由于并没有通过大脑严谨的思考,所以这些信息大部分是外在的,只是事物表面的一些形态特征而已。这些信息并非零散的分布,之间没有联系。而是之间存在着一定的关联,虽然结构不严谨,可能其中会有错误。但是有时候却可以起到一定的作用。但是我们不能仅依靠这样的意识形态,因为我们有自我意识,需要不断完善,不断进步。依靠这样的意识是不可能看到事物的本质的。
有时候你问某个人为什么,他可能会答道:“凭直觉”。我并不否认直觉所带来的“便利”,但这种“便利”是给自己不去思考事物本质的借口。直觉也是一种意识形态,但是这种意识是在潜意识之下的,这样意识的形成也是要通过长时间的作用。大脑可以自己不断地调整,不断地完善,但是这个过程相当缓慢。要进步可不能依靠这样的思想。
现在我想说的是,我们必须减少对这些意识的依赖。因为这些意识都不是通过严谨的思考之后得到的产物,所以用这样的意识去做出一些反应是很容易出错的。这也会阻碍我们对真实世界的探索。我们应该挖掘出这样的意识,分析其中的思想结构,将不好的思想去掉,并且把有缺陷的思想不断加强和完善。这样一来,我们就会更加理性。人就具有这样的性质——理性。因此人类才能进步,文明才能发展。
二、理论分析
假设A={a1,a2,…,an},B={b1,b2,…,bm}。若A?奂B,则说明A中的n个元素均可以在B中找到,且m>n。反之,说明中的个元素均可以在A中找到,且n>m。若A=B,则说明中的所有元素与B中的所有元素相同,且n=m。如果某一个元素可以在集合A中找到,那么记作a∈A。
结合以上思想,对人与动物进行分析,动物={青蛙,鱼,狗,猫,人,……},可以看出人是属于动物的,即人动物。并且将这样的集合叫做普通集合,以区分下面所叙述的性质集合。既然青蛙,鱼,狗,猫,人等都属于动物,那么也就是说它们具有共同的性质,比如:没有细胞壁,必须利用现成的有机物获得能量,无叶绿体,能自由移动等。但是人除了这些共同性质之外,还有其他的性质。也就是说,从性质集合上看,动物的性质集合包含于人的性质集合中的。即动物的所有性质,人类均有。我们将性质集合中的元素命名为“属差”,而将普通集合命名为“种”,普通集合中的元素命名为“属”。
如果B的性质集合包含于A的性质集合,那么A和B就具有相同的属差,并且B的所有属差均是A中的属差。属差越多,则性质集合的表述范围就越小,即越受限制。那么B显然比A的表述范围大。说明B可以述说A,即A是B,其中A就是主词,而B就是宾词,则B的所有属差是A的属差。
那么按照上面所说,动物可以表述人,即人是动物。“人”的属差比“动物”的要多,也就是限制的条件要多一些。
有些存在于主体中的事物,其定义是不能用来表述一个主体的。例如:对于白人来说,“白”就依存于身体这个主体,并被用来表述身体这个主体,也就是说身体可以被说成是白的,但是要注意,“白”的定义却不能被用来表述身体。
属和种的属差都可适用于第一实体,种的属差适用于属,所以属和种决定了实体的性质。例如:“人”和“动物”的属差都可适用于个别的人,可以说人是动物,个别的人是人,个别的人是动物。也可以这样想:对“动物”的定义肯定也适用于对“人”的定义,因为“人”是属于“动物”的。所谓的“第一实体”,比如“个别的人”、“个别的老虎”等,是真实存在的个体,并不依存于其他个体。[1]
属差的定义也能适用于属和个体,并且还可以用来表述属和个体。例如:“有脚的”、“有手的”的定义也可以适用于“人”和个别的人。并且还可以说“人”和个别的人是“有手的”。既然属差的定义可以适用于个体,那么属差也就可以决定了个体的性质。而且这些性质都可以用属差表述其个体。
分析到这里,我们应该感觉到有点思路了。也就是我们现在要找到这样的属差,然后根据这些属差的定义来表述个体。
但是还有一个前提,那就是个别的人是不是实体呢?因为刚才我们得到一个结论:属和种决定了实体的性质。也就是这些分析都是以实体作为前提的。所以我们要知道个别的人是不是实体。其实我们从实体最原始,最根本的定义出发,个别的人的确属于实体,因为是真实存在的,并且不依存于其他主体。
三、结果分析
1.人具有理性:有一篇关于鱼“自杀”的报道。我就在想鱼如何“自杀”的呢?自杀就说明鱼有自我意识,能够自己选择死亡。但科学上表明自然界(这里并不指整个宇宙)中除人类外,其他动物都只有直接意识,而没有自我意识。难道科学不客观?其实并非这样,只不过是媒体的故意渲染而已。鱼只是因为环境的改变而做出本能的反应,这样的本能就是直接意识,鱼并没有思考这样做会不会导致死亡,只是出于本能。那么人与其他动物相比,不同之处就在于人有理性。
比如一只老虎饿了,看到食物就会扑上去吃。但是人饿了却不会看到食物就扑上去,而要想想这能不能吃。这就是与其他动物的不同之处。也就是说“理性”是“人”的一个属差。
2.人具有社会性:人处在社会之中,与其他个体之间进行沟通,交流信息。进行物质的分享、分割和交换。社会是互动的,不可能是个别的个体所支撑。也就说明我们身处社会,只有聚集起来才能共同完成分享、分割和交换。有人说自己很孤独,其实这并不是真正的孤独,也不可能存在真正的孤独。因为人不可能摆脱社会性而存在。可能有人会对刚才我说的“不会有真正的孤独”有意见,他们会说:“既然没有孤独,那么创造这个词不就没意义吗?”孤独只不过是人们的感受,感受并不能反应事物的真实规律。所以我在之前也说过,我们必须放弃一些错误的思想。这样才不会被感觉和表面现象所蒙蔽。
