×

实数和虚数,实数和虚数的区别是什么

admin admin 发表于2023-12-09 12:53:23 浏览40 评论0

抢沙发发表评论

本文目录一览:

什么是实数,什么是虚数???


1、实数(real number)是有理数和无理数的总称。
实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
2、虚数
虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。
扩展资料:1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。通常,我们用符号C来表示复数集,用符号R来表示实数集。
参考资料来源:百度百科-虚数
参考资料来源:百度百科-实数

实数虚数的概念

实数和虚数是数学中很基础的概念,我们生活中常用的数据都可视为实数,而虚数则涉及到更为抽象的数学概念,在纯数学和一些应用数学中有很重要的作用。
一、实数的定义
作为人们生活中最基本的数学概念之一,实数从数轴上的任何点都可以表示出来,因此也被称为数轴上的点。具体来说,实数包括正整数、负整数、0,以及所有的分数和无理数。在实数的基础上,我们可以定义实数的加、减、乘、除等运算,这些运算满足许多重要的性质。
二、虚数的定义
虚数是指一些非实数,如果一个数的平方是负数,则被定义为虚数。比如,i(虚数单位)就是一个虚数,因为i的平方为-1。虚数与实数不同,它们不能使用数轴表示,但是我们可以使用虚数单位i来定义虚数。虚数有实部和虚部两个数,通常写成a+bi的形式。
三、虚数的性质
虚数的一个重要性质是它们不能比较大小,即不能像实数一样进行大小比较。虚数在代数上和图形上有很多重要的用途,虚数可以使用欧拉公式进行表示,这个公式把虚数看作是一个复数的实部和虚部构成的二元组。虚数在物理学和电路分析等应用中得到了广泛应用,它们常常用于描述旋转或振动的物理量,并且可以很方便地把复杂的问题转化为复数平面上的问题。

实数虚数是什么

  实数:包括有理数和无理数,其中无理数就是无限不循环小数,有理数包括整数和分数。1871年,德国数学家康托尔第一次提出了实数的严格定义。实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。

  虚数:即平方为负数的数,虚数没有正负可言,所有的虚数都是复数。虚数这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字,后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。现虚数成为微晶片和数字压缩算法设计中的核心工具,虚数是引发电子学革命的量子力学的理论基础。

实数和虚数的区别是什么?

实数,就是:整数、小数,以及“带小数”的统称。
实数包括了:
  整数(正整数、负整数、零);
  小数(正的、负的、有限的、无限的、循环的、不循环的)。
  带小数(含有整数部分和小数部分)
这些,都是小学学过的知识吧?
实数,简单来说,就是:“数轴上所有的点”上的数字。
--------------------------
虚数,是“实数与虚单位 i 的乘积”。
  其中 i * i =-1。
  由于 i 的存在,虚数就是“i 轴上所有的点”的数字。
--------------------------
复数,包括实部和虚部两个部分。
  一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。
  复数就是:“复平面上所有点”上的数字。
一、性质不同
1、实数:实数是有理数和无理数的总称。
2、虚数:虚数就是指数幂是负数的数。
二、包括内容不同
1、实数:实数可以分为有理数和无理数两类,或代数数和超越数两类,实数集通常用黑正体字母 R 表示,实数是不可数的。
2、虚数:i,2i ,-2i ,3.14i等,总之非零实属a,ai就是虚数。
特点:
1、实数和虚数共同构成复数,实数集R对加、减、乘、除(除数不为零)四则运算具有封闭性。
2、因为实数、虚数都是复数,虚数也可以理解为虚部“b”不是0(带着“i”,并且“i”的系数不是0)的复数。
3、不是实数的复数,即使是纯虚数,也不能比较大小。

虚数和实数的关系是怎样的?

复数包括实数和虚数,纯虚数就是虚数;z=a+bi,z为复数,a为实数,bi为虚数,a=0时,z就是虚数;b=0时,z就是实数。
虚数和实数有着同等地位,二者合在一起成为复数。一个复数由实部和虚部组成,用z=a+bi表示,其中a,b是任意实数。如果一个复数只有虚数部分,则称这个复数是纯虚数。很多时候复数和虚数会互相混用,有很多资料把z=a+bi (a≠0)叫做虚数。如果较真一点,a+bi是复数,a是复数的实部,b是复数的虚部,i是虚数。
扩展资料:
实数中的交换律、结合律、分配律可以很自然地扩展到复数的加法和乘法上,于是一种符合情理的计算方式:(a+bi)+(c+di)=(a+c)+(b+d)i
(a+bi)(c+di)=ac+adi+bci+bdi2=(ac-bd)+(ad+bc)i
两个实部相等,虚部互为相反数的复数互为共轭复数。当虚部不为零时,它的共轭复数就是实部相等,虚部相反;如果虚部为零,其共轭复数就是自身。复数z的共轭复数用z上面加一横表示。

什么是实数?什么是虚数?

