本文目录一览:
- 1、角动量守恒的应用
- 2、角动量有什么用?例如?(自然科学)
- 3、角动量守恒的实际应用
- 4、自然界里的角动量守恒有什么? 举例子,求回答,
- 5、角动量守恒的生活实例并解释
- 6、请应用角动量守恒定律解释跳水运动中运动员入水时为何要把身体展开。
- 7、角动量守恒应用
- 8、人走路时为什么要甩手——角动量守恒
- 9、物理知识:角动量守恒定律
角动量守恒的应用
1、一个旋转的陀螺,为什么不容易倒下呢?可以看到,陀螺旋转时只受过转轴的重力,是不受外力矩的,因此它的角动量守恒,在理想情况下它将一直转下去。
2、跳水运动中运动员跳落时,可以将其想象为一个下落的不停转动的车轮,此时她旋转的转轴垂直于她的旋转平面。她下落时只受过转轴的重力,满足角动量守恒定律条件。角动量公式有两个变量:动量臂r和速度v。跳水运动员将身体蜷缩使质量分布靠近质心动量臂减小,根据角动量不变,故转速增大;而接近水面时伸开身体使质量分布远离质心而减小转速,最终平稳地沿垂直方向进入水中以减小水花。
3、花样溜冰运动员和芭蕾舞演员作旋转动作,先将两臂和腿伸开,旋转起来后,把两臂和腿收回因为身体某些部分离轴近了,转速迅速增加;需要停止的时候,重新把两臂和腿伸开去,降低转速,运动员就平稳地停下来。
角动量有什么用?例如?(自然科学)
角动量定义是:刚体的转动惯量和角速度的乘积,叫做刚体对转轴的角动量或者是叫动量矩。
角动量守恒定律是一条很有用的定律。
刚体转动的角动量守恒定律:在刚体转动时,如果受到的外力对轴的合外力矩为零(或不受外力矩作用),则刚体对同轴的角动量保持不变。
例如:人手持铁哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的重要例子。因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变。当人把两臂收回抱在胸前时,转动惯量减小了,但动量矩仍保持不变,所以转动速度就变快了。
花样滑冰、体操、跳水、芭蕾舞……中许多旋转动作都应用了这一定律。
自行车行走时,车轮转动,遵从动量矩守恒定律,只有受到足够大的外力距作用时,其动量矩才会改变——改变转轴的方向,所以,车轮转动得越快,自行车越不容易倾倒。所以“定车”需要较高的技巧;
杂技演员在表演车技时常常猛蹬几下,车速快了,他才在车上作各种技巧动作。
根据动量矩守恒定律,在不受到外力距作用时,保持它原来的转动方向,所以高速旋转物体的转轴具有定向性。由此做成了陀螺仪,在飞机、航海、航天技术中都离不开陀螺仪。
角动量守恒的实际应用
角动量守恒的实际应用
: 花样滑冰单脚点冰原地转圈。运动员伸开手臂则转速变慢,收缩手臂则转速变快。 直升飞机的尾翼,旋转的陀螺 导弹的导航
自然界里的角动量守恒有什么? 举例子,求回答,
纯粹的角动量守恒是难以存在的,毕竟会有一些阻力矩使得系统的角动量减小,但是忽略的话还是有几个常见例子的.
比如跳水运动员在空中加速翻滚的动作,运动员绕通过他质心的水平轴转动,为了减小这个轴的转动惯量,以加大转速,运动员在空中下肢收拢,双手抱膝,把身体尽量的卷曲起来,到了接近水面时,他便舒展四肢,把转动惯量变得最大,是角动量变得最小.
还有花样滑冰旋转时,宇宙中星体之间旋转运动等
角动量守恒的生活实例并解释
角动量即转动惯量与角速度的乘积
,它相当于转动中的动量.比如滑冰运动员在原地旋转时将手收回,转速加快,就是因为转动惯量变小而角动量没有变的原因.角动能是描述转动物体动能的物理量,其实质和平动乃至一半意义上的能量一样,单位也都是焦耳,而角动量的单位是
,与动量的单位不一样.
至于具体应用,学理论力学的时候你就知道了.