在人类社会这个庞大的群体性活动中,无论是什么简单的活动,都不可避免要与其他个体进行信息传达。这样人类才能发展和繁衍下去。这样说来,动物也应当存在社会性。这显然是肯定的。一些动物也是具有这样的性质的,例如:蚂蚁,蜜蜂等。可见“社会性”也是“人”的一个属差。
3.人具有自然性:人类是自然界中的一员,就不可能不具有自然性。人类的组织结构、生理结构和自然界交往过程所产生的一些基本特征都表现出人的自然性。人类不可能脱离自然性而独立存在。而其他生物也一样具有这样的性质。所以“自然性”也是“人”的一个属差。
四、结束语
我们作为人类,有必要去了解自己,这样才能更加地进步。通过集合论的思想来分析人性,是本文的亮点。除了三个性质外,还存在着其他的性质。在这里由于自己的智慧有限,没有给出更多的性质,但是本文重点是在于提供一个可行的分析 方法 。通过数学的逻辑,会使得分析变得更加严谨和系统化。这是本文做出的大胆尝试。
参考文献:
[1]亚里士多德.亚里士多德全集(第一卷)[M].苗力田,译.北京:中国人民大学出版社,1990.
康托尔的集合论论文篇2:《集合论与第三次数学危机》
数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的 教育 价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。
一、集合论的诞生
一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(G.Gsntor,1845-1918)在给戴德金(Julius Wilhelm Richard Dedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇 文章 标志着集合论的诞生。
二、集合论成为现代数学大厦的基础
康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。
集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(Jules Henri Poincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊!
三、罗素(Bertrand Russell,1872-1970)悖论导致第三次数学危机
1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。
罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。
罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。
四、消除悖论,化解危机
罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。
在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,Ernst Friedrich Ferdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。
解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔(A.A.Fraenkel)和斯科伦(T.Skolem)的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。
五、危机的启示
从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。
矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。”
参考文献:
1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社
2.胡作玄,《第三次数学危机》
康托尔的集合论论文篇3:《模糊集合论视角下的隐喻》
【摘 要】本文从模糊集合论的角度出发,研究隐喻解读过程中的逻辑真值问题,揭示出隐喻的模糊性是固有的,客观的,对人类认识世界以及进行文学创作具有重要作用。
【关键词】模糊集合论;隐喻;文学创作
模糊性是自然语言的本质特征之一,客观事物自身范畴的模糊性、人类认知的局限性以及不同的话语语境均会导致模糊语言的形成。模糊集合论从诞生伊始,便开始了与诸多学科的交叉研究,与语言学的结合使得我们在语义研究方面有了新的视角。隐喻作为一种特殊的语义现象,其解读过程显现出模糊语言的特点。隐喻的模糊性反映出人类的潜逻辑规律,是客观的,隐性的,它不仅是人类心理范畴化的结果,也是人类模糊思维的产物,所以模糊集合论为我们研究解析隐喻开辟了新的窗口[1]。