所谓实数,说白了,就是实实在在存在的数,和虚数相对应数。
那么什么是虚数呢?
举个简单例子:√-1在实数范围内是不存在的(负数的开二次方),但是为了满足某种需要,我们给i或j定义成√-1,这就是虚数的单位了,类似于实数范围内的“1”。
既然我们给出了√-1的表示方法,那么我们便能定义更多的数了,例如2+i、√i这些具有a+bi形式的数,我们可以看出,当b=0的时候,这些具有a+bi形式的数便是我们所说的实数了,所以实数被比它更广泛的“复数”所包含,【是现实生活中,能体现出来的实实在在的数,包括有理数和无理数】(其中无理数就是无限不循环小数,有理数就包括整数和分数)(虚数的引进是为了工程或者科学上的需要)。
实数是数学中最基本的数集之一,用来描述具体的数值。实数包括有理数和无理数两部分。
有理数是可以表示为两个整数的比例的数,例如正整数、负整数、分数、小数等。有理数可以用有限小数或循环小数的形式表示,例如1/2、-3/4、0.25等。
无理数是不能表示为有理数的比例的数,它们的十进制表示不会出现循环。无理数包括无限不循环小数,例如根号2、π、自然对数的底数e等。
虚数是指不能表示为实数的数。虚数以虚数单位i(i^2 = -1)为基础。虚数的一般形式为a+bi,其中a和b都是实数,a为实部,bi为虚部。虚数在复数中起着重要的作用,它们可用于描述一些在实数范围内无法表示的数学和物理现象,如电路中的交流电流等。虚数在实际计算中通常与实数相结合,形成复数。

什么是实数和虚数

大多数人最为熟悉的数有两种,即正数(+5,
+17.5)和负数(-5,-17.5)。负数是在中世
纪出现的,它用来处理3-5这类问题。从古代人看来,要
从三个苹果中减去五个苹果似乎是不可能的。但是,中世纪
的商人却已经清楚地认识到欠款的概念。“请你给我五个苹
果,可是我只有三个苹果的钱,这样我还欠你两个苹果的钱。”
这就等于说:(+3)-(+5)=(-2)。
正数及负数可以根据某些严格的规则彼此相乘。正数乘
正数,其乘积为正。正数乘负数,其乘积为负。最重要的是,
负数乘负数,其乘积为正。
因此,(+1)×(+1)=(+1);
(+1)×(-1)=(-1);
(-1)×(-1)=(+1)。
现在假定我们自问:什么数自乘将会得出+1?或者用
数学语言来说,+1的平方根是多少?
这一问题有两个答案。一个答案是+1,因为(+1)
×(+1)=(+1);另一个答案则是-1,因为(-1)
×(-1)=(+1)。数学家是用√ ̄(+1)=±1来
表示这一答案的。(碧声注:(+1)在根号下)
现在让我们进一步提出这样一个问题:-1的平方根是
多少?
对于这个问题,我们感到有点为难。答案不是+1,因
为+1的自乘是+1;答案也不是-1,因为-1的自乘同
样是+1。当然,(+1)×(-1)=(-1),但这是
两个不同的数的相乘,而不是一个数的自乘。
这样,我们可以创造出一个数,并给它一个专门的符号,
譬如说#1,而且给它以如下的定义:#1是自乘时会得出
-1的数,即(#1)×(#1)=(-1)。当这种想法
刚提出来时,数学家都把这种数称为“虚数”,这只是因为
这种数在他们所习惯的数系中并不存在。实际上,这种数一
点也不比普通的“实数”更为虚幻。这种所谓“虚数”具有
一些严格限定的属性,而且和一般实数一样,也很容易处理。
但是,正因为数学家感到这种数多少有点虚幻,所以给
这种数一个专门的符号“i”(imaginary)。我们可以把正
虚数写为(+i),把负虚数写为(-i),而把+1看作
是一个正实数,把(-1)看作是一个负实数。因此我们可
以说√ ̄(-1)=±i。
实数系统可以完全和虚数系统对应。正如有+5,
-17.32,+3/10等实数一样,我们也可以有
+5i,-17.32i,+3i/10等虚数。
我们甚至还可以在作图时把虚数系统画出来。
假如你用一条以0点作为中点的直线来表示一个正实数
系统,那么,位于0点某一侧的是正实数,位于0点另一侧
的就是负实数。
这样,当你通过0点再作一条与该直线直角相交的直线
时,你便可以沿第二条直线把虚数系统表示出来。第二条直
线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。
这样一来,同时使用这两种数系,就可以在这个平面上把所
有的数都表示出来。例如(+2)+(+3i)或
(+3)+(-2i)。这些数就是“复数”。
数学家和物理学家发现,把一个平面上的所有各点同数
字系统彼此联系起来是非常有用的。如果没有所谓虚数,他
们就无法做到这一点了 所以复数的平方根是虚数
实数包括有理数(能写成分数的数:如2/3, 2/1)和无理数(不能写成分数的数,无限不循环小数),有理数包括整数和最简分数。
-1开方就得到虚数i;
虚数的一般式为:c=a+bi,a和b是实数.
如果b=0,则c叫实数;
如果a=0,则c叫纯虚数。
在复空间坐标中,实数为x轴,虚数单位i为y轴单位,
实数包括有理数和无理数.其中无理数就是无限不循环小数,有理数包括无限循环小数、整数.
虚数应该也有很多种,但我只知道一种,如平方为负数的可称为虚数.
晕楼上的,虚数都可以写成分数,无理数不能?
总体来讲,所有分数和整数都可以写成小数.
实数在现实世界可以表示虚数是人们想像出为表示方便而用的
实数,是有理数和无理数的总称。实数可以分为有理数和无理数两类,或代数数和超越数两类。
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
扩展资料
像x+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数。
因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。
到了16世纪,意大利数学家卡尔达诺在其著作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。
参考资料来源:百度百科-实数
参考资料来源:百度百科-虚数 (数学用语)

