×

原子力显微镜,原子力显微镜(atomic force microscope, AFM)工作原理是什么?

admin admin 发表于2023-11-30 23:04:15 浏览67 评论0

抢沙发发表评论

本文目录一览:

原子力显微镜的原理及其应用

AFM全称Atomic Force Microscope,即原子力显微镜,它是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵。
AFM利用一个对微弱力极敏感的、在其一端带有一微小针尖的微悬臂,来代替STM隧道针尖,通过探测针尖与样品之间的相互作用力来实现表面成像的。
AFM的原理较为简单,它是用微小探针“摸索”样品表面来获得信息。
当针尖接近样品时,针尖受到力的作用使悬臂发生偏转或振幅改变。悬臂的这种变化经检测系统检测后转变成电信号传递给反馈系统和成像系统,记录扫描过程中一系列探针变化就可以获得样品表面信息图像。
AFM是在STM的基础上发展起来的。所不同的是,它不是利用电子隧道效应,而是利用原子之间的范德华力(Van Der Waals Force)作用来呈现样品的表面特性。
原子力显微镜有三种基本成像模式,它们分别是接触式(Contact mode)、非接触式(non-contact mode)、轻敲式(tapping mode)
通常情况下,接触模式都可以产生稳定的、分辨率高的图像。但是这种模式不适用于研究生物大分子、低弹性模量样品以及容易移动和变形的样品。
由于为非接触状态,对于研究柔软或有弹性的样品较佳,而且针尖或者样品表面不会有钝化效应,不过会有误判现象。这种模式的操作相对较难,通常不适用于在液体中成像,在生物中的应用也很少。
对于一些与基底结合不牢固的样品,轻敲模式与接触模式相比,很大程度地降低了针尖对表面结构的“搬运效应”。样品表面起伏较大的大型扫描比非接触式的更有效。
AFM可以在大气、真空、低温和高温、不同气氛以及溶液等各种环境下工作,且不受样品导电性质的限制,因此已获得比STM更为广泛的应用。主要用途:
1. 导体、半导体和绝缘体表面的高分辨成像
2. 生物样品、有机膜的高分辨成像
3. 表面化学反应研究
4. 纳米加工与操纵
5. 超高密度信息存储
6. 分子间力和表面力研究
7 摩擦学及各种力学研究
8 在线检测和质量控制
上海百贺仪器科技有限公司一直致力于提升中国实验室检测水平,作为专业化的仪器公司,我们能为您提供更全面、更优质、更专业的实验室解决方案。
百贺仪器的产品及服务涉及金属、橡胶、塑料、石油、建筑材料、汽车、电子、电工、家电、医疗、包装印刷等诸多领域,享誉八方。
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.
详细
图1. 激光检测原子力显微镜探针工作示意图
原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。
利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。

下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing Laser Beam Deflection for Force Detection,Laser-AFM)——扫描探针显微镜家族中最常用的一种为例,来详细说明其工作原理。
  如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(Cantilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(Detector)。
在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。
子力显微镜——原理图
在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。
因此,反馈控制是本系统的核心工作机制。
本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。
编辑本段优缺点
优点
原子力显微镜观察到的图像
相对于扫描电子显微镜,原子力显微镜具有许多优点。
不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。
同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。
第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。
这样可以用来研究生物宏观分子,甚至活的生物组织。
缺点
和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。
原子力显微镜(Atomic Force Microscope)是继扫描隧道显微镜(Scanning Tunneling Microscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。
原子力显微镜与扫描隧道显微镜相比,由于能观测非导电样品,因此具有更为广泛的适用性。
当前在科学研究和工业界广泛使用的扫描力显微镜(Scanning Force Microscope),其基础就是原子力显微镜。
编辑本段仪器结构
在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检测部分、位置检测部分、反馈系统。
力检测部分
在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。
所以在本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。
微悬臂通常由一个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。
微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力。
这微小悬臂有一定的规格,例如:长度、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模式的不同,而选择不同类型的探针。
位置检测部分
原子力显微镜
在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂cantilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动而有所改变,这就造成偏移量的产生。
在整个系统中是依靠激光光斑位置检测器将偏移量记录下并转换成电的信号,以供SPM控制器作信号处理。
反馈系统
在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做适当的移动,以保持样品与针尖保持一定的作用力。
总结
AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。
压电陶瓷是一种性能奇特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或缩短。
而伸长或缩短的尺寸与所加的电压的大小成线性关系。
也就是说,可以通过改变电压来控制压电陶瓷的微小伸缩。
通常把三个分别代表X,Y,Z方向的压电陶瓷块组成三角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面扫描的目的;通过控制Z方向压电陶瓷的伸缩达到控制探针与样品之间距离的目的