1965年,美国控制论专家札德受语言模糊性的启发在《信息与控制》杂志上发表了论文《模糊集合》,最早提出了“模糊集合论”的概念。传统的集合论强调,任何一个集合的成员要么属于它(隶属度为1),要么不属于它(隶属度为0),只有两种真值情况[2]。但是如果对自然界中的诸多对象进行分类,我们经常会找不到能够精确判定其身份的依据。所以, 札德在论文《模糊集合》中对模糊集的定义为: 设X是由点构成的一个区间, 区间内的类属性元素用x表示, 即X ={x}。在区间X中,模糊集A由具有构成该集合元素属性的隶属函数fA(x)表示。该函数与区间[ 0, 1 ]内的任一实数相关联,此对应值表示x所具有的构成A的资格程度。如果区间内设置两个临界点, 即0 <β <α < 1, 那么我们就会获得一种三值逻辑: 如果fA(x) ≥α, 则x属于A;如果fA(x) ≤β, 则x不属于A; 如果隶属函数fA(x) 所表示的值位于α和β之间,则x具有一种相对于A的中间状态。模糊集合论之所以适用于语言研究,是因为语言范畴实际上就是某一个论域中的模糊集合。某一范畴中所有成员共有的典型属性构成此范畴的核心部分,它相当于集合的定义,这部分是明确的,清晰的;相比较而言,范畴的边缘却是模糊的,很难对其进行明确地界定,此部分相当于集合的外延,也就是构成该集合的所有元素。传统集合论实际上是二值逻辑,一个命题,即一个表达明确意义的陈述句,其真值只能是真(记作“1”),或者是假(记作“0”),没有第三种可能性。例如“汤姆是名学生”这个命题,只允许取值“1”或“0”。但是,如果我们将这个 句子 中的“学生”加个修饰词,变成“好学生”,问题就出现了。因为“好”是个模糊概念,其内涵容易辨认,外延却不明确。对于这样的命题,如果用传统的集合论就很难判断其真值。基于二值逻辑的缺陷,札德提出了“隶属度”的概念。即对于像“好”、“坏”这样的模糊概念的集合,规定其成员对该集合的隶属程度,可以取闭区间[0,1]内的任何实数值。模糊逻辑本质上是一种多值逻辑,这使得模糊集合论在研究隐喻时具有特别重要的价值。
模糊集合论为隐喻真值的合法性提供了依据。隐喻的理解有赖于对两组不同范畴的特征的识别,如果我们要把“A is B”视为隐喻,而非字面意思,那我们就需要确定A和B的所指。句法,语义以及语境都可以帮助我们确定其含义,但是最终还是意义的解读决定对相似属性和不同属性筛选的结果 [3]。要想理解隐喻所指双方语义属性的比较过程,我们可以求助于模糊集合论的概念。通过模糊不同集合的界限,隐喻所指某一集合的属性可以部分的与其他集合的属性相结合,进而克服精确定义所带来的阻碍。从语言的表层结构来看, 隐喻的本体集合与喻体集合是不相容的。如果我们运用模糊逻辑的开放性原理, 就可以对这两个不同集合中的属性进行对比区分, 找到相互类似的属性以及不具有可比性的属性。
以莎士比亚名句“Juliet is the sun.”(朱丽叶是太阳)为例: “太阳”是无生命语义标记的子集, “朱丽叶”是有生命语义标记的子集。由于这个隐喻指出了太阳对于人类的重要性与朱丽叶对于罗密欧的重要性之间的相似性,相关元素属性的隶属函数是一个小于1的值,使得此隐喻带有较强的启示力和暗示性。一般来讲,根据逻辑真值,可以把隐喻分为epiphor(表征性隐喻)与diaphor(暗示性隐喻)。威尔赖特( P. Wheelwright)在1962年出版的《隐喻和现实》(Metaphor and reality)中指出epiphor 的基本功能在于表达(express), 而diaphor的主要作用是暗示(suggest) [4]。隐喻所指的并置会引起语义集合的矛盾,所以有些学者把隐喻视为不合语法逻辑的实体。但是如果我们通过模糊集合论中三值逻辑来解读隐喻,我们就可以证明它的用法是正当的,合法的。根据扎德的标准, 0 <β <α < 1, 一种三值逻辑的可能性是成立的。如果我们再加入一个中间值γ,区间将变为0 <β <γ<α < 1, 这样三值逻辑就可以扩充为四值逻辑, 其真值分别为: Truth( fA (x) ≥α) 、Falsity( fA (x) ≤β) 、Diaphor (β < fA (x) <γ) 以及Epiphor (γ≤fA (x) <α) 。如果α的值趋近于1而β的值趋近于0, 并且中间区间的集合不包含任何 其它 元素, 那么这就是一个传统的二值逻辑。如果隶属函数值介于β到γ的区间,就会产生暗示性隐喻;如果隶属函数值介于γ到α的区间,就会产生表征性隐喻。隶属函数会发生变化,因为很多隐喻由于不断的重复使用,固定了所指之间的关系,暗示性隐喻也就会变成表征性隐喻,如果太过普遍,则会变成死隐喻。由此可见,模糊集合论很好的解释了隐喻解读过程中本体集合与喻体集合的冲突,使得双方在合理的范围内找到交集,而这个交集内的元素属性很可能不是唯一的,这就造成了隐喻解读的多样性与模糊性[5]。
隐喻的本质是模糊了本体集合和喻体集合之间的界限,从而来寻找两个集合的契合点。由于模糊集合论设定了三个区间边界α、β和γ, 并且0 <β <γ <α < 1,这种四值逻辑不仅有助于消除隐喻所指不同集合之间所存在的矛盾,而且揭示出隐喻的模糊性实际是固有的,客观存在的。隐喻的模糊性主要是指其解读对语境的依赖性。无论从隐喻的编码,还是解码过程来看,不同的人,不同的时期,不同的场合,同一隐喻可以被赋予不同的含义。正是隐喻的这种模糊性开启了人类的想象空间,文学作品中好的隐喻总是余音绕梁,让人回味无穷。我们的生活离不开隐喻,而在隐喻所创造的模糊世界里,我们非但没有因为模糊而影响生活,反而借用隐喻的模糊性我们能够更好地认识世界,改造世界。
【参考文献】
[1]Earl R. MacCORMAC, METAPHORS AND FUZZY SET[J].Fuzzy sets and systems. 1982(7).