实数和虚数的区别是什么

一、数学性质不同
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
二、表示方式不同
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。
在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
扩展资料:
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。即自然数集的幂集的势,由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。
实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。事实上这假设独立于ZFC集合论,在ZFC集合论内既不能证明它,也不能推出其否定。
所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
参考资料来源:百度百科-实数
参考资料来源:百度百科-虚数
一、数学性质不同
实数是有理数和无理数的总称。数学上,实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
二、表示方式不同
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。
在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
扩展资料实数的分类
一、按定义分:有理数、无理数。
1、有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。
2、无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。 常见的无理数有非完全平方数的平方根、π和e。
二、按正负分:正数、负数、0。
1、正数是数学术语,比0大的数叫正数(positive number),0本身不算正数。正数与负数表示意义相反的量。正数前面常有一个符号“+”,通常可以省略不写。
2、负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。负数用负号(Minus Sign,即相当于减号)“-”和一个正数标记,如?2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。一个负数是其绝对值的相反数。
3、0是介于-1和1之间的整数。是最小的自然数,也是有理数。0既不是正数也不是负数,而是正数和负数的分界点。0没有倒数,0的相反数是0,0的绝对值是0,0的所有倍数都是0。0不能作为除数。
参考资料来源:百度百科-实数
参考资料来源:百度百科-虚数
1、实数(real number)是有理数和无理数的总称。
实数定义为与数轴上的实数,点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系(real number system)或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
2、虚数
虚数是指实数以外的复数,其中实部为0的虚数称为纯虚数。
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。
扩展资料:1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。通常,我们用符号C来表示复数集,用符号R来表示实数集。
参考资料来源:百度百科-虚数
参考资料来源:百度百科-实数
实数和虚数的区别是什么
(1)虚数[unreliable figure]∶虚假不实的数字(2)[imaginary number]∶复数中a+bi,b不等于零时叫虚数(3)[暂无英文]:汉语中不表明具体数量的词在数学里,如果有某个数的平方是负数的话,那个数就是虚数了。所有的虚数和实数组成复数。这种数一个专门的符号“i”(imaginary)。我们可以把正虚数写为(+i),把负虚数写为(-i),而把+1看作是一个正实数,把(-1)看作是一个负实数。因此我们可以说√ ̄(-1)=±i。我们甚至还可以在作图时把虚数系统画出来。假如你用一条以0点作为中点的直线来表示一个正实数系统,那么,位于0点某一侧的是正实数,位于0点另一侧的就是负实数。这样,当你通过0点再作一条与该直线直角相交的直线时,你便可以沿第二条直线把虚数系统表示出来。第二条直线上0点的一侧的数是正虚数,0点另一侧的数是负虚数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。 注:虚数也有大小; 虚数没有一维正负,但有二维正负; 整数准确地应当划分为实整数和虚整数.
实数包括有理数(能写成分数的数:如2/3, 2/1)和无理数(不能写成分数的数,无限不循环小数),有理数包括整数和最简分数。
-1开方就得到虚数i;
虚数的一般式为:c=a+bi,a和b是实数.
如果b=0,则c叫实数;
如果a=0,则c叫纯虚数。
在复空间坐标中,实数为x轴,虚数单位i为y轴单位,
一、定义不同
1、实数
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。
在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
2、虚数
在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。
二、起源不同
1、实数
在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。1871年,德国数学家康托尔第一次提出了实数的严格定义。
2、虚数
虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x2+1=0这样最简单的二次方程,在实数范围内没有解。
12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。
三、基本运算不同
1、实数
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
2、虚数
一个数的ni次方为:
xni = cos(ln(xn)) + i sin(ln(xn)).
一个数的ni次方根为:
x1/ni= cos(ln(x1/n)) - i sin(ln((x1/n)).
以i为底的对数为:
log_i(x) = 2 ln(x)/ iπ.
i的余弦是一个实数:
cos(i) = cosh(1) = (e + 1/e)/2 = (e2 + 1) /2e = 1.54308064.
i的正弦是虚数:
sin(i) = sinh(1) i =[(e - 1/e)/ 2]i = 1.17520119 i.
i,e,π,0和1的奇妙关系:
eiπ+1=0
ii=e-π/2
参考资料来源:百度百科-实数
参考资料来源:百度百科-虚数