请应用角动量守恒定律解释跳水运动中运动员入水时为何要把身体展开。
跳水运动员刚起跳时要立刻把身体缩成一团,是为了减少空气阻力,增加旋转的速度,而在快入水时候,又把身体打开,是为了垂直落入水中,减少对水面的冲击而减少水花的溅起和增加入水时的美感,这是比赛规则所要求的。
因为身体四肢靠近身体(质心)你的转动惯量就会改变(因为r变了),所以会转的很快,加分好看,最后打开是要减速控制身体然后减少水花。
在跳水运动中,运动员在入水时需要把身体展开,这是为了减小角动量。根据角动量守恒定律,如果物体的角动量减小,则它的转动会变慢。
当运动员从高处跳入水中时,他们的身体会由于重力作用而向下旋转。如果他们的身体是紧缩的,他们的转动半径就会比较小,因此他们的角动量会比较大,转动速度会比较快。这会导致他们在入水时难以控制身体,甚至可能因为旋转过快而受伤。
相反,如果运动员把身体展开,他们的转动半径就会变大,因此他们的角动量会减小,转动速度会变慢。这使得他们更容易控制身体,减少受伤的风险。
因此,跳水运动员在入水时会展开身体,以减小他们的角动量并降低转动速度。
角动量守恒应用
宇宙自然生命简史,你的科普入门手册丨科学声音出品,必属精品
导航仪,开普勒定律(径矢单位时间内扫过面积相等)
角动量守恒 角动量守恒,又称角动量守恒定律
是指系统不受合外力矩或所受合外力矩为零时系统的角动量保持不变.dL/dt=r×F当方程右边力矩为零时,可知角动量不随时间变化.角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性.
根据刚体定轴转动的角动量定理,若刚体绕定轴转动时所受的合外力矩为零,即在刚体作定轴转动时,如果它所受外力对轴的合外力为零(或不受外力矩作用),则刚体对同轴的角动量保持不变.这就是刚体定轴转动的角动量守恒定律.
此原理多用于天文学,天体运行时自转不变.
(1)单个刚体对定轴的转动惯量I保持不变,若所受外力对同轴的合外力矩M为零,则该刚体对同轴的角动量是守恒的,即任一时刻的角动量 应等于初始时刻的角动量
,亦即 ,因而 .这时,物体绕定轴作匀角速转动.
(2)当物体绕定轴转动时,如果它对轴的转动惯量是可变的,则在满足角动量守恒的条件下,物体的角速度随转动惯量I的改变而变,但两者之乘积却保持不变,因而当I变大时,变小;I变小时,变大.如芭蕾舞演员表演时就是这样.
(3)人手持哑铃在转台上的自由转动属于系统绕定轴转动的角动量守恒定律的特例.因为人,转台和一对哑铃的重力以及地面对转台的支承力皆平行于转轴,不产生力矩,M=0,故系统的角动量应始终保持不变.
人走路时为什么要甩手——角动量守恒
一个常见的解释是,为了保持身体平衡。这种解释了和没解释没什么区别的答案是永远正确的,问题是甩手到底是怎么保持身体平衡的?
为了讲清楚这个问题,就需要引入角动量的概念(本文中所研究的对象只涉及绕轴的旋转,因此在这里就引入一个角动量的简化版本的定义):对于一个质量为 m 质点,以任意一条直线作为参考轴,设被研究的质点到这条轴的距离为 r ,如果质点 垂直于 r 方向 的速度为 v ,那么这个质点(相对于这条参考轴)的角动量则为 L = rmv 。如果被研究的物体不是质点,例如是一个人,那么 TA 整个的角动量就是 TA 身上所有质点的角动量之和。
知道了什么是角动量之后,我们就可以通过简单的推导立刻得出一个非常牛逼的性质,角动量定理。物体的角动量变化率等于它所受的外力矩(大家应该记得力矩是什么吧,就是 r 乘以垂直于 r 方向的力)。因此,倘若系统没有外力矩作用,那么角动量守恒。这种情况是十分多见的,例如一个旋转着的陀螺,为什么它不会很容易倒下呢?选取陀螺的转轴为参考轴,可以看到,它是不受外力矩的,因此它的角动量守恒,在理想情况下它将一直转下去。略微学过物理的人都知道动量 p 可以写成 p = mv ,所以角动量 L 就等于 r × p 。因此角动量守恒就可以被称之为 RP 守恒(这只是非官方叫法,莫当真)!