[2]L.A.Zadeh.Fuzzy Set. Information and Control.1965(8).
[3]安军.隐喻的逻辑特征[J].哲学研究,2007(2).
[4]苏联波.隐喻的模糊化认知机制研究[J].成都大学学报(社科版),2011(5).
[5]束定芳.论隐喻的基本类型及句法和语义特征[J].外国语,2000(1).
猜你喜欢:
1. 高中数学论文题目大全
2. 关于数学文化的论文范文
3. 数学与哲学的论文
4. 人工智能逻辑推理论文
5. 数学学术论文范文大全
6. 数学论文离散数学
什么是集合论?
伟大的集合论康托尔与集合论
集合论 世纪末 德国 伟大的
康托尔是19世纪末20世纪初德国伟大的数学家,集合论的创立者。是数学史上最富有想象力,最有争议的人物之一。19世纪末他所从事的关于连续性和无穷的研究从根本上背离了数学中关于无穷的使用和解释的传统,从而引起了激烈的争论乃至严厉的谴责。然而数学的发展最终证明康托是正确的。他所创立的集合论被誉为20世纪最伟大的数学创造,集合概念大大扩充了数学的研究领域,给数学结构提供了一个基础,集合论不仅影响了现代数学,而且也深深影响了现代哲学和逻辑。
1(康托尔的生平
1845年3月3日,乔治?康托生于俄国的一个丹麦—犹太血统的家庭。1856年康托和他的父母一起迁到德国的法兰克福。像许多优秀的数学家一样,他在中学阶段就表现出一种对数学的特殊敏感,并不时得出令人惊奇的结论。他的父亲力促他学工,因而康托在1863年带着这个目地进入了柏林大学。这时柏林大学正在形成一个数学教学与研究的中心。康托很早就向往这所由外尔斯托拉斯占据着的世界数学中心之一。所以在柏林大学,康托受了外尔斯特拉斯的影响而转到纯粹的数学。他在1869年取得在哈勒大学任教的资格,不久后就升为副教授,并在1879年被升为正教授。1874年康托在克列
1/11页
勒的《数学杂志》上发表了关于无穷集合理论的第一篇革命性文章。数学史上一般认为这篇文章的发表标志着集合论的诞生。这篇文章的创造性引起人们的注意。在以后的研究中,集合论和超限数成为康托研究的主流,他一直在这方面发表论文直到1897年,过度的思维劳累以及强列的外界刺激曾使康托患了精神分裂症。这一难以消除的病根在他后来30多年间一直断断续续影响着他的生活。
集合论创始人康托尔简介
格奥尔格·康托尔(Cantor,GeorgFerdinandLudwigPhilipp,1845.3.3-1918.1.6)德国 数学 家,集合论的创始人。下面是我为大家整理的集合论创始人康托尔简介,希望大家喜欢!