原子力显微镜工作原理

一、原子力显微镜通过机械探针“触摸”样品表面表征其形貌并记录力学性质。它的工作原理类似人类用手指触摸物品表面,当探针靠近样品表面时,探针与样品表面间会产生一个相互作用力,此作用力会导致悬臂发生偏折。
二、激光二极管产生的激光束通过透镜聚焦到悬臂背面,然后再反射到光电二极管上形成反馈。在扫描样品时,样品在载物台上缓慢移动,而微悬臂在反馈调节系统调节下将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,由检测器记录表面形貌和力学信息。
原子力显微镜工作原理:
1、利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。
2、由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。
3、原子力显微镜,一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。
4、将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。
5、扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。

原子力显微镜

原子力显微镜(Atomic Force Microscope,缩写为AFM)是1986年问世的一种以隧道效应为理论基础的显微镜,是扫描探针显微镜家族中的重要成员。扫描探针显微镜(Scanning Probe Microscope,缩写为SPM)包括扫描隧道显微镜、原子力显微镜、摩擦力显微镜、静电力显微镜、磁力显微镜等等。它们都是运用一个探针相对于样品表面进行扫描,监测两者之间的电、光、力、磁场等随针尖与样品表面间隙的变化来获取样品表面的有关信息。
原子力显微镜由探针扫描系统、力检测与反馈系统、数据处理与显示系统以及振动隔离系统四部分组成。扫描系统的针尖装在微悬臂上,并使它与待测样品的表面有一定的力接触。由压电陶瓷或压电晶片三维扫描控制器驱动针尖或样品进行相对扫描。微悬臂对微弱力(如范德华力)极为敏感,并具有极高的可控空间定位精度,可达0.1nm。当微悬臂的针尖接触样品时,针尖尖端的原子与样品表面的原子会产生极微弱的排斥力,使微悬臂产生微小的形变。该形变可以作为针尖与样品之间作用力的直接度量。
近年来,原子力显微镜采用激光反射法来检测微悬臂的弯曲变形。一束激光经微悬臂背部反射到一个光电检测器(图5-5),检测器不同象限所接收的激光强度的差值与微悬臂的形变量呈一定的比例关系。微悬臂约0.01 nm的形变,在检测器检测后可变成3~10nm的位移,足够产生可测量的电压差。据此电压的变化,反馈系统不断地调整针尖或样品Z轴方向上的位置,可以保持针尖与样品之间的作用力恒定不变。通过测量电压对应于样品扫描位置的变化,即可获得样品表面原子尺度上的形貌图像。
图5-5 原子力显微镜的探针示意图
(据徐惠芳)
原子力显微镜对工作环境和样品制备的要求比电子显微镜的要求低得多。由于扫描面积小,相应地样品也应该很小。原子力显微镜不仅适用于导电样品,也适用于不导电的绝缘样品;样品可以在大气环境中,也可以在液体环境中进行测量。由于水环境中较低的针尖一样品力,有利于AFM成像。
原子力显微镜可应用于矿物溶蚀和风化表面的形貌观察和结构研究,表征矿物在溶解、生长、吸附,以及氧化还原反应中的形貌和结构变化,研究矿物与水界面之间的作用力、浮选过程中矿物颗粒与气泡表面之间的作用等。
上述四种显微镜的性能特点互不相同(表5-1),其中偏光显微镜是最基本的,它又是运用其余三种显微镜之前进行初步研究的必要的步骤之一。
表5-1 四种显微镜的主要特征对比