角动量守恒与能量守恒、动量守恒这三个守恒定律,是这个宇宙中最基本最牢不可破的三条定律,它们都是宇宙基本时空性质的反应。根据理论力学中的一个深刻的定理——诺特尔定理,能量守恒等价于时间平移对称性,即物理定律并不随着时间的流逝而发生改变;动量守恒等价于空间平移对称性,即物理定律并不随着空间地点的改变而改变;角动量守恒则等价于空间各向同性,即物理定律并不随着空间朝向的改变而改变。这是一个关键而美丽的结果。现代物理很多内容都是建立在对称性的种种性质上,诺特尔定理的结果就构成了现代物理基础的一部份,它是由女数学家 埃米?诺特(Emmy Noether)发现的。
角动量如何影响走路
回到本文一开始的问题上来。走路甩手是如何保持身体平衡的?
我们选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。注意,身体的角动量刚才还是顺时针,现在就变成了逆时针。根据角动量定理,角动量只要发生改变,就必须有力矩作用在系统上。因此,脚底必须给身体一个让其逆时针旋转的力矩,这是走路时身体受到外力矩的唯一方式。
但是由于人在匀速走路(通常情况下,我们的步行都可看成匀速的),所以把人看成一个整体的话,TA 所受的合力必然为 0 。因此这个力矩就必须是由一对等大、反向的力产生,而这个力就需要由脚底板和地面有个相对的旋转运动才能产生。
然而这种脚底转着搓地的动作想想都觉得难受,我们的身体大概没有进化出专门干这种诡异事情的肌肉。总结一下就是:如果不甩手,脚底板就要承受很别扭的转着搓地的运动。一般来说人们在走路时是不会选择后者的,因此依靠甩手保持身体平衡就成了顺理成章的事情。
当我们认可了脚底不会去转着搓地之后,人的身体整个就没有外力矩了,进而有角动量守恒并且等于零。换句话说,根植于潜意识中的走路程序始终是在维持着身体的角动量守恒。据此我们就可以很轻松地看出人类走路时应该如何甩手了:当两腿让身体有顺时针旋转时,双手就必须让整体再有个逆时针旋转,即哪边的腿往前迈,哪边的手就必须往后甩,这样才能让整体角动量保持为零,这就是正常的甩手方式;而如果顺拐的话,手和腿朝着同一方向,显然无法让整体角动量为零,这样走路的话就又需要脚底板难受了。这就是走路甩手奥秘的全部。
资料引用于果壳网
为什么如果走顺拐了会感觉特别别扭呢?一个很常见的解释是,为了保持身体平衡..这种解释了和没解释没什么区别的答案是永远正确的,但问题是具体甩手是怎么保持身体平衡的?为了讲清楚这个现象,需要先引入一个叫角动量的概念。(本文中所研究的现象只涉及绕轴的旋转,因此在这里就引入一个角动量的简化版本的定义好了。)对于一个质量为m质点:先随便找一条直线作为参考轴,设被研究的质点到这条轴的距离为r,如果质点垂直于r方向的速度为v,那么这个质点(相对于参考轴)的角动量则为L=rmv。如果被研究的物体不是质点,例如是一只人类,那么她整个的角动量是她身上所有质点的角动量之和。定义了角动量之后,可以通过简单的推导立刻推出一个非常牛逼的性质,角动量定理:物体的角动量变化率等于它所受的外力矩。(大家应该记得力矩是什么吧..就是r乘以垂直于r方向的力。)于是乎,倘若系统没有外力矩作用,那么角动量就华丽丽的守恒了:此即为传说中的角动量守恒!这种情况是十分多见的:例如一个旋转着的陀螺,为什么它不会很容易倒下呢?原因就在于角动量守恒:就选取陀螺的转轴为参考轴,那它就是不受外力矩的,因此它的角动量守恒,因此在理想情况下它将一直转下去。大家还记得动量p可以写成p=mv吧,于是角动量L就等于r×p。因此角动量守恒就可以被称之为rp守恒~!(这只是非官方叫法,莫当真。。。)角动量守恒与能量守恒、动量守恒这三个守恒定律,是这个宇宙中最基本最牢不可破的三条定律,它们都是我们宇宙基本时空性质的反应。根据理论力学中的一个深刻的定理——诺特尔定理:能量守恒等价于时间平移对称性,即物理定律并不随着时间的流逝而发生改变;动量守恒等价于空间平移对称性,即物理定律并不随着空间地点的改变而改变;角动量守恒则等价于空间各向同性,即物理定律并不随着空间朝向的改变而改变。回到本文一开始的问题上来。我们选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。