康托尔生平简介
康托尔是世界上著名的数学家,他出生于1845年,在1918去世。他是集合论和超穷数理论的创始人,他的成就改变了世界上人们对于数学研究的趋势,解决了长期以来数学家都难以解决的问题。下面来看康托尔简介:
康托尔是德国数学家,但是他的出生地并不在德国,因为他生于在俄国列宁格勒,也就是现在俄罗斯的圣彼得堡。他是犹太人,他的父亲是一名除恶色的犹太血统的丹麦商人,而母亲也出身高贵,她出身于艺术世家。
康托尔学习成绩优异,所以才会进入著名的德国柏林大学攻读数学和神学。他的导师是库默尔、维尔斯特拉斯和克罗内克,这几个人都是当时非常著名的人物,在学术上有很高的成就。
从康托尔简介中了解,康托尔在早期数学方面的 兴趣 并不是他最大的成就,而是数论。后来康托尔受到了魏尔斯特拉斯的直接影响,所以他的研究方向开始转变,从数论转向严格的分析理论的研究,由于他才能出众, 思维方式 独特,所以不久就崭露头角。
在后来的研究中康托尔更进一步,将自己的研究进行总结,最终形成了自己的数学理论。这是当时最伟大的数学成就,因为他总结出了集合论和超穷数理论,这在当时的数学界和神学界引起了极为巨大的反响。
但是康托尔的数学理论当时受到了人们的反对和打击,这一度导致他精神失常,虽然后来经过治疗好转,但是一直被病魔缠身,最终病逝。
康托尔的成就
康托尔是德国著名的数学家,他对数学的贡献是无以伦比的,康托尔的成就是集合论和超穷数理论。这两项理论成为当时世界上最为重要的数学理论,为当时的很多数学家提供了指导,促进了整个数学的发展。
康托尔的成就之一就是集合论,康托尔在寻找 函数 展开为三角级数表示的唯一性判别准则的研究中发现了不一样,经过他长期的研究终于认识到无穷集合的重要性,于是他就开始了对无穷集合的理论研究。
康托尔为了将有穷集合的元素个数概念推广到无穷集合,他开始使用一一对应的原则,最终提出了超前的集合等价概念。这是他集合论的原始版本,后来经过他多年的潜心研究,再加上新的理论丰富,他形成了自己的集合论。
康托尔的成就另一项就是超穷数理论。这是一个复杂的概念,他有几条原则,一共是三条生成原则,而反复应用三个原则,得到超穷数的序列,最终就能推导出超穷数理论。这两项就是康托尔的数学成就,但是因为他的这两项成就过于前卫,于是得到了当时数学家的一致反对。
康托尔的这两项理论在当时的数学界和神学界都产生了极大的震撼,人们不愿意相信他的研究,再加上他的研究有一定的漏洞,所以她一直被攻击,甚至患上了 精神病 。但是现在看来他的研究极为了不起,他是改变数学界的举人。
康托尔悖论
康托尔是世界著名数学家,二十世纪出的数学革命几乎就是由他一个人来完成的。科学研究的进行总是会遇到阻挠,康托尔悖论的提出是对世界数学界产生的巨大贡献,但是这个理论在当时也是遇到了人们的极大阻碍。
康托尔的理论主要有两点,其一是集合论,其二是超穷数理论;这两点在当今的数学界也是赫赫有名。康托尔的研究中,一一对应的方法研究造成了无穷中的悖论,这就是康托尔悖论,因为这与传统观念格格不入,所以在一开始提出的时候就遭到了严重的敌对,甚至有人认为康托尔是个疯子。
到现在我们看到的康托尔悖论是正确的,是对数学的贡献,但是在他当时提出的时候遇到的阻碍难以想象。对他理论的打击最大的就是他曾经的老师克朗涅克尔,这个人曾经是康托尔的老师,但是学生的研究超越了他,所以他就对康托尔进行无情的打击,这是出于嫉恨。
同时克朗涅克尔还竭力阻挠康托尔的提升,他已经是一位很有地位的教授,于是他为了阻止康托尔的发展,剥夺了他在柏林大学获得一个职位的机会。
康托尔悖论形成以后,康托尔就陷入了长期的争论漩涡之中,由于长期的劳累和和激烈的争吵论战,让康托尔不堪重负,于是他在1884年的时候精神崩溃。后来经过治疗好转,在几年后他的理论得到了很多人的支持,从此康托尔理论得到了发扬光大。
猜你喜欢:
1. 爱因斯坦的智商是多少
2. 最新世界三大数学家个人简介
3. 数学家励志名言名句
4. 关于著名数学家的故事有哪些
5. 数学史最伟大数学家都有谁
集合论的创始人介绍
康托尔〈George Cantor ,1854.3.3—1918.1.6,俄国〉是生於蘇俄的丹麦—犹太籍後裔,後来随父母移居德国。他父亲希望他学工程,於是他怀著这个志愿进入柏林大学〉。在那里受了威尔斯特拉斯的影响,转攻纯数学。29岁时,第一次发表革命性的无限集合理论,虽然有些命题被一些年长的数学家认为有误,他全新的创意与才华吸引了大家的注意。此後,一直到1897年,他连续发表了许多有关於集合论与超限数的研究报告
爱因斯坦
阿尔伯特·爱因斯坦 (Albert Einstein,1879年3月14日-1955年4月18日),举世闻名的德裔美国科学家,现代物理学的开创者和奠基人。
爱因斯坦1900年毕业于苏黎世工业大学,并入瑞士籍。1905年获苏黎世大学哲学博士学位。曾在伯尔尼专利局任职。苏黎世工业大学、布拉格德意志大学教授。1913年返德国,任柏林威廉皇帝物理研究所长和柏林大学教授,并当选为普鲁士科学院院士。1933年因受纳粹政权迫害,迁居美国,任普林斯顿高级研究所教授,从事理论物理研究,1940年入美国国籍。