原子力显微镜有哪几种工作模式?试述其工作原理。

【答案】:原子力显微镜有接触模式和轻敲模式,它们的工作原理分别为如下几冲。1)接触模式一个对力非常敏感的微悬臂一端固定,另一端有一个微小的探针,当探针轻微地接触样品表面时,由于针尖尖端原子与样品表面原子之间存在极微弱的排斥力(10-8~10-7N),如果用压电陶瓷扫描控制器使针尖与样品表面之间产生相对扫描,则样品表面原子的高低起伏就会使微悬臂发生弯曲变形,形变量可用光杠杆或隧道电流方法进行检测,最终将形变信号转换成电信号,并反馈给扫描器的控制电路以改变扫描器的Z轴驱动电压,使扫描器在垂直方向上移动,从而调整针尖与样品之间的距离,使微悬臂弯曲的形变量在水平方向的扫描过程维持恒定,也就是使探针一样品之间的作用力保持恒定。在此反馈机制下,记录探针扫描样品表面的整个过程中扫描器Z轴驱动电压的变化,就可以推知样品的麦面形貌。2)轻敲模式用一个压电陶瓷元件驱动微悬臂振动,其振动频率恰好高于探针的最低机械共振频率(约50kHz)。由于探针的振动频率接近其共振频率,因此它能对驱动信号起放大作用。当把这种受迫振动的探针调节到样品表面附近(2~20nm)时,探针与样品之间会产生微弱的吸引力。在半导体和绝缘体材料上的这一吸引力,主要是凝聚在探针尖端与样品间的表面张力或范德华吸引力。虽然这种吸引力比在接触模式下记录到的原子之间的斥力要小1000倍,但这种吸引力电会使探针的共振频率降低,驱动频率和共振频率的差距增大。探针尖端的振幅减小。当探针经过表面隆起的部位时,这些地方吸引力增强,其振幅减小:而经过表面凹陷处时,其振幅增大。振幅的变化可以用光学或电学的方法检测出来。反馈系统根据振幅变化情况改变压电扫描器的z轴驱动电压,从而使振幅(也就是使探针与样品表面的间距)保持恒定。同接触式一样,用z轴驱动电压的变化来表征样品表面形貌。

原子力显微镜可以测什么

原子力显微镜可以碳材料、金属材料、氧化物、有机物薄膜等材料。
原子力显微镜(Atomic Force Microscope ,AFM),一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。AFM测量对样品无特殊要求,不需要对样品进行特殊处理,仅在大气环境下就可测量固体表面、吸附体系等,得到三维表面粗造度等信息。

原子力显微镜(atomic force microscope, AFM)工作原理是什么?

原子力显微镜(atomic force microscope,AFM)工作原理是利用一个对力敏感的探针针尖与样品之间的相互作用力来实现表面成像的。将一个对微弱力极敏感的弹性微悬臂一端固定,另一端有一微小的针尖,针尖与样品的表面轻轻接触,由于针尖原子与样品表面原子间存在极微弱的作用力(10^-8~10^-6N),微悬臂会发生微小的弹性形变。然后通过计算机对采集到的数据进行处理,从而得到样品表面的三维图象。如果想要挑选原子力显微镜,可以考虑Park原子力显微镜的Park NX10。Park NX10是全球唯一一个真正非接触式原子力显微镜,在延长探针使用寿命的同时,还能良好地保护您的样品不受损坏。可弯曲的独立XY扫描仪和Z扫描仪可带来无与伦比的精确度和分辨率。在SmartScan Auto独有的智能模式下,系统自动执行所有必要的成像操作,同时智能选择最佳的图像质量和扫描速度。Park NX10扫描离子电导显微镜模块为广泛的应用,细胞生物学,分析化学,电生理学和神经科学提供纳米级成像。想要了解原子力显微镜的相关信息,推荐咨询Park原子力显微镜。Park成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可。为了给客户提供高效便捷的售后服务,韩国帕克股份有限公司北京代表处建立有售后服务中心并配有备件仓库。

原子力显微镜的原理及其应用

一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。它通过检测待测样品表面和一个微型力敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面结构信息。它主要由带针尖的微悬臂、微悬臂运动检测装置、监控其运动的反馈回路、使样品进行扫描的压电陶瓷扫描器件、计算机控制的图像采集、显示及处理系统组成。微悬臂运动可用如隧道电流检测等电学方法或光束偏转法、干涉法等光学方法检测,当针尖与样品充分接近相互之间存在短程相互斥力时,检测该斥力可获得表面原子级分辨图像,一般情况下分辨率也在纳米级水平。afm测量对样品无特殊要求,可测量固体表面、吸附体系等。
原子力显微镜:是一种利用原子,分子间的相互作用力来观察物体表面微观形貌的新型实验技术.它有一根纳米级的探针,被固定在可灵敏操控的微米级弹性悬臂上.当探针很靠近样品时,其顶端的原子与样品表面原子间的作用力会使悬臂弯曲,偏离原来的位置.根据扫描样品时探针的偏离量或振动频率重建三维图像.就能间接获得样品表面的形貌或原子成分.
优点与缺点
相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,afm提供真正的三维表面图。同时,afm不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。
和扫描电子显微镜(sem)相比,afm的缺点在于成像范围太小,速度慢,受探头的影响太大。
原子力显微镜(Atomic Force Microscope,AFM)基本原理:将一个队微弱力极敏感的微悬臂一端固定,另一端有一个微小的针尖,其尖端原子与样品表面原子间存在及极微弱的排斥力,利用光学检测法或隧道电流检测法,通过测量针尖与样品表面原子间的作用力获得样品表面形貌的三维信息。可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。如果想要挑选原子力显微镜,可以考虑Park原子力显微镜的Park X20。原子力显微镜是显微镜中的一种类型,应用范围十分广泛。原子力显微镜是一种可用来研究包括绝缘体在内的固体材料表面结构的分析仪器。原子力显微镜(AFM)能够在大气及液体环境下准确地观测样品表面微区(纳米及微米尺度)三维形貌;同时可对样品表面物理化学特性进行研究,能测试多种材料如纤维材料、膜材料、生物材料、地质有机质、高分子材料等非金属材料以及金属材料、复合材料的多种物性。包括表面组分区别、温度、表面电势、磁场力、静电力、摩擦力和其他相互作用力的测量。想要了解原子力显微镜的相关信息,推荐咨询Park原子力显微镜。ParkNX20拥有业界最为便捷的设计和自动界面,让使用时无需花费大量的时间和精力,也不用为此而时时不停的指导初学者。借助这一系列特点,可以更加专注于解决更为重大的问题,并为客户提供及时且富有洞察力的失效分析报告。