为什么如果走顺拐了会感觉特别别扭呢?一个很常见的解释是,为了保持身体平衡..这种解释了和没解释没什么区别的答案是永远正确的,但问题是具体甩手是怎么保持身体平衡的?为了讲清楚这个现象,需要先引入一个叫角动量的概念。(本文中所研究的现象只涉及绕轴的旋转,因此在这里就引入一个角动量的简化版本的定义好了。)对于一个质量为m质点:先随便找一条直线作为参考轴,设被研究的质点到这条轴的距离为r,如果质点垂直于r方向的速度为v,那么这个质点(相对于参考轴)的角动量则为L=rmv。如果被研究的物体不是质点,例如是一只人类,那么她整个的角动量是她身上所有质点的角动量之和。定义了角动量之后,可以通过简单的推导立刻推出一个非常牛逼的性质,角动量定理:物体的角动量变化率等于它所受的外力矩。(大家应该记得力矩是什么吧..就是r乘以垂直于r方向的力。)于是乎,倘若系统没有外力矩作用,那么角动量就华丽丽的守恒了:此即为传说中的角动量守恒!这种情况是十分多见的:例如一个旋转着的陀螺,为什么它不会很容易倒下呢?原因就在于角动量守恒:就选取陀螺的转轴为参考轴,那它就是不受外力矩的,因此它的角动量守恒,因此在理想情况下它将一直转下去。大家还记得动量p可以写成p=mv吧,于是角动量L就等于r×p。因此角动量守恒就可以被称之为rp守恒~!(这只是非官方叫法,莫当真。。。)角动量守恒与能量守恒、动量守恒这三个守恒定律,是这个宇宙中最基本最牢不可破的三条定律,它们都是我们宇宙基本时空性质的反应。根据理论力学中的一个深刻的定理——诺特尔定理:能量守恒等价于时间平移对称性,即物理定律并不随着时间的流逝而发生改变;动量守恒等价于空间平移对称性,即物理定律并不随着空间地点的改变而改变;角动量守恒则等价于空间各向同性,即物理定律并不随着空间朝向的改变而改变。回到本文一开始的问题上来。我们选取过人的质心与地面垂直的直线作为参考轴。右脚踩在地上而左脚往前迈时,左脚一个相对于轴向前的速度,而右脚有一个相对轴向后的速度。假设我们的手不甩的话,他们对身体总角动量就没有贡献,于是身体有了一个绕参考轴顺时针旋转的角动量。而当左脚踩在地上而右脚向前迈进时,相应的,人的身体具有逆时针旋转地角动量。根据角动量定理,角动量只要发生改变,就必须有力矩作用在系统上。因此脚底必须给身体一个让其逆时针旋转的力矩,这是走路时身体受到外力矩的唯一方式。但是注意到脚底给身体的合力必须是零,否则人没法匀速走路了,因此这个力矩得是一对等大反向而作用点不同的力产生,必须是脚底板和地面有个相对的旋转运动才能产生出来。然而这种脚底转着搓地的动作想想都觉得难受,我们的身体大概没有进化出专门干这种诡异事情的肌肉。总结一下就是:如果不甩手,脚底板就要承受很别扭的转着搓地的运动。一般来说人们在走路时是不会选择后者的,因此就必须甩手。当我们认可了脚底不会去转着搓地之后,人的身体整个就没有外力矩了,进而有角动量守恒并且等于零。换句话说,根植于潜意识中的走路程序始终是在维持着身体的角动量守恒。以此就可以很轻松地看出我们应该如何甩手了:当两腿让身体有顺时针旋转时,双手就必须让整体再有个逆时针旋转,即哪边的腿往前迈,哪边的手就必须往后甩,这样才能让整体角动量保持为零,这就是正常的甩手方式;而如果顺拐的话,手和腿朝着同一方向,显然无法让整体角动量为零,这样走路的话就又需要脚底板难受了。这就是走路甩手奥秘的全部。角动量守恒在生活中还有许许多多的应用。一个例子是可以很轻松地解释直升机的尾翼是干嘛用的。小时候我也好奇为什么直升机都配备一个尾翼,似乎直升机只要一个大的螺旋桨提供升力就够了啊。可是用角动量守恒去一分析就可以知道,如果没有尾翼,直升机系统是角动量守恒的,因为起飞时角动量为零,因此会一直为零。而直升机的螺旋桨是一定要旋转的,这就让直升机无可奈何,只有机身拼命地往相反方向去旋转才可能保证总角动量始终为零。在没有尾翼的情况下,这种反向旋转是不可避免的,任何巧妙的机械都无法实现让他不转。因此为了让机身不转,必须打破角动量守恒,这就要提供外力矩,尾翼就是用来干这事的。《意料之外的绞刑》(马丁·加德纳 著)里提到了一种有意思的东西,叫翻身陀螺,上图就是一个例子。它是一种特殊的陀螺,就是它在绿色朝下旋转的时候,会因为不稳定而自动翻身,翻成绿色朝上然后稳定地旋转。翻转的道理先不用管,问题是:一开始让他顺时针旋转的话,翻身之后他是逆时针转还是顺时针转呢?也许没有接触过角动量概念的人会觉得是逆时针转,因为陀螺好像不太可能停下来然后换个方向转,而直接把陀螺倒过来看貌似就是逆时针转的了。可是当我们知道了角动量守恒之后,就可以轻松判断一定会仍然顺时针旋转了。我们甚至根本不必关心翻身的过程到底有多复杂,这就是用守恒律去研究问题的一大好处。