十九世纪末期是物理学的变革时期,爱因斯坦从实验事实出发,重新考查了物理学的基本概念,在理论上作出了根本性的突破。他的一些成就大大推动了天文学的发展。他的量子理论对天体物理学、特别是理论天体物理学都有很大的影响。理论天体物理学的第一个成熟的方面——恒星大气理论,就是在量子理论和辐射理论的基础上建立起来的。爱因斯坦的狭义相对论成功地揭示了能量与质量之韦尔奇为人情恶间的关系,解决了长期存在的恒星能源来源的难题。近年来发现越来越多的高能物理现象,狭义相对论已成为解释这种现象的一种最基本的理论工具。其广义相对论也解决了一个天文学上多年的不解之谜,并推断出后来被验证了的光线弯曲现象,还成为后来许多天文概念的理论基础。
爱因斯坦对天文学最大的贡献莫过于他的宇宙学理论。他创立了相对论宇宙学,建立了静态有限无边的自洽的动力学宇宙模型,并引进了宇宙学原理、弯曲空间等新概念,大大推动了现代天文学的发展。
集合论的创始人是格奥尔格·康托尔,格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人。生于俄国圣彼得堡。父亲是犹太血统的丹麦商人,母亲出身艺术世家。
1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。
康托尔,1862年入苏黎世大学学工,翌年转入柏林大学攻读数学和神学,受教于库默尔、维尔斯特拉斯和克罗内克。1866年曾去格丁根学习一学期。1867年在库默尔指导下以解决一般整系数不定方程ax2+by2+cz2=0求解问题的论文获博士学位。
扩展资料:
格奥尔格·康托尔德国数学家,集合论的创始人。生于俄国列宁格勒(今俄罗斯圣彼得堡)。父亲是犹太血统的丹麦商人,母亲出身艺术世家。1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。
1867年在库默尔指导下以解决一般整系数不定方程ax2+by2+cz2=0求解问题的论文获博士学位。毕业后受魏尔斯特拉斯的直接影响,由数论转向严格的分析理论的研究,不久崭露头角。
他在哈雷大学任教(1869-1913)的初期证明了复合变量函数三角级数展开的唯一性,继而用有理数列极限定义无理数。1872年成为该校副教授,1879年任教授。
由于学术观点上受到的沉重打击,康托尔曾一度患精神分裂症,虽在1887年恢复了健康,继续工作,但晚年一直病魔缠身。1918年1月6日在德国哈雷(Halle)-维滕贝格大学附属精神病院去世。
康托尔爱好广泛,极有个性,终身信奉宗教。早期在数学方面的兴趣是数论,1870年开始研究三角级数并由此导致19世纪末、20世纪初最伟大的数学成就--集合论和超穷数理论的建立。
除此之外,他还努力探讨在新理论创立过程中所涉及的数理哲学问题.1888-1893年康托尔任柏林数学会第一任会长,1890年领导创立德国数学家联合会并任首届主席。
参考资料来源:百度百科-康托尔
谁被称为集合论之父?
康托尔是德国数学家,数学集合论的创始者,1845年3月3日生于圣彼得堡,11岁时移居德国。他很小的时候就表现出了极高的科学天赋,并且选择了数学作为自己的专业。1867年获得了柏林大学的哲学博士学位,1869年通过了哈雷大学讲师资格考试,成为该校的讲师,1879年升任教授。
随着科学的进步,数学理论的研究逐渐转向其本身,例如:“整数究竟有多少”、“一个圆周上有多少个点”、“0—1之间的数比一寸长线段上的点还多吗?”当我们在无法回答这些涉及无穷量数学难题的时候,集合论也就应运而生了。
康托尔提出了集合的概念,并提出了一一对应的方法,由此而造成了对无穷中的悖论的研究。
“悖论”是在科学研究中推出的一些合乎逻辑的但又荒谬的结果,所以与当时的许多传统观点格格不入,因此许多数学家都采取敬而远之的态度。在康托尔研究的刚开始人们都说他的理论是“雾中之雾”,难以明晓。他的老师还攻击他说“康托尔走进了超穷数的地狱”,年轻的康托尔在这种条件下顶着重压向神秘的无穷宣战了。
靠着天才的智慧和辛勤的汗水,康托尔证明了一条直线上的点能够和一个平面上以及空间中的点一一对应。依此理解1米长的线段内的点与印度洋面上的点是“相等的”。他抓住这个结论不放,展开深入的研究并得出了许多惊人的结论。
1884年,康托尔发表了题为《关于无穷线性点集》6篇论文,对他前期的研究作了一个总结。论文发表之后,并不像他事前想象的那样会引起数学界的轰动,相反的是遭到了很多人的反对,甚至攻击和谩骂。刚开始他并没有放在心上,可是这种攻击越来越严重,他的集合理论被说成像“雾”一样见不得阳光,德国数学家克罗内克是一个天生的怀疑者,他对康托尔的攻击长达10年之久,是言词最为激烈的一个。迫于数学界的攻击与压力,康托尔被冠以“疯子”的称号。这种精神压力日积月累使他心力交瘁,最终患了精神分裂症,被送进精神病医院,从此他再也没有出来,直到逝世。
真理总是能经得住时间的考验的。随着数学研究的发展,许多数学家发现康托尔的理论具有很强的科学性。1897年,他的理论在第一次国际数学家会议上得到了公认。遗憾的是康托尔仍然神志恍惚,无法从人们的崇敬中得到安慰和喜悦。1918年,康托尔在哈勒大学附属精神病院去世。
康托尔的去世为数学的发展带来了很大的损失,他之所以发疯也有着很深的个人原因和社会原因。他天性敏感容易激动,把别人的批评看得过重。因而对于反对意见难以从学术角度去应付,当面对攻击与指责时,他找不到解决问题的出路转而求助于神学观点和柏拉图信仰主义,这样的结局是他个人的悲剧也是社会的悲剧,同时也是科学研究本身的难题所致。
集合论的创立者是谁?