实数和虚数的区别是什么?

实数,就是:整数、小数,以及“带小数”的统称。
实数包括了:
  整数(正整数、负整数、零);
  小数(正的、负的、有限的、无限的、循环的、不循环的)。
  带小数(含有整数部分和小数部分)
这些,都是小学学过的知识吧?
实数,简单来说,就是:“数轴上所有的点”上的数字。
--------------------------
虚数,是“实数与虚单位 i 的乘积”。
  其中 i * i =-1。
  由于 i 的存在,虚数就是“i 轴上所有的点”的数字。
--------------------------
复数,包括实部和虚部两个部分。
  一般是以实轴为水平、i 轴为垂直,构成一个“复平面”。
  复数就是:“复平面上所有点”上的数字。
区别如下:
一、数学性质不同:
实数是有理数和无理数的总称,数学上,实数定义为与数轴上的实数,点相对应的数,实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应,但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
虚数就是形如a+bi的数,其中ab是实数,且b≠0i = - 1,虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字,后来发现虚数a+bi的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+bi可与平面内的点(ab)对应。
二、表示方式不同:
实数可以用来测量连续的量,理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的),在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数)。
在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i=-1,但是虚数是没有算术根这一说的,所以±√(-1)=±i,对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大),这一点,可以通过康托尔对角线方法证明,即自然数集的幂集的势,由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。
实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。事实上这假设独立于ZFC集合论,在ZFC集合论内既不能证明它,也不能推出其否定。
所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的,而且,所有奇数次多项式至少有一个根属于R,这两个性质使成为实封闭域的最主要的实例,证明这一点就是对代数基本定理的证明的前半部分。

虚数和实数是怎么定义的?

数分实数和虚数。
1、虚数表示为i^2=-1。
2、实数又分有理数和无理数。
(1)无理数为无限不循环小数,如√2,π。
无理数中还有一类数,叫超越数——无法用根号表示的数,如著名的常数π与e。
(2)有理数则是可以表现为分数的数。而有理数还分正和负。
扩展资料:
数字出版白的定义是:只要使用二进制技术意味着整个链接发布到智行操作刀,属于数字出版领域的风扇转,包括原创作品的数字化、编辑加工的数字化、印刷复制的数字化、分销和销售数字化和数字化阅读和消费。
涉及版权,也就是说,数字出版发行、支付平台,最后具体的服务模式,它不仅指的是直接编辑出版内容在互联网上,也不仅指传统的数码打印东西,或你的传统扫描在互联网上被称为数字出版,真正的数字出版是依靠传统的资源,与三维数字传输方式的工具。
从时间,中国数字出版的发展历史不长,但是作为一个新事物,但其发展速度令我们吃惊的是,工业发展的报道,我们每个人的工作和生活密切相关,如CD、VCD、DVD、数码、网络、MP3和下载铃声,手机彩信、书籍、照片、等等,产品丰富了数字出版的出版物的内容和形式的同时,也改变了人们的生活方式和消费观念。