物理知识:角动量守恒定律
角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质点和质点系围绕该点(或轴)运动的普遍规律。
角动量守恒定律是指系统所受合外力矩为零时系统的角动量保持不变。角动量守恒定律是物理和自然界的一条重要定律。它在日常生活、天体物理、微观物理和工程中都有广泛的应用。例如,角动量守恒定律可以很好地解释开普勒天体运行第二定律、陀螺效应等。
当一个质点绕原点运动时,它的角动量L=RxP。这里,R是质点相对于原点的位置向量;P是质点的线性动量;而x表示矢量积。
具有一定质量的物体绕一固定轴转动,它的角动量L可表示为这个物体的惯性矩I和它的角速度向量w的乘积,即L=Ixw.
角动量又称为动量矩,是一个矢量,是位矢叉乘于动量。
定律简介
例如一个在向心力场中运动的质点,始终受到一个通过力心的向心力作用,因向心力对力心的力矩为零,所以根据角动量定理,物理学的普遍定律之一。例如一个在有心力场中运动的质点,始终受到一个通过力心的有心力作用,因有心力对力心的力矩为零,所以根据角动量定理,该质点对力心的角动量守恒。因此,质点轨迹是平面曲线,且质点对力心的矢径在相等的时间内扫过相等的面积。如果把太阳看成力心,行星看成质点,则上述结论就是开普勒行星运动三定律之一的开普勒第二定律。一个不受外力或外界场作用的质点系,其质点之间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零,从而导出质点系的角动量守恒。如质点系受到的外力系对某一固定轴之矩的代数和为零,则质点系对该轴的角动量守恒。角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,也包括角动量守恒定律。W.泡利于1931 年根据守恒定律推测自由中子衰变时有反中微子产生,1956年后为实验所证实。
定理也称动量矩定理。
表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。对于质点系,由于其内各质点间相互作用的内力服从牛顿第三定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角动量定理:质点系对任一固定点O的角动量对时间的微商等于作用于该质点系的诸外力对O点的力矩的矢量和。由此可见,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动情况。
定理应用
角动量守恒定律是物理和自然界的一个重要定律,它在日常生活、天体物理、微观物理和工程等许多方面都有广泛的应用。例如:当滑冰者手臂收缩时,自我旋转滑冰者的转动速度就会加快。用角动量守恒定律也可解析中子星有很高的转动速率等。另外,角动量守恒定律也是陀螺效应的原因。
角动量守恒定律反映了质点和质点系围绕一点或一轴运动的普遍规律。如一质量为 m的质点受指向固定中心O的向心力F的作用,因力F对O点的力矩为零,根据牛顿第二定律可推得质点对O点的角动量守恒,Lo=r×mv=常矢量,此常矢量决定于运动的起始条件,r为质点对于O点的矢径,v为质点的速度。如将太阳看成固定中心,行星看成质点,则角动量守恒表明行星轨道必在一平面上。矢径在相等的时间内扫过的面积相等,这就是开普勒行星运动三定律之一—开普勒第二定律 。
角动量守恒也是微观物理学中的重要基本规律。在基本粒子衰变、碰撞和转变过程中都遵守反映自然界普遍规律的守恒定律,如能量守恒定律、动量守恒定律和角动量守恒定律等。1931 [1]年,W.泡利根据守恒定律,推测自由中子衰变时有反中微子产生,1956年后这一结论为实验所证实。