集合论的创立者格奥尔格·康托尔,1845年3月3日出生于俄国彼得堡(现为苏联列宁格勒)一个商人家庭。他在中学时期就对数学感兴趣。1862年,他到苏黎世上大学,1863年转入柏林大学。当时柏林大学正在形成一个数学与研究的中心。他在1867年的博士论文中已经反映出“离经叛道”的观点,他认为在数学中提问的艺术比起解法更为重要。的确,他的成绩并不总是在于解决问题,他对数数的独特贡献在于他以特殊提问的方式开辟了广阔的研究领域。他所提出的问题一部分被他自己解决,一部分被他的后继者解决,一些没有解决的问题则始终支配着某一个方向的发展,例如著名的连续统假设。
1869年康托尔取得在哈勒大学任教的资格,不仅就升为副教授,并在1879年升为教授。他一直到去世都在哈勒大学工作。他曾希望去柏林找一个薪金较高、声望更大的教授职位,但是在柏林,那位很有势力而且又专横跋扈的克洛耐克(L稫ronecker,1823—1891年)对于他的集合论,特别是他的“超穷数”的观点持根本否定的态度。因此,处处跟他为难,堵塞了他所有的道路。由于用脑过度和精神紧张,从1884年起,他不时犯深度精神抑郁症,常常住在疗养院里。1918年1月6日他在哈勒大学附近精神病院中去世。
集合论的诞生可以说是在1873年年底。1873年11月,他在和戴德金的通信中提出了一个问题,这个问题使他从以前关于数学分析的研究转到了一个新方向。他认为,有理数的集合是可以“数”的,也就是可以和自然数的集合一对一的对应。但是,他不知道,对于实数集合这种一对一的对应是否能办到。他相信不能有一对一的对应,但是他“讲不出什么理由”。不久之后,他承认“没有认真地考虑这个问题,因为它似乎没有什么价值”。接着他又补充一句,“要是你认为它因此不值得再花费力气,那我就会完全赞同。”可是,康托尔又考虑起集合的映射问题来。很快,他在1873年12月7日又写信给戴德金,说他已能成功地证明实数的“集体”是不可数的了。这一天可以看成是集合论的诞生日。戴德金祝贺康托尔取得成功。
集合论的发展道路是很不平坦的。康托尔的集合论是数学上最具有革命性的理论。
集合论是谁提出的?
随着1883年康托Cantor集合论的建立,整个数学就建立在集合论的基础上了,在十九世纪下半叶,随着集合论悖论的产生,(罗素(Russell)悖论:设={x:x,则若A若})整个数学基础又发生了危机,从而引起了一场声势浩大的“公理化”运动
19世纪末的德国数学家康托最早提出的集合论
德国数学家:格奥尔格·康托尔
格奥尔格·康托尔(Cantor,Georg Ferdinand Ludwig Philipp,1845.3.3-1918.1.6)德国数学家,集合论的创始人。生于俄国列宁格勒(今俄罗斯圣彼得堡)。父亲是犹太血统的丹麦商人,母亲出身艺术世家。1856年全家迁居德国的法兰克福。先在一所中学,后在威斯巴登的一所大学预科学校学习。
集合论:数学的一个基本的分支学科,研究对象是一般集合。集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含了集合、元素和成员关系等最基本的数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。
集合论是什么意思
集合论
set theory
以一般集合为研究对象的一个数学分支。由于数学的大多数分支所研究的对象或者可以看成某种特定结构的集合 ,或者可以通过集合来定义,因此集合论的基本概念已渗透到数学的几乎一切领域,从而可以说集合论已是整个现代数学的基础。