原子力显微镜(AFM)的原理

原子力显微镜/AFM的基本原理
原子力显微镜/AFM的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动.利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息.
原子力显微镜(AFM)的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。选择原子力显微镜推荐Park NX-Hybrid WLI。Park NX-Hybrid WLI是有史以来第一款具有内置WLI轮廓仪的AFM,用于半导体和相关制造质量保证。例如半导体前端、后端到高级封装的过程控制,以及研发计量。它适用于那些需要在大面积上进行高吞吐量测量的设备,这些设备可以缩小到具有亚纳米分辨率和超高精度的纳米级区域。NX-Hybrid WLI 的优势:1、Park WLI系统Park WLI支持WLI和PSI模式(PSI模式由电动过滤器变换器 支持)可用物镜放大倍数:2.5X 、10X、20X、50X、100X;两个物镜可由电动线性换镜器自动更换。2、WLI光学干涉测量扫描 Mirau 物镜高度时,由干涉引起的光强变化可以计算每个像素处的样品表面高度;白光干涉测量 (WLI) 和相移干涉测量 (PSI) 是两种常用的表面表征技术。想要了解更多原子力显微镜的相关信息,推荐咨询Park原子力显微镜。Park原子力显微镜具有综合性的扫描模式,因此可以准确有效地收集各种数据类型;从使用世界上唯一的真非接触模式用来保持探针的尖锐度和样品的完整性,到先进的磁力显微镜, Park在原子力显微镜领域为客户提供最具创新、精确的模式。

原子力显微镜的原理是什么?应用是什么

原子力显微镜通过检测待测样品表面和一个微型敏感元件之间的极微弱的原子间相互作用力来研究物质的表面结构及性质。将一对微弱力极端敏感的微悬臂一端固定,另一端的微小针尖接近样品,这时它将与其相互作用,作用力将使得微悬臂发生形变或运动状态发生变化。扫描样品时,利用传感器检测这些变化,就可获得作用力分布信息,从而以纳米级分辨率获得表面形貌结构信息及表面粗糙度信息。其应用领域更为广阔,除物理、化学、生物等领域外,原子力显微镜在微电子学、微机械学、新型材料、医学等领域都有着广泛的应用。如果想要挑选原子力显微镜,可以考虑Park原子力显微镜的Park NX-Wafer。它是晶圆厂唯一具有自动缺陷检测的原子力显微镜。原子力显微镜可以检测很多样品,提供表面研究和生产控制或流程发展的数据,这些都是常规扫描型表面粗糙度仪及电子显微镜所不能提供的。Park NX-Wafer全自动AFM解决了缺陷成像和分析问题,提高缺陷检测生产率达1000%。超高精度和最小化探针针尖变量的亚埃级表面粗糙度测量,能够可靠地获得具有最小针尖变量的的亚埃级粗糙度测量。想要了解原子力显微镜的相关信息,推荐咨询Park原子力显微镜。Park成立至今,致力于新产品和新技术的开发,为客户解决各种技术难题,提供最完善的解决方案。Park的原子力显微镜以高尖端产品质量和快捷优质的售后服务受到广大客户的认可;同时,为了给客户提供高效便捷的售后服务,在北京代表处专门建立有售后服务中心并配有备件仓库,助力客户更好的服务。

原子力显微镜工作原理

如下:
原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定。
带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。
利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息。
二极管激光器发出的激光束经过光学系统聚焦在微悬臂背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器。
在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管检测光斑位置的变化,就能获得被测样品表面形貌的信息。
在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(Feedback)的作用就是在工作过程中。
由探针得到探针-样品相互作用的强度,来改变加在样品扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。
本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增益和比例增益几个参数的设置来对该反馈回路的特性进行控制。