集合论是在19 世纪末由德国数学家 G. 康托尔创立的 。它的发展可分为两个阶段 :1908 年以前称为朴素集合论 ;1908 年以后称为公理集合论。康托尔于 1874 年超越数集的局限 ,首先建立起一般性的集合概念 。康托尔的重大成就在于对无穷集的研究,为了刻画无穷集所含元素的数量,康托尔引进集合的基数(势)的概念,元素间能建立一一对应的集合称为等基数(等势)集,于是基数便是可以建立一一对应的集合类的抽象,反映这类集合的共同的数量特征。有限集的基数就是通常意义下的“个数”即自然数,无限集的基数是“个数”概念的推广,康托尔证明了有理数集是可数集(即能与自然数集建立一一对应)之后,又意外地发现实数集是不可数集,并给出了证明,这个事实说明实数集和有理数集的基数是不同的,从而揭示了无穷集之间在元数数量上存在着层次的差别,把有限集大小的概念推广到无穷集 ,还可以比较任意两个基数的大小,康托尔证明了任一集合 A的基数小于它的幂集P(A)的基数,即<,对于自然数集N,就有。再做P(N)的幂集,就有<<,不断做下去,就得到一个基数序列 ,这就是说在所有无穷集之间还存在着无穷多个层次。除此以外,为了描绘任一良序集的结构,康托尔还建立了序数概念,将用来编序的自然数(第一、第二、第三、…)加以推广 ,利用序数可以把良序集编号,进而把数学归纳法推广到自然数以外去。康托尔对无穷集的研究成果对数学的发展产生了深远的影响。
在 1900 年前后 ,由于集合论本身的不够协调而相继地产生了一些悖论 ,使集合论受到非难 。按照集合论的观点,一切集合构成一个集合V,集合 V 的基数不应小于任何其他集合的基数,但是根据康托尔定理,却必须小于幂集 P(V )的基数,这就自相矛盾( 康托尔悖论,1899年 )。又如,把所有不属于自身( 即不包含自身作为元素)的集合组成一个集合R,问R是否属于R?如果说R 属于R,那么R满足R 的定义,R不属于自身,即R不属于R;如果说R不属于R,那么 R 不满足定义,即R应属于自身,那么R 属于 R。无论怎么说,都自相矛盾(罗素悖论,1903年)。在各种悖论中的罗素悖论最为简明,只涉及属于、不属于两个概念,引起了数学界的震惊。悖论的出现使人们对集合论产生了怀疑,甚至对整个数学推理的正确性也产生了疑问,这就动摇了数学的基础,触发了数学史上的第三次危机。经过数学家们潜心研究,认识到悖论产生的原因在于康托尔原来的集合定义是不严格的 ,按照原来的定义,不能否认“所有集合组成的集合”也是一个集合,也不能排除满足条件“不包含自己作为元素的集合”的事物构成一个集合,可见,为了避免悖论,必须对集合的定义加以严格的限制。
康托尔集合论中的集合,作为一个原始概念,很难对它的定义给出适当的限制使得避免悖论而又保留集合论中一切有价值的东西。数学家们经过一番努力之后,终于放弃直接提出集合的定义 ,而选择了公理化方法 ,重新整理集合论。1908 年E.F.F.策梅洛提出了一个公理化的方案,其公理系统以集合和属于为仅有的两个不加定义的原始概念,其余有外延公理、空集存在公理、无序对集合存在公理、并集公理、幂集公理、无穷公理、分离公理、选择公理等 。后来经过A.A.弗伦克尔和 A. T.斯科朗的改进,又补充了替换公理和正则公理 ,通称 ZF 公理系统,ZF 公理系统集合论,对于排除康托尔朴素集合论的悖论和继承原有成果是相当成功的 。除ZF 公理系统外,还有多种其他系统,如1925 ~1937 年形成的 J.冯 ·诺伊曼、P.贝尔奈斯、K. 哥德尔的公理系统,称为 NBG 公理系统。无论哪种公理系统,都使朴素集合论得到严格处理,避免悖论,保留一切有价值的东西,使集合论进入一个更新的发展阶段。
集合论的意义
集合论的意义介绍如下:
集合论作为数学中最富创造性的伟大成果之一,是在19世纪末由德国的康托尔(1845-1918)创立起来的。但是,它萌发、孕育的历史却源远流长,至少可以追溯到两千多年前。
按现代数学观点,数学各分支的研究对象或者本身是带有某种特定结构的集合如群、环、拓扑空间,或者是可以通过集合来定义的(如自然数、实数、函数)。从这个意义上说,集合论可以说是整个现代数学的基础。
拓展介绍:
集合论,是数学的一个基本的分支学科,研究对象是一般集合。集合论在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含了集合、元素和成员关系等最基本的数学概念。
在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。
在朴素集合论中,集合被当做一堆物件构成的整体之类的自证概念。
在公理化集合论中,集合和集合成员并不直接被定义,而是先规范可以描述其性质的一些公理。在此一想法之下,集合和集合成员是有如在欧式几何中的点和线,而不被直接定义。